## Summary: Number of States and Probabilities

## a) Notation

$\bullet \Omega(E, N) \quad \ldots$ number of all microstates consistent with $E, N$

- $w_{N}\left(N_{1}\right) \quad \ldots$ number of all microstates consistent with $E, N$ that have $N_{1}$ particles/events in the state $E_{1}$ (2 state system)
- $w_{N}\left(n_{1}, n_{2}, \ldots, n_{j}\right) \ldots$ number of all microstates consistent with $E, N$ that have $n_{1}$ particles in the state $E_{1}, n_{2}$ in state $E_{2}$, $\ldots, n_{j}$ in state $E_{j}$ (general case)
- $p_{\nu} \quad \ldots$ probability of microstate $\nu ; p_{\nu}=\frac{1}{\Omega}$
- $p_{N}\left(N_{1}\right) \quad \ldots$ probability to find $N_{1}$ particles/events in special state, e.g., $E_{1}$ (2 state system)
- $p_{N}\left(n_{1}, n_{2}, \ldots, n_{j}\right) \quad \ldots$ probability to find $n_{1}$ particles in the state $E_{1}$, $n_{2}$ in state $E_{2}, \ldots, n_{j}$ in state $E_{j}$ (general case)


## b) Counting the States and Calculating Probabilities

- independent particles that can occupy $M$ states:

$$
\Omega=M \times M \times M \times \ldots \times M=M^{N}
$$

- systems with 2 states [ $N_{1}$ particles/events in state $E_{1} ;\left(N-N_{1}\right)$ in state $E_{2}$ ]

$$
\begin{aligned}
w_{N}\left(N_{1}\right) & =\frac{N!}{N_{1}!\left(N-N_{1}\right)!} \\
p_{N}\left(N_{1}\right) & =\frac{N!}{N_{1}!\left(N-N_{1}\right)!} p_{1}^{N_{1}} p_{2}^{\left(N-N_{1}\right)}
\end{aligned}
$$

- general case [ $n_{1}$ particles/events in state $E_{1}$ with probability $p_{1}$ etc]

$$
\begin{aligned}
w_{N}\left(n_{1}, n_{2}, \ldots, n_{j}\right) & =\frac{N!}{n_{1}!n_{2}!\ldots n_{j}!}=\frac{N!}{\prod_{k} n_{k}!} \\
p_{N}\left(n_{1}, n_{2}, \ldots, n_{j}\right) & =\frac{N!}{n_{1}!n_{2}!\ldots n_{j}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \ldots p_{j}^{n_{j}}=\frac{N!}{\prod_{k} n_{k}!} \prod_{k} p_{k}^{n_{k}}
\end{aligned}
$$

## b) Conditions to be Hold



