## Thermal Physics II

## $2^{\rm nd}$ short test - 13 March 2013

given and surname :

university number :

course of study :

marks obtained :

total marks :

comments :

| 1. | How are the Helmholtz free energy and the internal energy related?                                                                                                                                                                                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                                   |
| 2. | What are the natural variables that allow for the use of the Helmholtz free energy as a thermodynamic potential for a gas?                                                                                                                        |
| 3. | State the relation between the number of states of the system and the number of states of its heat reservoir within the canonical description.                                                                                                    |
| 4. | Define the Boltzmann factor for a quantum state with energy $E_1$ and the partition functions of a system with discrete energies $E_j$ .                                                                                                          |
|    |                                                                                                                                                                                                                                                   |
| 5. | Consider an ion with two energy states at $E_1 = -30 \mathrm{eV}$ and $E_2 = -20 \mathrm{eV}$ embedded in a gas with a temperature such that $k_B T = 10 \mathrm{eV}$ . Calculate the ratio of the occupation probabilities for these two states. |
|    |                                                                                                                                                                                                                                                   |
| 6. | Give the basic relation that connects the thermodynamical and statistical descriptions of many-body systems in the canonical ensemble.                                                                                                            |
|    |                                                                                                                                                                                                                                                   |

| 8. | A system is made of two independent subsystems with internal energies $U_1$ and $U_2$ , and partition functions, $Z_1$ and $Z_2$ . State the internal energy partition function and Helmholtz free energy of the combined system. |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                                                                                                                   |
| 9. | Which quantity in the statistical description of many-body systems is defined by the temperature of the system? What happens to this quantit if the temperature is doubled?                                                       |
|    |                                                                                                                                                                                                                                   |
| 0. | State the partition function for an ideal gas $(N \text{ particles in volume } V)$ .                                                                                                                                              |
| 1. | Given the fact that the differential of the Gibbs energy (enthalpy) is given by $dH = TdS + Vdp$ , derive the Maxwell-relation $(\partial T/\partial p)_S = (\partial V/\partial S)_p$                                            |
|    |                                                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                   |