Skip to main content Skip to navigation

Publications

  1. S. Gadgil, B. Hnat, and G. Rowlands, Investigation of drift-wave instability in the presence of zonal flows using spatial averaging, Physics of Plasmas 26, 012105 (2019); https://doi.org/10.1063/1.5049087
  2. Hnat, B., Gadgil, S., Kirk, A., Militello, F., Walkden, N. and MAST Team, 2018. Experimental constraint on the radial mode number of the geodesic acoustic mode from multi-point Langmuir probe measurements in MAST Ohmic plasma. Plasma Physics and Controlled Fusion, 60(8), p.085016.
  3. Anderson, Johan, and Bogdan Hnat. "Statistical analysis of Hasegawa-Wakatani turbulence." Physics of Plasmas 24.6 (2017): 062301.
  4. B. Hnat, D. Y. Kolotkov, D. O'Connell, V.M. Nakariakov, G. Rowlands, Nonlinear waves in the terrestrial quasi-parallel foreshock, Phys. Rev. Lett., 117, 235102 (2016).
  5. B. Hnat, D. O'Connell, V. M. Nakariakov, and T. Sundberg, Statistically Determined Dispersion Relations of Magnetic Field Fluctuations in the Terrestrial Foreshock, The Astrophysical Journal, 827 (2), 91, doi:10.3847/0004-637X/827/2/91 (2016).
  6. K. T. Osman, K. H. Kiyani, W. H. Matthaeus, B. Hnat, S. C. Chapman, Y. V. Khotyaintsev, Multi-spacecraft measurment of turbulence within a magnetic reconnection jet, ASTROPHYSICAL JOURNAL LETTERS
    Volume: 815 Issue: 2, Article Number: L24 DOI: 10.1088/2041-8205/815/2/L24 (2015).
  7. L. A. Selzer, B. Hnat, K. T. Osman, et al., Temperature anisotropy in the presence of ultra low frequence waves in the terrestrial foreshock, Astrop. J. Lett., 788, Issue: 1 Article Number: L5 (2014).
  8. K. T. Osman, W. H. Matthaeus, J. T. Gosling, A. Greco, S. Servidio, B. Hnat, et al., Magnetic Reconnection and Intermittent Turbulence in the Solar Wind, Phys. Rev. Lett., 112 Issue: 21, 215002 (2014).
  9. K. T. Osman, K. H. Kiyani, S. C. Chapman, B. Hnat, Anisotropic Intermittence of Magnetohydrodynamic Turbulence, Atrop. J. Lett., 783 Issue: 2 Article Number: L27 (2014).
  10. J. R. Robinson, B. Hnat, A. Thyagaraja, K. G. McClements, P. J. Knight, A. Kirk and the MAST Team, Global two-fluid simulations of geodesic acoustic modes in strongly-shaped tight aspect ratio tokamak plasmas, Phys. Plasmas 20, 052302 (2013).
  11. K. H. Kiyani, S. C. Chapman, F. Sahraoui, B. Hnat, O. Fauvarque and Y. V. Khotyaintsev, Enhanced Magnetic Compresibility and Isotropic Scale-Invariance at Sub-ion Larmor Scales in Solar Wind Turbulence, Astrophys. Journal 763, 10 (2013).
  12. S. Gallagher, B. Hnat, C. Connaughton, S. Nazarenko and G. Rowlands, Finite Larmor radius effects in modulation instability of the extended Hasegawa-Mima equation, Phys. Plasmas 19, 122107 (2012).
  13. G. Gogoberidze, S. C. Chapman, B. Hnat, Generation of residual energy in the turbulent solar wind, Phys. Plasmas 19, 102310 (2012).
  14. Watkins, N. W., B. Hnat, and S. C. Chapman, On self-similar and multifractal models for the scaling of extreme bursty fluctuations in space plasmas, in Extreme Events and Natural Hazards: The Complexity Perspective, Geophys. Monogr. Ser., vol. 196, edited by A. S. Sharma et al. 299–313, AGU, Washington, D. C., doi:10.1029/2011GM001084 (2012).
  15. P. Dura, B. Hnat, J. R. Robinson and R. O. Dendy, Vorticity scaling and intermittency in drift-interchange plasma turbulence, Phys. Plasmas 19, 092301 (2012).
