Summary: Number of States and Probabilities

a) Notation

• $\Omega(E, N)$	 number of all microstates consistent with E, N
• $w_N(N_1)$	 number of all microstates consistent with E, N that have N_1 particles/events in the state E_1 (2 state system)
• $w_N(n_1, n_2,, n_j)$	 number of all microstates consistent with E, N that have n_1 particles in the state E_1, n_2 in state E_2, \ldots, n_j in state E_j (general case)
• p_{ν}	 probability of microstate ν ; $p_{\nu} = \frac{1}{\Omega}$
• $p_N(N_1)$	 probability to find N_1 particles/events in special state, e.g., E_1 (2 state system)
• $p_N(n_1, n_2,, n_j)$	 probability to find n_1 particles in the state E_1 , n_2 in state E_2, \ldots, n_j in state E_j (general case)

b) Counting the States and Calculating Probabilities

• independent particles that can occupy M states:

 $\Omega = M \times M \times M \times \ldots \times M = M^N$

• systems with 2 states $[N_1 \text{ particles/events in state } E_1; (N - N_1) \text{ in state } E_2]$

$$w_N(N_1) = \frac{N!}{N_1! (N - N_1)!}$$

$$p_N(N_1) = \frac{N!}{N_1! (N - N_1)!} p_1^{N_1} p_2^{(N - N_1)}$$

• general case $[n_1 \text{ particles/events in state } E_1 \text{ with probability } p_1 \text{ etc}]$

$$w_N(n_1, n_2, ..., n_j) = \frac{N!}{n_1! n_2! \dots n_j!} = \frac{N!}{\prod_k n_k!}$$
$$p_N(n_1, n_2, ..., n_j) = \frac{N!}{n_1! n_2! \dots n_j!} p_1^{n_1} p_2^{n_2} \dots p_j^{n_j} = \frac{N!}{\prod_k n_k!} \prod_k p_k^{n_k}$$

b) Conditions to be Hold

•
$$\sum_{\substack{\text{all possible } n_k \\ \text{all possible } n_k }} w_N(n_1, n_2, \dots, n_j) = \Omega \quad \text{with} \quad \sum_k n_k = N$$
•
$$\sum_{\substack{n_k = 1 \\ \text{all possible } n_k }} p_N(n_1, n_2, \dots, n_j) = 1 \quad \text{and} \quad \sum_k p_k = 1$$