Thermal Physics II - Solutions for Problem Sheet 6

1. Mixture of two Gases

- As all particles in the gases are not interacting with each other, we have $Z_{a+b}=Z_{a} \times Z_{b}$ as derived before.
- The partition functions for the two gases are given by

$$
Z_{a}=\frac{1}{N_{a}!} Z_{1 a}^{N_{a}} \quad \text { and } \quad Z_{a}=\frac{1}{N_{b}!} Z_{1 b}^{N_{b}}
$$

as the particles within each species cannot be distinguished. $Z_{1 a}=V / \Lambda_{a}$ and $Z_{1 b}=V / \Lambda_{b}$ are the one particle partition functions for the gases a and b, respectively.

- The total partition functions is thus given by

$$
Z_{a+b}=\frac{1}{N_{a}!} Z_{1 a}^{N_{a}} \times \frac{1}{N_{b}!} Z_{1 b}^{N_{b}}
$$

- WARNING: a partition function of the form

$$
Z_{a+b}=\frac{1}{\left(N_{a}+N_{b}\right)!} Z_{1 a}^{N_{a}} \times Z_{1 b}^{N_{b}}
$$

would be WRONG as it assumes that both species are indistinguishable!

2. Mixing Entropy - Generalised

- If $x=N_{b} / N$ the we also have $N_{a} / N=1-x$ as $N=N_{a}+N_{b}$.
- If two gases mix, they now both occupy the volume V. Before mixing they occupied the volumes V_{a} and V_{b} respectively. These volumes must have the similar relation as the particle numbers to have the same pressures: $V_{b} / V=x$ and $V_{a} / V=1-x$ as $V=V_{a}+V_{b}$.
- The entropy change for gas a is related to its volume change as before

$$
\begin{aligned}
\Delta S_{a}=N_{a} k_{B} \ln \left(\frac{V}{V_{a}}\right) & =(1-x) N k_{B} \ln \left(\frac{1}{1-x}\right) \\
& =-(1-x) N k_{B} \ln (1-x) .
\end{aligned}
$$

- Similar we find for the entropy change for the particles b

$$
\begin{aligned}
\Delta S_{b}=N_{b} k_{B} \ln \left(\frac{V}{V_{b}}\right) & =x N k_{B} \ln \left(\frac{1}{x}\right) \\
& =-x N k_{B} \ln x .
\end{aligned}
$$

- Adding both contribution, we find for the total mixing entropy

$$
\Delta S=\Delta S_{a}+\Delta S_{b}=-N k_{B}[(1-x) \ln (1-x)+x \ln (x)] .
$$

- If one uses the same number of particles a and b (same volumes as well, of course), then $x=\frac{1}{2}$. In this case, we find

$$
\Delta S=\Delta S_{a}+\Delta S_{b}=N k_{B} \ln 2
$$

as we have $x=1-x$ and a negative sign from the logarithm law.

3. Heat capacity due to Rotating Molecules

- If we only consider the two lowest stares, the partition function becomes

$$
Z_{r o t}^{1}=1+3 \exp \left(-2 \frac{T_{r o t}}{T}\right)
$$

- Taking the logarithm and considering that the second term is small, we get

$$
\ln Z=\ln \left[1+3 \exp \left(-2 \frac{T_{r o t}}{T}\right)\right] \approx 3 \exp \left(-2 \frac{T_{r o t}}{T}\right)
$$

- In the next step, we calculate the internal energy

$$
U=N k_{B} T^{2} \frac{\partial \ln Z}{\partial T}=6 N k_{B} T_{r o t} \exp \left(-2 \frac{T_{r o t}}{T}\right)
$$

- The heat capacity follows as the temperature derivative

$$
c_{V}=\left(\frac{\partial U}{\partial T}\right)_{V}=3 N k_{B}\left(\frac{2 T_{r o t}}{T}\right)^{2} \exp \left(-2 \frac{T_{r o t}}{T}\right)
$$

The main functional form is given here by the exponential. Thus, the heat capacity approaches zero for $T \rightarrow 0$.

