Thermal Physics II — Solutions for Problem Sheet 6

1. Mixture of two Gases

e Ag all particles in the gases are not interacting with each other, we have
Loy = Zg X Zy as derived before.

e The partition functions for the two gases are given by
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as the particles within each species cannot be distinguished. Z1, = V/A,
and Zy, = V/A, are the one particle partition functions for the gases a
and b, respectively.

e The total partition functions is thus given by
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e WARNING: a partition function of the form
ZNa s zhe
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would be WRONG as it assumes that both species are indistinguishable!



2. Mixing Entropy - Generalised

If x = Ny/N the we also have N,/N =1 —x as N = N, + N,.

If two gases mix, they now both occupy the volume V. Before mixing they
occupied the volumes V, and V; respectively. These volumes must have
the similar relation as the particle numbers to have the same pressures:
VWV=xand V,/JV=1—zasV =V, + V.

The entropy change for gas a is related to its volume change as before

% 1
ASG:NakBln(va) = (1—x)N/<:Bln(1_x)
= —(1—2)Nkgln(1—x) .

Similar we find for the entropy change for the particles b
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Adding both contribution, we find for the total mixing entropy

AS =AS, +ASy, = —Nkp {(1 —z)In(l —z) + xln(m)} .

If one uses the same number of particles a and b (same volumes as well,
of course), then z = 3. In this case, we find

AS =AS, + AS, = NkgIln2

as we have x = 1 — z and a negative sign from the logarithm law.



3. Heat capacity due to Rotating Molecules

If we only consider the two lowest stares, the partition function becomes
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Taking the logarithm and considering that the second term is small, we
get
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In the next step, we calculate the internal energy
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The heat capacity follows as the temperature derivative
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The main functional form is given here by the exponential. Thus, the heat
capacity approaches zero for 7' — 0.




