Thermal Physics II - Solutions for Problem Sheet 4

1. Partition Function and Internal Energy

- We start from $F=-k_{B} T \ln Z$. Re-arranging for $\ln Z$ and inserting the definition of Helmholtz free energy, $F=U-T S$, yields

$$
\ln Z=-\beta F=-\beta[U-T S]=-\beta U-k_{B}^{-1} S
$$

- As only the first term depends explicitly on β, we have

$$
\frac{\partial \ln Z}{\partial \beta}=-U \quad \text { or } \quad U=-\frac{\partial \ln Z}{\partial \beta}
$$

2. Maxwell Relation - first Example

- Start from enthalpy/Gibbs energy: $H=U+p V$.
- This function has exact differential (using $d U=T d S-p d V$)

$$
d H=d U+p d V+V d p+\mu d N=T d S+V d p+\mu d N .
$$

- Then the first derivatives are

$$
\left(\frac{\partial H}{\partial S}\right)_{p, N}=T, \quad\left(\frac{\partial H}{\partial p}\right)_{S, N}=V, \quad\left(\frac{\partial H}{\partial N}\right)_{S, p}=\mu
$$

- The mixed derivatives of H must be equal as the internal energy is a total differential. Hence, we have

$$
\left(\frac{\partial}{\partial p}\left(\frac{\partial H}{\partial S}\right)_{p, N}\right)_{S, N}=\left(\frac{\partial}{\partial S}\left(\frac{\partial H}{\partial p}\right)_{S, N}\right)_{p, N}
$$

- Now we insert the first derivatives from above (the first on the left side, the second on the right side) and obtain as required

$$
\left(\frac{\partial T}{\partial p}\right)_{S, N}=\left(\frac{\partial V}{\partial S}\right)_{p, N}
$$

2. Maxwell Relation - second Example

- Start from Gibbs free energy: $G=U-T S+p V$.
- This function has exact differential

$$
\begin{aligned}
d G & =d U-T d S-S d T+p d V+V d p+\mu d N \\
& =-S d T+V d p+\mu d N .
\end{aligned}
$$

- Then the first derivatives are

$$
\left(\frac{\partial G}{\partial T}\right)_{p, N}=-S, \quad\left(\frac{\partial G}{\partial p}\right)_{T, N}=V, \quad\left(\frac{\partial G}{\partial N}\right)_{T, p}=\mu
$$

- The mixed derivatives of G must be equal as the internal energy is a total differential. Hence, we have

$$
\left(\frac{\partial}{\partial p}\left(\frac{\partial G}{\partial T}\right)_{p, N}\right)_{T, N}=\left(\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial p}\right)_{T, N}\right)_{p, N}
$$

- Now we insert the first derivatives from above (the first on the left side, the second on the right side) and obtain as required

$$
-\left(\frac{\partial S}{\partial p}\right)_{T, N}=\left(\frac{\partial V}{\partial T}\right)_{p, N}
$$

3. Probability to Find a Given State

- Start with the definition of the probability to find the system in energy E and re-arrange it to a form that contains ' $\ln Z$ ' (this is needed for the introduction of the Helmholtz free energy)

$$
\begin{aligned}
p(E) & =\frac{1}{Z} \exp (-\beta E) \\
& =\exp \left[\ln \left(Z^{-1}\right)\right] \exp (-\beta E) \\
& =\exp [-\ln (Z)] \exp (-\beta E) .
\end{aligned}
$$

- Now we use the connection between thermodynamics and statistics

$$
F=-k_{B} T \ln Z \quad \text { or in the form } \quad-\ln Z=\beta F
$$

- The probability to find the system in energy E is thus given by

$$
p(E)=\exp (\beta F) \exp (-\beta E)=\exp [-\beta(E-F)]
$$

as requested.

