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ABSTRACT

Aims. Using a model of vertically polarised fast magnetoacoustic waves in curved coronal loops, the method of coronal seismology is applied
to observations of transverse loop oscillations.
Methods. A coronal loop is modeled as a curved magnetic slab in the zero plasma-β limit. For an arbitrary piece-wise continuous power law
equilibrium density profile, the dispersion relation governing linear vertically polarised fast magnetoacoustic kink waves is derived. The ways
in which this model can be used for coronal seismology are explored and applied to two observational examples.
Results. The Alfvén speed and equilibrium density profile are determined from observations. It is shown that the mechanism of lateral leakage
of fast magnetoacoustic kink oscillations described in this model is efficient. In fact, the damping is so efficient that in order to match predicted
values with observational ones, either the loop needs to be highly contrasted or the transverse Alfvén speed profile needs to be close to linear.
Possible improvements to make the modeling of lateral wave leakage in loops more realistic, allowing a lower damping efficiency, are discussed.
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1. Introduction

The detection and identification of magnetohydrodynamic
(MHD) waves and oscillations in the solar corona from re-
cent observations using ground-based and space-borne instru-
ments has made MHD coronal seismology a practical, new tool
for the determination of unknown parameters of the corona
(see e.g. Nakariakov & Verwichte, 2005 for a review). The
method of MHD coronal seismology was originally suggested
by Uchida (1970) and Roberts et al. (1984). The technique is
based upon measured properties of waves observed in a coro-
nal structure on the one hand (e.g. period, wavelength, damping
times) and a theoretical model describing waves in such struc-
ture on the other hand. By substituting the observed parameters
into the model, we may determine the remaining unknown pa-
rameters that control the wave behaviour.

The technique of coronal seismology can be applied to var-
ious wave phenomena. Nakariakov et al. (2004) showed that
the dispersive development of an impulsively generated fast
magnetoacoustic wave pulse in a coronal loop (Roberts et al. ,
1984) leads to the formation of a quasi-periodic wave train,
which has signatures that contain information about the trans-
verse loop structuring. Similar signatures were found in eclipse
observations (Katsiyannis et al. , 2003), which strengthened the
interpretation of the observed waves as fast magnetoacoustic
wave trains. Robbrecht et al. (2001) and King et al. (2003) have

shown that propagating slow magnetoacoustic waves observed
co-spatially and co-temporally with multiple data sets, sensi-
tive to different temperatures, point to a transverse temperature
fine-structuring of coronal loops.

Transverse oscillations of coronal loops (Aschwanden
et al. 1999, Nakariakov et al. 1999) are of particular interest.
These are interpreted as fast magnetoacoustic kink oscillations.
Nakariakov et al. (1999) and Nakariakov & Ofman (2001)
have shown that the Alfvén speed and the strength of the mag-
netic field of the coronal loop can be determined by substitut-
ing the observed oscillation period and wavelength (twice the
loop length) of a fast magnetoacoustic kink oscillation into the
straight loop model of Edwin & Roberts (1983), and by assum-
ing a realistic range of values for the loop density and contrast
(see also Ofman & Aschwanden 2002, Verwichte et al. 2004).

Coronal seismology is also expected to validate theoretical
hypotheses put forward to explain certain aspects of observed
wave behaviour. The observed rapid damping of fast kink os-
cillations (Nakariakov et al. 1999) cannot be explained by the
direct dissipation caused by viscosity or resistivity, consider-
ing classical values of the shear viscosity and resistivity (see
the discussion in Roberts 2000). Therefore, various alterna-
tive hypotheses have been put forward: e.g. resonant absorp-
tion with anomalous dissipation (Nakariakov et al. 1999), res-
onant mode conversion of quasi-modes (Ruderman & Roberts
2002, Goossens et al. 2002) and phase-mixing with anomalous
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dissipation (Ofman & Aschwanden 2002). We refer the reader
to Nakariakov & Verwichte (2005) for a discussion of these
and other hypotheses. Recently, Brady & Arber (2005) put for-
ward the mechanism of lateral leakage by wave tunneling as an
explanation for the rapid damping of vertically polarised kink
oscillations. Ofman & Aschwanden (2002) derived empirical
scaling laws between observed parameters and concluded that
phase mixing was the hypothesis that fitted best the observa-
tions, although resonant mode conversion could not be ruled
out. In spite of this, Aschwanden et al. (2003) concluded in
favour of the resonant mode conversion hypothesis (without
ruling out phase mixing). The difference between the two stud-
ies is that in the former the ratio of the loop skin depth over
width, a crucial parameter in the mechanism of resonant ab-
sorption, was not constrained. This example illustrates that for
coronal seismology to be successful, all observed parameters
need to be taken into account in a way as self-consistent as
possible.

