A.1 Basic Concepts and Definitions

a) Thermodynamic System

Def: large, many-body system (number of particles in the system typically $N \gtrsim 10^{23}$) with clear distinction from surroundings/environment

- no hard walls required, defined borders are sufficient
- classification:
 - i) isolated / closed systems
 no heat transfer or particle exchange with environment
 MUST be classical
 - ii) systems with heat contact only heat transfer between environment and system possible no particle exchange between environment and system (N fixed)
 - iii) open systems system and environment can exchange heat and particles
- remark: boundary conditions strongly influence system behaviour

b) Thermodynamic or State Functions

Def: define some property of the system and have a definitive value at each state

- can be mechanical, electro-magnetic or "truly" thermodynamical
- examples (gas): p, V, T, N, S, U
- examples (magnet): H, m, M(r), T, N, S, U
- classification:
 - i) extensive state functions if quantity has the value A in a system with volume V, the quantity has the value αA in a system with the volume αV (IF both systems are in the same state, e.g., if we artificially split the system in two subsystems) examples: V, N, U, S
 - ii) intensive state functions the quantity does not depend explicitly on the volume, i.e., the quantity stays the same if we split the system examples: p, T, n = N/V

c) Thermodynamic Limes

Def: we consider infinitely large systems with constant intensive variables, that is, $V \to \infty$ and $N \to \infty$, but n = n/V = const.

• all consideration in this course are done in the thermodynamic limes!

d) Thermodynamic State

Def: State of the system fully defined by a sufficiently large set of thermodynamic functions

- often only reduced sets of thermodynamic functions are quoted
- what is a "sufficiently large set" must be determined empirically

e) Equation of State

Def: connects a set of thermodynamic functions and reduces the number of state functions that fully define a state

- example (ideal gas): $pV = nk_BT$ (thermal)
- example (ideal gas): $U = \frac{3}{2} k_B T$ (caloric)

f) Thermodynamic Equilibrium

Def: special state of systems in which the state function do not change, that is for example, $U \neq U(t), p \neq p(t), \dots$

- term is connected to the concept of equipartition and temperature (later more ...)
- all consideration in this course will concern systems in equilibrium

g) State Changes

Def: the way how the thermodynamic state changes

- classification
 - i) real nonequilibrium state changes general case, but very hard to describe
 - ii) quasi-static changes (very slow) system runs through a closely connected series of equilibrium states all machines and motors in Thermal Physics I are based on that principle