
Thermal Physics II – Solutions for Problem Sheet 1

1. Consequences of the Third Law of Thermodynamics

• Start:

cp − cV =

[(

∂U

∂V

)

T

+ p

](

∂V

∂T

)

p

• Take (∂U/∂V )T from first law: dU = TdS − pdV
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Note that (∂U/∂V )S = −p ONLY holds if the entropy is being kept
constant, NOT if the volume is kept constant!

•
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• In the limit T → 0, the entropy S is only a function of the temperature.
Hence, we have

lim
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• This means that

lim
T→0

(cp − cV ) = T × 0 or lim
T→0

cp − cV
T

= 0

This means that the difference of the heat capacities at constant volume and
constant pressure decays faster than the temperature if T → 0.

Of course, it follows directly from the relation above that

lim
T→0

(cp − cV ) = 0 ,

which is a much weaker restriction. As cp approaches zero in the limit T → 0,
the heat capacity at constant volume, CV , must do the same.



2. Maxwell Relation

• Start from first law: dU = TdS − pdV + µdN

• Then the first derivatives are

(

∂U

∂S

)

V,N

= T ,

(

∂U

∂V

)

S,N

= −p ,

(

∂U

∂N

)

S,V

= µ

• The mixed derivatives of U must be equal as the internal energy is a total
differential. Hence, we have
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• Now we insert the first derivatives from above (the first on the left side,
the last on the right side) and obtain as required
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3. Stability of the Equilibrium

• We start from the fundamental law of thermodynamics:

dU = TdS − pdV or dS =
1

T

[

dU + pdV
]

.

• Now we take into account that entropy, internal energy and volume are
extensive quantities (T and p can be different in both subsystems):

dS = dS1 + dS2 =
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.

• Total internal energy and total volume are conserve (we only allow energy
transfer between the two subsystems and replacement of one gas with the
other). This means dU1 = −dU2 and dV1 = −dV2. We then have
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• In equilibrium, the entropy reaches its maximum and we find
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These conditions can only be fulfilled if T1 = T2 and p1 = p2 as required.


