Thermal Physics II - Solutions for Problem Sheet 2

1. Number of Specific Macrostates

- ENGINEERING has 11 letters. IF all letters would be different, we would have 11! permutations.
- BUT swapping the three 'E's, three 'N's, two 'G's and two 'I's makes no difference to writing.
- Thus, we have $(3!\times 3!\times 2!\times 2!)$ times the same configurations only due to swapping these four letters.
- The correct number of different permutations of ENGINEERING is thus

$$
\frac{11!}{3!3!2!2!}=277200
$$

2. The Meaning of VERY Unlikely

- Choosing the first number, we have 49 possibilities.
- Choosing the second number, we have 48 possibilities.
- Choosing the sixth number, we have 44 possibilities.
- As the order of the picks does not play a role, we have to take the number of permutations in the picked numbers into account (6!).
- Thus, we find the number of possibilities to be

$$
\frac{49 \times 48 \times 47 \times 46 \times 45 \times 44}{6!}=1398381
$$

- This is roughly a chance of $1: 14$ millions. So, why bother?

3. The Meaning of NEVER

- The monkeys have to typo 39 character correctly.
- They have 35 choices for each character (35 key typewriter).
- Each choice is independent.
- This gives for the number of possible character sequences

$$
35^{39} \approx 1.6 \times 10^{60}
$$

- Compare this number with the outcome of one monkey that types 1 key per second over one year:

$$
60 \times 60 \times 24 \times 365=3.1 \times 10^{7}
$$

- Even a large group of monkeys has no changes at all typing 10^{60} different sequences!

4. Stirling's Formula

- (Riemann) Integral can be written as

$$
\int_{0}^{N} f(x) d x=\sum_{i=0}^{N-1} f\left(x_{i}\right) \Delta x \quad \text { for } \quad x \rightarrow 0
$$

- Here, we keep $\Delta x=1$ and investigate the lower and upper bound of the integral.
- The lower bound is given by taking the left side of the interval in $f\left(x_{i}\right)$; the upper bound by taking the right side.
- Thus we have,

$$
I_{l} \stackrel{\text { of }}{=} \int_{0}^{N} \ln n d n=\sum_{i=0}^{N-1} \ln i=\ln \prod_{i=0}^{N}-\ln N=\ln N!-\ln N,
$$

and

$$
I_{u} \stackrel{o f}{=} \int_{0}^{N} \ln n d n=\sum_{i=1}^{N} \ln i=\ln \prod_{i=1}^{N}=\ln N!
$$

- The real value of the integral is between these limits. As we can integrate $\ln n$, we find

$$
\begin{array}{lll}
\ln N!-\ln N< & \int_{0}^{N} \ln n d n & <\ln N! \\
\ln N!-\ln N< & (N \ln N-N) & <\ln N!
\end{array}
$$

- For $N \rightarrow \infty$, we have $\ln N!\gg \ln N$ and thus $I_{l} \rightarrow I_{u}$.
- As both limiting values agree for large N, we arrive at Stirling's formula

$$
\lim _{N \rightarrow \infty} \ln N!=N \ln N-N
$$