  16. J. R. Robinson, B. Hnat, P. Dura, A. Kirk, P. Tamain and the MAST Team, Interaction between a low frequency electrostatic mode and resonant magnetic perturbations in MAST, Plasma Phys. Control. Fusion 54 105007 (2012).
  17. G. Gogoberidze, S. C. Chapman, B. Hnat and M. W. Dunlop, Impact of measurement uncertainties on universal scaling of MHD turbulence, Mon. Not. R. Astron. Soc. 426, 951–955 (2012).
  18. K. T. Osman, W. H. Matthaeus, B. Hnat, and S. C. Chapman, Kinetic Signatures and Intermittent Turbulence in the Solar Wind Plasma, Phys. Rev. Lett. 108, 261103 (2012).
  19. D. Higgins, B. Hnat, A. Kirk, P. Tamain, N Ben Ayed and the MAST Team, Determining advection mechanism of plasma filaments in the scrape-off layer of MAST, Plasma Phys. Control. Fusion 54, 015002 (2012).
  20. B. Hnat, S. C. Chapman, G. Gogoberidze, R. T. Wicks, Scale-free texture of the fast solar wind, Phys. Rev. E 84, 065401(R) (2011).
  21. A. J. Turner, G. Gogoberidze, S. C. Chapman, B. Hnat, and W.-C. Müller, Nonaxisymmetric anisotropy of solar wind turbulence, Phys. Rev. Lett. 107, 095002 (2011).
  22. N. Chorley, C. Foullon, B. Hnat et al., Period persistence of long period oscillations in sunspots, A&A 529, A123 (2011).
  23. Tamain, P; Kirk, A; Nardon, E, et al., Edge turbulence and flows in the presence of resonant magnetic perturbations on MAST, Plasma Phys. Control. Fusion 52, 075017 (2010).
  24. N. Chorley, B. Hnat, V. M. Nakariakov, A. R. Inglis and I. A. Bakunina, Long period oscillations in sunspots, A&A 513, A27, DOI: 10.1051/0004-6361/200913683 (2010).
  25. J. M. Dewhurst, B. Hnat, R. O. Dendy, Finite Larmor radius effects on test particle transport in drift wave-zonal flow turbulence, Plasma Phys. Control. Fusion 52 025004 (2010).
  26. E. Nardon, A. Kirk, R. Akers, M. Becoulet, P. Cahyna, G. De Temmerman, B. Dudson, B. Hnat, Y. Q. Liu, R. Martin, H. Meyer, P. Tamain, D. Taylor, D. Temple, Edge localized mode control experiments on MAST using resonant magnetic perturbations from in-vessel coils, Plasma Phys. Control Fusion 51, 124010 (2009) .
  27. J. M. Dewhurst, B. Hnat, R. O. Dendy, The effects of nonuniform magnetic field strength on density flux and test particle transport in drift wave turbulence, Phys. Plasmas 16 072306 (2009).
  28. J. M. Dewhurst, B. Hnat, N. Ohno, R. O. Dendy, S. Masuzaki, T. Morisaki and A. Komori, Statistical properties of edge plasma turbulence in the Large Helical Device, Plasma Phys. Control. Fusion 50, 095013 (2008).
  29. B. Hnat, B. D. Dudson, R. O. Dendy, G. F. Counsell and A. Kirk, Characterisation of edge turbulence in L-mode plasmas in the Mega Amp Spherical Tokamak, Nucl. Fusion 48, 085009 (2008).
  30. S. C. Chapman, B. Hnat, and K. Kiyani, Solar cycle dependence of scaling in solar wind fluctuations, Nonlinear Proc. Geophys. , 15, 445-455 (2008).
  31. B. Lloyd et al., Overview of physics results from MAST, Nucl. Fusion 47 S658-S667 doi: 10.1088/0029-5515/47/10/S14 (2007).
  32. S. C. Chapman and B. Hnat, Quantifying scaling in the velocity field of the anisotropic turbulent solar wind,, Gophys. Res. Lett. 34, L17103, doi:10.1029/2007GL030518 (2007).
  33. Hnat, B., S. C. Chapman, K. Kiyani, G. Rowlands, and N. W. Watkins, On the fractal nature of the magnetic field energy density in the solar wind, Geophys. Res. Lett., 34, L15108,doi:10.1029/2007GL029531 (2007).
  34. K. Kiyani, S. C. Chapman, B. Hnat, N. M. Nicol, Self-similar signature of the active solar corona within the inertial range of solar wind turbulence, Phys. Rev. Lett. 98, 211101 (2007).