In Verwichte et al. (2006a) and Verwichte et al. (2006b),
here after denoted Paper I and Paper II, an analytical model
for vertically polarised fast magnetoacoustic waves in a curved
coronal loop has been presented. We refer the reader to Paper I
for a discussion of previous work on waves in curved coronal
loops. The coronal loop has been modeled as a curved magnetic
slab in the zero plasma-β limit. The equilibrium density is given
by a piece-wise continuous power law profile. Depending on
the value of the power law index, the wave modes are trapped
or all subject to lateral wave leakage, either upwards or down-
wards. We have shown in Paper II that the theoretical model
of upwards lateral wave leakage is consistent with the numer-
ical simulations of Brady & Arber (2005) and confirms that
vertically polarised fast magnetoacoustic kink oscillations of
isolated coronal loops may be efficiently damped due to lat-
eral leakage. Furthermore, we have shown that fast kink os-
cillations in slender loops may have significant density per-
turbations, which is not the case in the straight loop model of
Edwin & Roberts (1982,1983). However, fast kink may couple
nonlinearly with slow magnetoacoustic modes which in turn
produce substantial density perturbations. Terradas & Ofman
(2005) have shown that this mechanism may be responsible for
observed intensity variations in transversely oscillating loops.
Our theoretical model is well suited for coronal seismology as
it predicts key wave observables that can be compared with ob-
servations, i.e. period, damping time and intensity amplitude.
Here, we shall explore the potential of the model for coro-
nal seismology using fast kink oscillations that experience up-
wards lateral wave leakage. We show that vertically polarised
fast kink oscillations provide us with information of the trans-
verse loop structuring.

The paper is structured as follows. In Sect. 2, the coronal
loop model, the wave solutions and dispersion relation, used in
Papers I and II, are briefly introduced. In Sect. 3, the intensity
perturbations caused by a wave are discussed. In Sect. 4, the
ways in which the model can be used for coronal seismology
are explored. In Sect. 5, two examples are given of the appli-
cation of coronal seismology with the model to observations.
In Sect. 6, the main findings, limitations and possible improve-
ments of the model are discussed.

2. Model and governing equations

Following Papers I and II, the coronal loop is modeled as a
semi-circular magnetic slab of half-width a and radius of cur-
vature R, in the gravitationless and zero plasma-β limit (see Fig.
1 of Paper I for an illustration of the model). We use a cylindri-
cal coordinate system with origin at the centre of curvature of
the slab, at the solar surface. The slab and the equilibrium mag-
netic field are directed along the azimuthal φ-direction, with the
solar surface located at φ = [0, π]. The solar surface is taken
to be line-tied with rigid boundary conditions. The z-direction
is parallel to the solar surface and perpendicular to the loop
axis. In the radial direction with coordinate r, the semi-infinite
space is partitioned into internal (|r − R| ≤ a) and external
(|r − R| > a) regions. Quantities in those regions are denoted
with subscripts ‘i’ and ‘e’, respectively. The equilibrium mag-
netic field is azimuthal and of the form B0φ = B0(r/R)−1. We
choose the equilibrium density to be a piece-wise continuous
power law, i.e. ρ0(r) = ρ0,i/e(r/R)α. Thus, the Alfvén speed is
of the form VA(r) = VAi/e(r/R)1−δ, where δ = (α + 4)/2. The
ratio χ=ρ0e/ρ0i is a measure of the density contrast and for a
coronal loop this parameter is typically less than unity.

