Thermal Physics II – Solutions for Problem Sheet 3

1. Limits of Derived Results

In the lecture, the heat capacity of an Einstein solid was derived to be

$$c_N = \frac{3N\hbar^2\omega^2}{k_B T^2} \frac{\exp(-\beta\hbar\omega)}{\left[1 - \exp(-\beta\hbar\omega)\right]^2},$$

where $\beta = 1/(k_B T)$ as usual.

Low temperature limit:

- For $T \to 0 \ (\beta \to \infty)$, we have $\exp(-\beta \hbar \omega) \to 0$ or better $\exp(\beta \hbar \omega) \to \infty$.
- Thus, we find

$$\lim_{T \to 0} c_N \propto \lim_{T \to 0} \frac{\beta^2}{\exp(\beta \hbar \omega)} = \lim_{T \to 0} \frac{2\beta}{\beta \exp(\beta \hbar \omega)} \propto \lim_{T \to 0} \exp(-\beta \hbar \omega)$$

$$= 0$$

In the second step, l'Hospital's rule was used.

• We find an exponential decay of the heat capacity as $T \to 0$ which has, of course, the limit $\lim_{T\to 0} c_N = 0$.

High temperature limit:

• For $T \to \infty$, we have $\beta \to 0$. In this case, the exponential can be expanded for small arguments:

$$\exp(-\beta\hbar\omega) \approx 1 - \beta\hbar\omega$$
.

• Using this expansion in the expression for the heat capacity, we find

$$\lim_{T\to\infty}c_N=\frac{3N\hbar^2\omega^2}{k_BT^2}\,\frac{1-\beta\hbar\omega}{[1-1+\beta\hbar\omega]^2}\approx\frac{3N\hbar^2\omega^2}{k_BT^2}\,\frac{1}{[\beta\hbar\omega]^2}=3Nk_B\,,$$

as $\beta\hbar\omega$ is small compared to unity (second step).

• As a result, we find a heat capacity of k_B per oscillator and direction.

2. Counting Microstates

- If we would have no restrictions, each quark can have one of the 6 possible colours **independently** of the other quarks. Thus, we have 6 possibilities per quark which is multiplied with the possibilities of the other quarks.
 - \implies baryons: $6^3 = 216$ possibilities; \implies mesons: $6^2 = 36$ possibilities.
- However, this ignores the fact that quarks are micro-particles which cannot be distinguished. Thus, we have to divide by the number of identical configurations
 - \implies baryons: $6^3/3! = 36$ possibilities; \implies mesons: $6^2 2! = 18$ possibilities.
- If we take the "white restriction" and the indistinguishability of the quarks into account, we have
 - two choices for baryons:
 \(\frac{\text{red}}{\text{pullow}}\) and \(\lambda\text{anti-red}\), anti-blue, anti-yellow\(\rangle\);
 - three choices for mesons: \(\langle \text{red}, \text{ anti-red} \rangle, \text{ blue}, \text{ anti-blue} \) and \(\langle \text{yellow}, \text{ anti-yellow} \rangle.

Swapping the colours for barions or the colour with the anti-colour for the mesons does not make a new particle.