Sheet 1 Question 1

(i) Particle motion in \(B \) field

\[
m \frac{dv}{dt} = qv \wedge B \quad \frac{dr}{dt} = v
\]

Normalise \(v^* = \frac{v}{v_0} \), \(t = t' T \) \(r = r' L \) \(B = B' B_0 \)

sub in

\[
m \frac{d(v^* v_0^*)}{dt T} = q v_0^* v^* \wedge B^* B_0
\]

\[
\frac{dv^*}{dt} = T \frac{qB_0}{m} v^* \wedge B^* \quad \text{which is normalised if } T = \left(\frac{qB_0}{m} \right)^{-1} = \frac{1}{\Omega}
\]

also

\[
\frac{dr^* L}{dt T} = v^* v_0 \quad \text{ie: } v_0 = \frac{L}{T}
\]

so \(L = v_0 T = \frac{v_0}{\Omega} \)

solving the equations yields circular motion about \(B \) with frequency \(\Omega \), radius \(L \).

Frequency is independent of velocity (particle energy), whereas gyroradius \((L) \) depends on velocity.

(ii) Wave equation (ID here)

\[
\frac{1}{c^2} \frac{\partial^2 \psi}{\partial t^2} = \frac{\partial^2 \psi}{\partial x^2}
\]

Normalise:

\[
\frac{1}{c^2} \frac{\partial^2 \psi^*}{\partial t^*} \frac{\psi_0}{T^2} = \frac{\partial^2 \psi^* \psi_0}{\partial x^* L^2}
\]

which is normalised (dimensionless) if

\[
\frac{\partial^2 \psi^*}{\partial t^*} = \frac{\partial^2 \psi^*}{\partial x^*} \quad \frac{L}{T} = c.
\]

Therefore, \(c \) is characteristic velocity of all structures regardless of length scale and is independent of amplitude \(\psi \). Solutions are of the form \(\psi = f(x + ct) + g(x - ct) \).
(iii) Conservation of quantity Q with number density n

\[
\frac{\partial (nQ)}{\partial t} = \nabla \cdot (nQ \mathbf{v}),
\]

where Q is carried by "particles" of density n.

Normalise

\[
\frac{\partial (n^*Q^*)}{\partial t^*} - \frac{1}{T} \frac{1}{L} Q_0 = \nabla \cdot (n^*Q^* \mathbf{v}^*) \frac{1}{L} \frac{1}{L^*} L^* Q_0
\]

ie \[\mathbf{v}^* = \frac{\mathbf{v}}{v_0} = \frac{\mathbf{v}}{\left(\frac{T}{L}\right)} \]

then:

\[
\frac{\partial}{\partial t^*}(n^*Q^*) = \nabla \cdot (n^*Q^* \mathbf{v}^*).
\]

There is no characteristic scale if $v_0 = \frac{L}{T}$ equation just specifies that structures on all length and timescales are conserved.
Sheet 1 Question 2

\[F = F_0 + F_1 M + F_2 M^2 + F_3 M^3 + F_4 M^4 \]

can always be written as

\[F = F_0' + F_2' (M - M_0)^2 + F_3' (M - M_0)^3 + F_4' (M - M_0)^4 \]

since both are general polynomials up to degree 4 then \(M \rightarrow M - M_0 \) is the required transformation.

(i) For symmetry \(F_3 = 0 \).

We then have (dropping 's)

\[F(M) = F_0 + \alpha (T - T_c) M^2 + \beta M^4 \]

extrema

\[\frac{\partial F}{\partial M} = 2\alpha (T - T_c) M + 4\beta M^3 = 2M (\alpha (T - T_c) + 2\beta M)^2 \]

ie: at \(M = 0 \) or \(M^2 = \frac{\alpha (T_c - T)}{2\beta} \).

But \(M \) is real so:

\[M = \pm \sqrt{\frac{\alpha (T_c - T)}{2\beta}} \]

is an extreme for \(T < T_c \)

look for minima

\[\frac{\partial^2 F}{\partial M^2} = 2\alpha (T - T_c) + 12\beta M^2. \]

\[M = 0: \quad \text{min for } T > T_c \quad \text{max for } T < T_c. \]

\[M = \pm \sqrt{\frac{\alpha (T_c - T)}{2\beta}} \]

\[\frac{\partial^2 F}{\partial M^2} = 2\alpha (T - T_c) + 12\beta \frac{\alpha (T_c - T)}{2\beta} = -4\alpha (T - T_c) \]