We consider vertically polarised fast magnetoacoustic kink
oscillations in a loop with a density profile of index α > −4,
which covers the range of realistic density profiles. In Paper II,
we have shown that for this case all waves leak out into the
upper external medium and are therefore damped. We take the
radial displacement, ξr, Eulerian magnetic pressure perturba-
tion, P, and Eulerian density perturbation, ρ, of the fast kink
oscillation to be of the form f = f̂ (r) sin(mφ) exp(−iωt), where
ω is the angular frequency of a mode of azimuthal degree m.
Therefore, a wave of degree m=1 corresponds to the funda-
mental oscillation mode of the loop. Following Paper II, the
solution of the relevant wave equation for a single mode of de-
gree m is given by
(
ξ̂r

r

)
=


Ae Jν(

√
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As in Paper I, the magnetic pressure is calculated using
(
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P0 is the equilibrium magnetic pressure. The continuity of the
displacement, ξ̂r , and the Lagrangian total pressure perturba-
tion, δP̂=P̂-2P0ξ̂r/r, at r = R±a leads to the dispersion relation
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Fig. 1. Equilibrium density power law index α as a function of the am-
plitude ratio µ at the loop top of the fast kink mode of degree m=1, for
three values of a/R: 0.01 (top), 0.05 (middle), 0.2 (bottom). The curves
represent results for different values of χ: 0.01 (solid), 0.1 (dashed),
0.25 (dot-dashed) and 0.5 (long-dashed). The thin solid line is the ap-
proximate value of µ using Eq. (9).

where W{ f (x), g(y)} = f (x) dg
dr (y) − d f

dr (x) g(y) and s± = (1 ±
a/R)δ/|δ|. Eq. (5) is solved for Ω as a function of m, a/R, χ and
α. The value of VAi only enters into the model through Eqs. (2)
and (3).

3. Intensity perturbation

In Papers I and II we have shown that the vertically polarised
kink mode is compressible in a curved loop. Hence, it perturbs
the loop density. Therefore, besides the period and damping
time, the intensity perturbation relative to the displacement is
an additional observable, which may contain information about
the loop. For resonant EUV line emission in the optically thin
corona, the intensity relates to the density as I ∼ ρ2. The
Lagrangian intensity perturbation, δI, is, for small amplitudes,
equal to 2ρ0δρ. Here, δρ is the Lagrangian density perturbation
given by (see Paper I)
(
δρ̂

ρ0

)
=

ρ̂

ρ0
+

1
ρ0
ξ̂r

dρ0

dr
=

1
2

P̂
P0
− 2

ξ̂r

r
. (6)

It is convenient to introduce here the ratio between the average
intensity perturbation amplitude and the average loop displace-
ment as

µ =
< δI >

< I0 >< ξr/r >
, (7)

where I0 is the equilibrium intensity. The averaging operator
<> is defined as

< f>=
1
2a

∫ R+a

R−a
f (r) dr , (8)

where f is a linear perturbation. Averaging explicitely over the
perturbed interval gives approximately the same result.

We calculate µ for a fast kink mode of degree m=1 using
Eq. (7) as a function of α for a range of values in a/R and χ
(solving dispersion relation (5) and calculating the Lagrangian
density perturbation and displacement using Eqs. (1) and (6)
respectively). The result is shown in Fig. 1. The fast kink mode
of degree m=1 is characterised by a radial translation of the
whole loop in the same direction. In Paper I we argued, on
physical grounds without explicit calculations, that the ratio of
the relative average intensity perturbation and the displacement
amplitude for such a mode is approximately

µ = 2
< ρ0δρ >

< ρ2
0 >< ξr/r >

≈ < P/P0 >

ξr(R)/R
− 4 ≈ −4 , (9)

where <P/P0> was assumed to be small, as is the case with
the fast kink mode in a straight loop model. Equation (9) sug-
gests that the ratio of the relative intensity perturbation and the
displacement amplitude is independent of the unknown param-
eters and is equal to -4. This would imply that the intensity
variation does not provide additional information that can be
used for seismological purposes. However, Fig. 1 shows that
Eq. (9) overestimates the value of µ because the contribution
of the average Eulerian total pressure perturbation cannot be
neglected. The largest departures from Eq. (9) occur for faint
(large χ), slender (small a/R) loops. Also, the result does not
change significantly if <ξr/r> is replaced by ξ(R)/R. The quan-
tity µ is a function of α, χ and a/R, and can therefore be used
for seismological purposes after all. However, the index α can-
not be determined from the intensity variation independently
from χ and a/R. Also, the calculation of µ does not involve the
value of VAi.

