Thermal Physics II - Solutions for Problem Sheet 1

1. Consequences of the Third Law of Thermodynamics

- Start:

$$
c_{p}-c_{V}=\left[\left(\frac{\partial U}{\partial V}\right)_{T}+p\right]\left(\frac{\partial V}{\partial T}\right)_{p}
$$

- Take $(\partial U / \partial V)_{T}$ from first law: $d U=T d S-p d V$

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial S}{\partial V}\right)_{T}-p
$$

Note that $(\partial U / \partial V)_{S}=-p$ ONLY holds if the entropy is being kept constant, NOT if the volume is kept constant!

$$
c_{p}-c_{V}=T\left(\frac{\partial S}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}
$$

- In the limit $T \rightarrow 0$, the entropy S is only a function of the temperature. Hence, we have

$$
\lim _{T \rightarrow 0}\left(\frac{\partial S}{\partial V}\right)_{T}=0
$$

- This means that

$$
\lim _{T \rightarrow 0}\left(c_{p}-c_{V}\right)=T \times 0 \quad \text { or } \quad \lim _{T \rightarrow 0} \frac{c_{p}-c_{V}}{T}=0
$$

This means that the difference of the heat capacities at constant volume and constant pressure decays faster than the temperature if $T \rightarrow 0$.

Of course, it follows directly from the relation above that

$$
\lim _{T \rightarrow 0}\left(c_{p}-c_{V}\right)=0
$$

which is a much weaker restriction. As c_{p} approaches zero in the limit $T \rightarrow 0$, the heat capacity at constant volume, C_{V}, must do the same.

2. Maxwell Relation

- Start from first law: $d U=T d S-p d V+\mu d N$
- Then the first derivatives are

$$
\left(\frac{\partial U}{\partial S}\right)_{V, N}=T, \quad\left(\frac{\partial U}{\partial V}\right)_{S, N}=-p, \quad\left(\frac{\partial U}{\partial N}\right)_{S, V}=\mu
$$

- The mixed derivatives of U must be equal as the internal energy is a total differential. Hence, we have

$$
\left(\frac{\partial}{\partial N}\left(\frac{\partial U}{\partial S}\right)_{V, N}\right)_{S, V}=\left(\frac{\partial}{\partial S}\left(\frac{\partial U}{\partial N}\right)_{S, V}\right)_{V, N}
$$

- Now we insert the first derivatives from above (the first on the left side, the last on the right side) and obtain as required

$$
\left(\frac{\partial T}{\partial N}\right)_{S, V}=\left(\frac{\partial \mu}{\partial S}\right)_{V, N}
$$

3. Stability of the Equilibrium

- We start from the fundamental law of thermodynamics:

$$
d U=T d S-p d V \quad \text { or } \quad d S=\frac{1}{T}[d U+p d V] .
$$

- Now we take into account that entropy, internal energy and volume are extensive quantities (T and p can be different in both subsystems):

$$
d S=d S_{1}+d S_{2}=\frac{1}{T_{1}}\left[d U_{1}+p_{1} d V_{1}\right]+\frac{1}{T_{2}}\left[d U_{2}+p_{2} d V_{2}\right] .
$$

- Total internal energy and total volume are conserve (we only allow energy transfer between the two subsystems and replacement of one gas with the other). This means $d U_{1}=-d U_{2}$ and $d V_{1}=-d V_{2}$. We then have

$$
d S=d S_{1}+d S_{2}=\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right] d U_{1}+\left[\frac{p_{2}}{T_{1}}-\frac{p_{2}}{T_{2}}\right] d V_{1}
$$

- In equilibrium, the entropy reaches its maximum and we find

$$
\left(\frac{\partial S}{\partial U_{1}}\right)_{V_{1}}=\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]=0 \quad \text { and } \quad\left(\frac{\partial S}{\partial V_{1}}\right)_{U_{1}}=\left[\frac{p_{2}}{T_{1}}-\frac{p_{2}}{T_{2}}\right]=0
$$

These conditions can only be fulfilled if $T_{1}=T_{2}$ and $p_{1}=p_{2}$ as required.