\(\text{min for } T < T_c \quad \text{max for } T > T_c \)

pitchfork bifurcation at \(T = T_c \)
As we go from $T > T_c$ to $T < T_c$ system "falls" into one of the potential walls – which one is determined by fluctuations at $T = T_c$.
(ii) Asymmetric, now $F_3 = \gamma \neq 0$

$$\frac{\partial F}{\partial M} = 2\alpha(T - T_c)M + 3\gamma M^2 + 4\beta M^4$$

extrema now $\frac{\partial F}{\partial M} = 0 = M\left\{2\alpha(T - T_c) + 3\gamma M + 4\beta M^2\right\}$

$$M = 0, \quad M = \frac{-3\gamma \pm \sqrt{(9\gamma^2 - 4.2\alpha(T - T_c)4\beta)}}{2.4\beta}$$

Two real values of M when

$$9\gamma^2 > 32\alpha\beta(T - T_c)$$

write M as

$$M = \frac{-3\gamma \pm \sqrt{\gamma^2 - \gamma_c^2}}{8\beta}.$$

Consider

$$\frac{\partial^2 F}{\partial M^2} = 2\alpha(T - T_c) + 6\gamma M + 12\beta M^2$$

$$M = 0 \quad \text{is min for} \quad T > T_c.$$

For $M \neq 0$ extrema given by $2\alpha(T - T_c) + 3\gamma M + 4\beta M^2 = 0$ which gives

$$\frac{\partial^2 F}{\partial M^2} = 3\gamma M + 8\beta M^2,$$

or

$$\frac{\partial^2 F}{\partial M^2} = M\left(\pm3\sqrt{\gamma^2 - \gamma_c^2}\right)$$

Then in addition to $M = 0$ solution

$$\gamma^2 > \gamma_c^2 \quad \text{2 real } M \neq 0 \text{ roots, one max, one min}$$

$$\gamma^2 = \gamma_c^2 \quad M = \frac{-3\gamma}{8\beta} \quad \gamma_c^2 = \frac{32\alpha\beta}{9}(T - T_c) \quad \Rightarrow T > T_c.$$

$$\gamma^2 < \gamma_c^2 - M \text{ imaginary } \quad \text{no max/min.}$$

Also at $\gamma_c^2 = 0 \quad T = T_c \quad M = \frac{-3\gamma \pm 3\gamma}{8\beta} \quad \text{ie:} \quad M = \frac{-6\gamma}{8\beta}$$

(a)
(b) is \((-\) ve root hence \(\frac{\partial^2 F}{\partial M^2} > 0\) is a min

(a) is inflexion. Finally, for \(\gamma_c^2 < 0\) 2 real roots, both min and \(M = 0\) is max

graphically
Now fluctuations are unimportant.
iii) Van der Vaal

Expand for \(bm << 1 \)

using

\[
\ln(1 - bm) = - \left[bM + \left(\frac{bM}{2} \right)^2 + \left(\frac{bM}{3} \right)^3 + \ldots \right]
\]

Substitute into \(F \)

\[
F = \frac{T}{b} \left[-bM - \left(\frac{bM}{2} \right)^2 - \left(\frac{bM}{3} \right)^3 + (bM)^2 + \left(\frac{bM}{2} \right)^3 + \left(\frac{bM}{3} \right)^4 \right] + MT - \frac{aM^2}{2}
\]

\[
= M^2 \left(\frac{bT}{2} - \frac{a}{2} \right) + M^3 \frac{b^2}{6} T + b^3 \frac{T M^4}{12}
\]

then \(\alpha (T - T_c) \equiv \frac{bT - a}{2} = b \left(T - \frac{a}{b} \right) \)

\(T_c = \frac{a}{b} \).
Sheet 1 Question 3

(i) \(\frac{dq}{dt} = \sin q \)

fixed points \(\sin \bar{q} = 0 \quad \bar{q} = n\pi \quad n \text{ integer} \)

linearize about fixed points

\[q(t) = \bar{q} + \delta q \]

\[\frac{d\delta q}{dt} = \sin(\bar{q} + \delta q) = \sin \bar{q} \cos \delta q + \cos \bar{q} \sin \delta q = 0 \]

\(\sin \delta q = \delta q, \cos \delta q = 0 \) as \(\delta q \) is small

then \(\frac{d\delta q}{dt} = (-1)^n \delta q \)

solution is of form \(\delta q = \delta q_0 e^{nt} \)

\(s + ve \) for \(n \) even – unstable

\(s - ve \) for \(n \) odd – stable

Phase plane analysis

\[\begin{array}{c}
\text{flow arrows } +ve \quad \text{for } \frac{dq}{dt} -ve \quad q \text{ increases with time} \\
\text{flow arrows } -ve \quad \text{for } \frac{dq}{dt} -ve \quad q \text{ decreases with time}
\end{array} \]

\[\text{\square \ stable} \]

\[\bullet \text{ unstable} \]
ii) \(\frac{dq}{dt} = \alpha q - \beta q^2 \)

fixed points \(\alpha \bar{q} - \beta \bar{q}^2 = 0 \)
\[\bar{q}(\alpha - \beta \bar{q}) = 0 \]

ie: \(\bar{q} = 0 \) or \(\bar{q} = \frac{\alpha}{\beta} \).