Even if the displacement of the loop is less than the reso-
lution of an imaging instrument such as the Transition Region
And Coronal Explorer (TRACE), a vertically polarised kink
loop oscillation may still be detected as intensity oscillations.
For example, a loop of length 50 Mm, which has a vertical
displacement corrresponding to the distance seen by a TRACE
pixel, i.e. 0.35 Mm, has a minimum relative absolute intensity
perturbation of 3% according to Eq. (9). Furthermore, the in-
tensity variations of a fundamental kink oscillation are most
pronounced near the loop top and can therefore be distinguish
from the fundamental slow magnetoacoustic oscillation, which
has intensity variations near the loop footpoints.

To get µ from the observations, it is important to take into
account the effect of time-integration, because a transversely
oscillating loop, with a component of displacement in the plane
of the sky, will contribute longer to the pixel intensity at the ex-
treme loop positions than in between. When considering com-
parisons with our theoretical model, this effect can be cor-
rected by normalising the measured intensity with the time-
integrated intensity of an oscillating, homogeneous loop of the
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Fig. 2. Parameter space α−χ for three values of a/R: 0.01 (Left), 0.05 (Middle) and 0.2 (Right). The solid and dashed curves represent constant
values of τ/P and µ, respectively.

same width. Unfortunately, this correction is missing in the cur-
rently known observational example (Wang & Solanki 2004).
Thus, the effective application of µ of vertically polarised kink
modes for purposes of coronal seismology awaits a reanalysis
of this example or the discovery of new ones.

4. Determination of loop transverse parameters

4.1. General method

The above theoretical model can be compared to observations
of vertically polarised fast magnetoacoustic kink oscillations
in coronal loops, and may therefore be used for seismologi-
cal purposes. From observations, the following wave signatures
can be measured: oscillation period, P, damping time, τ, az-
imuthal degree, m, loop axis displacement amplitude, ξr(R)/R
and the relative average intensity perturbation, <δI>/< I0>.
Also from the observations, the loop half-width, a, and loop
radius of curvature, R, can be estimated. The latter quantity is
obtained by fitting the loop shape with a semi-circle. This as-
sumption, together with projection effects, introduces a relative
error in R, which may be estimated qualitatively to be at least
10% (e.g. Aschwanden et al. 2002).

The theoretical model needs three additional parameters to
fully describe the wave behaviour: e.g. the equilibrium den-
sity power law index, α, the density contrast, χ and the in-
ternal Alfvén speed, VAi. Through VAi and χ, the external
Alfvén speed, VAe, is determined. The parameters χ and α,
which are connected with the transverse loop structuring, may
be measured directly from observations, but the narrowness of
EUV instrument temperature bandpasses and problems with
background subtraction due to line-of-sight effects introduce
large uncertainties (e.g. Aschwanden et al. 2003). Therefore,
we propose to use the observed wave signatures to determine
these parameters.

In mathematical terms, the method proposed here involves
a system of equations in the three unknown parameters, which
relate the observed parameter values to their theoretically pre-
dicted values. By solving dispersion relation (5), we can calcu-
late theoretical predictions of µ using Eq. (7), P using Eq. (2)

and τ using Eq. (3), as a function of the unknown parameters
α, VAi and χ and the known fixed values of m and a/R. Thus,
we create a three-dimensional space in the unknown parame-
ters. Each of the three relations between the predicted and the
observed value of a parameter forms a surface in this space.
Where the three surfaces cross a set of values for α, VAi and χ
is found that is consistent with the model and the observations.
This is an exactly determined system. If one of the parameters
is already known, then the system becomes overdetermined.
We can then verify the applicability of the model and its under-
lying assumptions.

However, the three-dimensional parameter space does not
need to be studied in full if we note that the quantities µ and
τ/P do not depend on VAi. The ratio τ/P is known as the qual-
ity factor. We can construct a two-dimensional parameter space
in α and χ in which the relations between the predicted and ob-
served values of τ/P and µ form two curves. Where the two
curves cross, a set of values for α and χ is found that is con-
sistent with theory and observations. With α and χ determined,
the shape of the density profile is fixed and all parameters for
calculating the dimensionless mode frequency using Eq. (5) are
known. Along each curve, the value of the Alfvén speed varies.