  35. R. Bruno, V. Carbone, S. C. Chapman, B. Hnat, A. Noullez, L. Sorriso-Valvo, Intermittent character of interplanetary magnetic field, Phys. Plasmas 14, 032901 (2007).
  36. K. Kiyani, S. C. Chapman, and B. Hnat, Extracting the scaling exponents of a self-affine, non-Gaussian process from a finite-length time series, Phys. Rev. E 74, 051122 (2006).
  37. N. W. Watkins, D. Credgington, B. Hnat, S. C. Chapman, M. P. Freeman and J. Greenhough, Towards Synthesis of Solar Wind and Geomagnetic Scaling Exponents: A Fractional Lévy Motion Model, Space Science Reviews 121, DOI: 10.1007/s11214-006-4578-2 pg. 271-284 (2005).
  38. S. C. Chapman, Hnat B, Rowlands G, et al., Scaling collapse and structure functions: identifying self-affinity in finite length time series, Nonlinear Processes in Geophysics 12, 767-774 (2005).
  39. B. Hnat, S. C. Chapman and G. Rowlands, Scaling and a Fokker-Planck model for fluctuations in geomagnetic indices and comparison with solar wind epsilon as seen by WIND and ACE., Journal of Geophysical Research 110 DOI: 10.1029/2004JA010824 (2005).
  40. B. Hnat, S. C. Chapman and G. Rowlands, Compressibility in Solar Wind Plasma Turbulence, Physical Review Letters, 94, 204502 (2005).
  41. B. Hnat, S. C. Chapman and G. Rowlands, Scaling, asymmetry and a Fokker-Planck model of the fast and slow solar wind as seen by WIND, Phys. of Plasmas 11, No. 4, p. 1326 (2004).
  42. B. Hnat, S. C. Chapman, G. Rowlands, , N. W. Watkins and M. P. Freeman, Scaling in long term data sets of geomagnetic indices and solar wind epsilon as seen by WIND spacecraft, Geophys. Res. Lett. 30, 2174 10.1029/2003GL018209 (2003).
  43. B. Hnat, S. C. Chapman, G. Rowlands, Intermittency, scaling, and the Fokker-Planck approach to fluctuations of the solar wind bulk plasma parameters as seen by the WIND spacecraft, Phys. Rev. E 67, 056404 (2003).
  44. S. C. Chapman, R. O. Dendy, B. Hnat, Self-Organization of Edge and Internal Pedestals in a Sandpile, Plasma Phys. Control. Fusion, 45, 301-308 (2003).
  45. B. Hnat, S. C. Chapman, G. Rowlands, N. W. Watkins and M. P. Freeman, Scaling in solar wind epsilon and the AE, AL and AU indices as seen by WIND, Geophys. Res. Lett. 29, 10.1029/2002GL016054 (2002).
  46. B. Hnat, S.C. Chapman, G. Rowlands, N.W. Watkins and W. M. Farrell, Finite size scaling in the solar wind magnetic field energy density as seen by WIND, Geophys. Res. Lett. 29, 10.1029/2001GL014587 (2002).
  47. S. C. Chapman, R. O. Dendy, B. Hnat, A sandpile model with tokamak-like enhanced confinement phenomenology, Phys. Rev. Lett. 86, 2814 (2001).
  48. S. C. Chapman, R. O. Dendy, B. Hnat, A simple avalanche model for astroplasma and laboratory confinement systems, Phys. Plasmas 8, 1969(2001).
  49. S. Chapman, B. Hnat, A. Ynnerman, Virtual Reality as a Tool for Exploring Astroplasma Systems, ICPP, Quebec (2000).
  50. B. Hnat and S.C. Chapman, Visualization of Multiscale Data Sets in Numerical Models of Complex Systems, International Journal of IT in Architecture, Engineering and Construction (IT-AEC), 2, No. 4, pp236-241 (2000).
  51. B. Hnat and S.C. Chapman, Visualization of Multi-Scale Data Sets in Self-Organized Criticality Sandpile Model, 1999 Proceedings, "Simulation and Visualization on the Grid" (LNCSE 13; ISBN 67264-8)
  52. B.Hnat, D. Jakubczyk, M. Kolwas, Size Evolution of the Laser Light Induced Sodium Clusters, Acta Physica Polonica A (1992).