The behaviour of the curves of constant τ/P and µ in the
α−χ parameter space is shown in Fig. 2. On curves of constant
τ/P, χ increase as α becomes smaller. From the point of view
of a tunneling mode for instance, this can be understood as fol-
lows. As α decreases, the evanescent barrier through which the
wave tunnels becomes thicker. Therefore, the density contrast
has to be lowered (increasing χ) to maintain the same damp-
ing rate. The dependencies of the quality factor on χ and α
respectively, are shown in Fig. 3 (left and middle panels). Figs.
1 and 2 show that µ becomes independent of χ as α approaches
-4. Also, these curves show a minimum as a function of α.
Therefore, it is possible to find more than one crossing between
a particular set of curves of constant τ/P and constant µ, and
hence multiple solutions for α and χ. In that case, additional ar-
guments are needed for favouring one solution above another.

If the system is overdetermined, then the applicability of
the physical mechanism in the model can be tested. Ofman &
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Fig. 3. (Left) Quality factor τ/P as a function of χ for three values of a/R: 0.01 (Top), 0.05 (Middle) and 0.2 (Bottom). The curves represent
different values of α: -3 (solid), -2 (dashed), -1 (dot-dashed), 0 (triple dot-dashed) and 1 (long-dashed). (Middle) Quality factor τ/P as a function
of α for three values of a/R: 0.01 (Top), 0.05 (Middle) and 0.2 (Bottom). The curves represent different values of χ: 0.01 (solid), 0.05 (dashed),
0.1 (dot-dashed), 0.2 (triple dot-dashed) and 0.5 (long-dashed). (Right) Quality factor τ/P as a function of a/R for three values of α: -3.5 (Top),
-2 (Middle) and 0 (Bottom). The curves represent different values of χ: 0.01 (solid), 0.05 (dashed), 0.1 (dot-dashed), 0.2 (triple dot-dashed) and
0.5 (long-dashed).

Aschwanden (2002) compared theoretical predictions with ob-
servations using scaling laws between τ and P. However, for
most models, this requires knowledge of the Alfvén speed. The
quality factor is therefore better suited. From Fig. 3 we see that
τ/P decreases with increasing χ, α or R. This sets our model
apart from other mechanisms put forward to explain the damp-
ing of transverse loop oscillations. Indeed, the mechanism of
resonant mode conversion of quasi-modes predicts that τ/P in-
creases with increasing χ and is independent of R (Ruderman
& Roberts 2002); the mechanism of phase-mixing with anoma-
lous dissipation predicts that τ/P decreases with increasing R
but is independent of χ (Ofman & Aschwanden 2002).

4.2. Determination of the Alfvén speed

Nakariakov et al. (1999) and Nakariakov & Ofman (2001) have
shown how the Alfvén speed in a coronal loop can be de-
termined from the observed oscillation period of a fast kink
mode of degree m=1 and the loop length. They applied the
model of a straight cylinder loop with piece-wise homogeneous
equilibrium quantities and used the fact that the phase speed
of the fast kink mode is equal to the kink speed in the long
wavelength limit, independent of the value of a/R (Edwin &
Roberts, 1983). By making some assumptions for the value
of the density contrast, the Alfvén speed can then be deter-
mined from the kink speed. In a straight magnetic slab model
(Edwin & Roberts, 1982), the phase speed of the fast kink mode
tends to the external Alfvén speed in the long wavelength limit.
Again, the density contrast is needed to relate the external to the
internal Alfvén speed.

In our model, the phase speed becomes infinite in the long
wavelength limit. Therefore, the phase speed of a fast kink
mode needs to be calculated explicitly for given values of the

Fig. 4. Normalised wave period, VAiP/R as a function of α for three
values of a/R: 0.01 (Top), 0.05 (Middle) and 0.2 (Bottom). The curves
represent different values of χ: 0.01 (solid), 0.05 (dashed), 0.1 (dot-
dashed), 0.25 (triple dot-dashed) and 0.5 (long-dashed).

parameters α, χ (determined by the method outlined above), a
and R. The internal Alfvén speed is then derived from Eq. (2).
Figure 4 shows this process graphically: if all loop parameters
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Fig. 5. Parameter space α − χ for example 1. The solid curves repre-
sent constant quality factor τ/P, calculated using solution of Eq. (5)
and matching the observed values of 3.05 (τ=714s) or 0.85 (τ=200s).
The aspect ratio a/R=0.03. Along these curves the value of VAi varies
monotonically, as indicated by key values of VAi in units of kms−1 are
indicated. The dashed curves represent constant values of µ.

are known, then from the observed oscillation period, the in-
ternal Alfvén speed can be determined from Fig. 4. Note, that
with P and R fixed, VAi increases with decreasing α. Also, VAi
depends weakly on α for highly contrasted loops because the
more contrasted a coronal loop is, the more it behaves indepen-
dently from the external medium and its density profile.

5. Examples

Here, we shall study two observational examples of fast mag-
netoacoustic kink oscillations in coronal loops observed by
TRACE. For this, we assume that the observed oscillation
damping is a manifestation of lateral wave leakage as studied
in Paper II. In both cases P and τ are measured. Unfortunately,
no reliable measurements of µ currently exist. In the first ex-
ample, α, VAi and χ are all unknown. Therefore, we have an
underdetermined system. In the second example, α and VAi are
unknown but χ is measured, so that we have an exactly deter-
mined system in two parameters.

5.1. Example 1

We consider the only existing observation of a vertically po-
larised fast kink oscillation to date, reported by Wang &
Solanki (2004). The following values of the oscillating coro-
nal loop were determined: R=112 (95;127) Mm, m=1, P=234
s, τ=714 s, ξr(R)=7.9 Mm and <δI>/< I0>=-1.0. Here and
in the following, the range is given between brackets. After vi-
sual inspection of Fig. 2 of Wang & Solanki (2004), we mea-
sure a=3.6 (1;5) Mm, giving a generous range of values for a.
The ratio a/R is then equal to 0.03 (0.008;0.05), with a relative

range of about 70%. When dealing directly with the data, a can
be determined more precisely. Because only 1.5 oscillation pe-
riods of the oscillation have been observed due to a data gap,
the uncertainty on the damping time is expected to be large.
Considering Fig. 2 of Wang & Solanki (2004), we believe that
a damping time of 714 s is rather long and that a damping time
as short as 200 s may be consistent with the observational sig-
nature (Wang, T. J., private communication). A value for the
density contrast has not been given.

Firstly, we consider the density perturbation. Using the ob-
served values, the amplitude ratio µ=-14 (-16;-12). Considering
Fig. 1, we can see that the density contrast of the loop needs to
be low (χ > 0.5) and/or the value of α larger than 2. This seems
unlikely. In Paper I, we pointed out that the authors did not cor-
rect for the effect of time-integration in determining the ampli-
tude of the intensity perturbation. Therefore, we do not know
the exact value of amplitude of the relative average intensity
perturbation for this observation.

In this example, α, χ and VAi are all unknown and only
measurements exist of P and τ. Hence, the system is under-
determined. Figure 5 shows the α − χ parameter space with
the curves of constant τ/P for two values of τ, 714s and 200s.
Along each curve the value of the Alfvén speed varies, increas-
ing with decreasing α. A few curves of constant µ are shown
for illustration but cannot be used here for finding a crossing.
Additional information is needed about χ or α to determine all
unknown parameters. From the observations, the loop appears
to be not well-contrasted. Possibly, this may be explained by
the effects of line-of-sight integration and the narrowness of the
temperature bandpass of the TRACE instrument. Nonetheless,
it is reasonable to assume that χ would be larger than, say,
0.05. This would mean that α is smaller than -2.8 and the
Alfvén speed is larger than 700 kms−1.

Another approach is to assume a value of α and then deter-
mine the associated values for χ and VAi as follows. The wave
period and damping time are calculated using dispersion rela-
tion (5) for a range of values in χ and compared with the obser-
vational counterparts using Eqs. (2) and (3). From each equa-
tion, the internal Alfvén speed is calculated. As a result, there
are two independent relations between VAi and χ. These rela-
tions form curves in the VAi−χ parameter space. Where the two
curves cross, both relations are satisfied and a consistent solu-
tion of VAi and χ is found. We have followed this procedure for
the average observed value a/R=0.03 and the two error range
limits, for three values of α and for τ=714s and τ=200s. Figure
6 illustrates the case with τ=200s. The values of χ an VAi, de-
termined for a/R=0.03, are shown in Table 1. The large range
associated with the determined values of χ and VAi is again due
to the wide range in a. The obtained values are consistent with
the procedure using the α−χ parameter space with the relevant
values of α. As expected, the case of α=-3.5 gives the most
reasonable result compared with the other two chosen values.
From the straight cylinder model of Edwin & Roberts (1983),
using values of χ equal to 0 and 0.1, the Alfvén speed is es-
timated to be 2100-2200 kms−1. This is twice as large as the
value of 900 kms−1 we found for α=-3.5. A value of α closer
to -4 would be needed to increase the speed.
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Fig. 6. Ratio VAi/R as a function of χ for the fast kink mode of degree m=1, for three values of a/R: 0.008 (dashed), 0.03 (solid) and 0.05
(long dashed). Each pair of curves is calculated using the observed oscillation period, P=234 s, and damping time, τ=200 s, respectively. The
crossing of the pair of curves indicates a value for VAi/R and χ consistent with the model and the observations. Left: α=-3.5. Middle: α=-2.
Right: α=0.

Table 1. Parameters χ and VAi determined for three values of α and
two values of τ and for which a/R=0.03. The range due to uncertain-
ties is given between brackets.

τ α χ VAi

(s) (kms−1)

714 −3.5 0.027 (0.008; 0.045) 650 (340; 830)
−2 0.005 (0.001; 0.008) 540 (280; 695)

0 0.001 (0.0003; 0.002) 520 (270; 660)
200 −3.5 0.095 (0.028; 0.158) 900 (490; 1160)

−2 0.030 (0.008; 0.050) 610 (320; 780)
0 0.016 (0.004; 0.025) 530 (280; 680)

5.2. Example 2

We consider the observations of transverse loop oscillations, as
reported by Aschwanden et al. (1999), Nakariakov et al. (1999)
and Aschwanden et al. (2002), for which measurements of the
period and damping times exist. These events are considered
to be horizontally polarised oscillation modes. Strictly speak-
ing, our model is only valid for vertically polarised modes. For
instance, the behaviour of the density perturbation is expected
to differs between the two modes. However, because the ob-
served oscillations are probably a superposition of both modes
of polarisations, and lateral wave leakage may occur in the hor-
izontal as well as the vertical direction, we shall use our model
to make a preliminary assessment of the hypothesis that lateral
wave leakage can explain the observed wave damping. Since
Aschwanden et al. (2003) have measured the density contrast
of the loops, only two parameters are unknown, i.e. VAi and α.

Table 2 shows the observed loop and oscillation parameters,
including the value of the internal Alfvén speed V (s)

Ai as deter-
mined from the wave period using the straight cylinder model
of Edwin & Roberts (1983). The value of α is determined from
where the curve of constant τ/P crosses the measured value of
χ (see Fig. 7 for an example). VAi is consequently determined

Table 2. Comparison of observations of transverse oscillations with
our model. The number refers to observations by Aschwanden
et al. (2002); V (s)

Ai is the internal Alfvén speed determined from the
wave period using the straight cylinder model of Edwin & Roberts
(1983); α and VAi are the values of the density power law index and
internal Alfvén speed consistent with the observations and our model.
τ0 is the model predicted damping time for α=0.

nr R a χ P τobs V (s)
Ai α VAi τ0

(Mm) (Mm) (s) (s) (kms−1) (kms−1) (s)

1a 47 3.5 0.20 261 870 880 −3.86 520 110
1b 24 3.4 0.26 265 300 450 −3.54 300 110
1d 55 2.6 0.27 316 500 870 −3.81 550 100
1 f 57 2.0 0.42 277 400 1090 −3.87 780 60
1g 45 3.4 0.44 272 849 880 −3.93 700 70
3a 99 12.4 0.32 522 1200 970 −3.79 680 190
4a 74 2.8 0.14 435 600 810 −3.75 400 180
5c 53 2.5 0.18 143 200 1790 −3.76 870 60
10a 77 4.6 0.07 423 800 840 −3.44 360 300
16a 68 10.2 0.32 185 200 1880 −3.59 1300 70
17a 33 1.6 0.66 396 400 480 −3.88 420 70

from the dimensionless frequency using Eq. (2). We find α to
be in the range between -3.99 and -3.4. Furthermore, we see
that the values of the corresponding internal Alfvén speed are
on average about 60% smaller than the values V (s)

Ai . This in turn
would give values of the coronal loop magnetic field that are
the same factor smaller than previously estimated.

In the two examples investigated here, we find a trend in
that the parameter α needs to tend towards -4 for the model
to be consistent with the observations. It seems unlikely that
the density profile for all observed loops resemble each other
so closely. Larger values of α, say up to α=0, seem plausible.
Example 1 shows that for such values an unrealistically high
loop contrast (χ <0.03) is needed in order to match the ob-
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Fig. 7. Parameter space α − χ for observation nr 1a from example 2.
The curve represents where the quality factor τ/P, calculated using
solution of Eq. (5), matches the observed value of 3.33. The aspect
ratio a/R=0.2. Along these curves the value of VAi varies monotoni-
cally. Key values of VAi in units of kms−1 are indicated. The dashed
curves represent constant values of µ.

served damping rate. For a more realistic density contrast, the
model predicts too high a damping rate. Furthermore, example
2 shows that for α=0, the model predicts damping times which
are 3-10 times shorter than are observed (see Table 2).

6. Discussion

The mechanism of lateral wave leakage is efficient in damping
vertically polarised fast kink oscillations, but our theoretical
model predicts damping rates that are faster than the observa-
tions. However, this is not a reason for disqualifying this mech-
anism in explaining the observed damping. This rather points to
the need for improving the model by way of a more realistic de-
scription of lateral leakage of fast kink oscillations. Hopefully,
the theoretically predicted damping will then be closer to the
observations. This may be achieved in several ways.

The slab geometry used in our model can be replaced by the
more realistic cylindrical geometry. For a curved loop model
this translates into a toroidal geometry with a two-dimensional
equilibrium. We know, from straight coronal loop models, that
the wave solution in the external medium has the form of an ex-
ponential for a straight slab and the form of a modified Bessel
function for a straight cylinder. Because the modified Bessel
functions decay faster with distance than exponentials, we ex-
pect the wave trapping to increase and therefore the efficiency
of lateral leakage to decrease (e.g. Mikhalyaev & Solov’ev
2005). Toroidal geometry also allows for the study of the effect
of lateral leakage on vertically as well as horizontally polarised
oscillations. The damping rate will then depend on the angle
between the directions of polarisation and structuring of the
Alfvén speed, e.g. a coronal loop with a vertically structured
Alfvén speed profile will allow vertically polarised waves to
leak out faster than horizontally polarised waves. The effect of
lateral leakage of waves in coronal loops in toroidal geometry
remains to be investigated. Van Doorselaere et al. (2004) stud-
ied fast magnetoacoustic kink oscillations in toroidal geometry,

but restricted themselves to a linear Alfvén speed profile for
which waves are trapped.

Also, a more realistic equilibrium density profile may be
introduced, based on gravitational stratification, such that the
density depends on vertical distance from the solar surface
rather than radial distance from the centre of curvature of the
loop (e.g. Andries et al. , 2005; Mendoza-Briceño et al. , 2004;
Dymova & Ruderman, 2004). This would make the equilib-
rium two-dimensional. We expect the rate of lateral leakage to
become function of distance along the loop axis, which affects
wave modes differently, depending on degree m.

Furthermore, we have modeled a coronal loop as an isolated
structure. In reality, loops are part of groups of loops (e.g. ar-
cades, fans). Therefore, besides wave modes of a single loop, a
group of loops as a whole may support wave modes with dif-
ferent damping rates. The introduction of a sheared magnetic
field is expected to introduce coupling between the Alfvén and
magnetoacoustic modes (Goedbloed & Halberstadt, 1994) and
it would be interesting to study this in a curved geometry.

Finally, it is useful to expand the model to take into ac-
count nonlinear effects. Although fast kink modes have nonlin-
ear density perturbations that remain relatively small, they ex-
cite nonlinearly slow magnetoacoustic oscillations, which have
density perturbations that can be comparable with those of lin-
ear fast kink oscillations in a curved loop (Terradas & Ofman,
2005). In modeling this, a finite plasma-β needs to be taken to
avoid unphysical results (see Verwichte et al. 1999 for a dis-
cussion). Also, as these perturbations act on a slower acous-
tic time scale, they do not oscillate in phase with the kink
mode. Therefore, it should be possible to distinguish the dif-
ferent types of density perturbations from observations.

We have demonstrated how a model describing the mecha-
nism of lateral wave leakage can be used for seismological pur-
poses, providing information about the transverse loop structur-
ing. Also, we stress that the method to determine the unknown
model parameters is self-consistent, so that all observed and
predicted wave parameters match. Lateral wave leakage is an
attractive mechanism for explaining observed damping of fast
kink oscillations and studies using more realistic models are
warranted to explore the predicted damping rates.
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