Stability \(q(t) = \bar{q} + \delta q(t) \)

Sub in
\[\frac{d}{dt}(\delta q) = \alpha(\bar{q} + \delta q) - \beta(\bar{q} + \delta q)^2 \]
\[= \alpha \bar{q} - \beta \bar{q}^2 + \delta q(\alpha - 2\beta \bar{q}) + 0(\delta q^2) \]

but \(\alpha \bar{q} - \beta \bar{q}^2 = 0 \)

So, \(\frac{d(\delta q)}{dt} = \delta q(\alpha - 2\beta \bar{q}) \),

then, assuming that \(\delta q = \delta q_0 e^{\mu t} \)

we will have \(s + ve \) for \(\alpha - 2\beta \bar{q} > 0 \)
\(s - ve \) for \(\alpha - 2\beta \bar{q} < 0 \).

Take \(\alpha, \beta > 0 \)
then \(\bar{q} = 0 \) is \(s + ve \), ie: unstable (repellor)
\(\bar{q} = \frac{\alpha}{\beta} \) is \(s - ve \), ie: stable (attractor)

Phase plane – sketch \(\frac{dq}{dt}, vz q \)
Problem Sheet 2 – Non Linearity, Chaos and Complexity Solutions

Sheet 2 Question 1.

i) Undamped oscillator

\[\frac{d^2 x}{dt^2} = -\omega^2 \sin x. \]

Can integrate this once

\[\frac{d}{dt} \left(\frac{dx}{dt} \right) = -\omega^2 \sin x \frac{dx}{dt} \]

\[\Rightarrow \frac{1}{2} \left(\frac{dx}{dt} \right)^2 - \omega^2 \cos x = E = \text{constant}. \]

To obtain the dynamics – obtain fixed points, phase plane, etc.

first write as two coupled first order DE

\[\frac{dx}{dt} = y \quad \frac{dy}{dt} = -\omega^2 \sin x \]

fixed points \(\bar{y} = 0, \sin \bar{x} = 0 \) or \(\bar{x} = n\pi \).

Stability

Linearize

\[y = \bar{y} + \delta y \quad x = \bar{x} + \delta x \]

then

\[\frac{d \delta x}{dt} = \delta y \quad \frac{d \delta y}{dt} = -\omega^2 \sin (\bar{x} + \delta x) \]

\[= -\omega^2 \sin (n\pi + \delta x) \]

use

\[\sin (A + B) = \sin A \cos B + \cos A \sin B \]

\[\sin (n\pi + \delta x) = \sin n\pi \cos \delta x + \cos n\pi \sin \delta x \]

\[= 0 \]

\[\cos (n\pi) = (-1)^n \quad \text{and} \quad \sin \delta x = \delta x \quad \text{since} \ \delta x \ \text{small} \]

so

\[\frac{d \delta x}{dt} = \delta y \quad \frac{d \delta y}{dt} = -\omega^2 (-1)^n \delta x. \]

Sufficiently simple to go direct to second order DE
\[
\frac{d^2\delta x}{dt^2} = -\omega^2 (1)^N \delta x \quad \text{for which we know solutions of form } \delta x = Ae^{i\lambda t} + Be^{-i\lambda t}.
\]

Then \(n \) even
\[
\frac{d^2\delta x}{dt^2} = -\omega^2 \delta x \quad \delta x = Ae^{i\omega t} + Be^{-i\omega t},
\]

\(n \) odd
\[
\frac{d^2\delta x}{dt^2} = +\omega^2 \delta x \quad \delta x = Ae^{\omega t} + Be^{-\omega t}.
\]

So, \(n \) even are centre fixed points
\[
\delta x \quad \text{is oscillatory and } \quad \delta y = \frac{d\delta x}{dt} = i\omega Ae^{i\omega t} - i\omega Be^{-i\omega t}
\]

recall \(i = e^{\frac{\pi}{2}} \) and \(-i = e^{-\frac{\pi}{2}} \) (complex numbers \(x + iy = re^{i\theta} \))

So,
\[
\delta y = \omega Ae^{(i\omega t + \frac{\pi}{2})} + \omega Be^{-(i\omega t + \frac{\pi}{2})}
\]

- out of phase \(\frac{\pi}{2} \) with \(\delta x \)

\(n \) odd
\[
\delta x = Ae^{\omega t} + Be^{-\omega t} \quad \delta y = \omega Ae^{\omega t} - \omega Be^{-\omega t}
\]

Saddle point

Separatrix has lines given by
\[
t \to \infty \quad \frac{\delta y}{\delta x} = \frac{\omega Ae^{\omega t}}{Ae^{\omega t}} = \omega
\]
\[
t \to -\infty \quad \frac{\delta y}{\delta x} = \frac{-\omega Be^{-\omega t}}{Be^{-\omega t}} = -\omega.
\]

Topology: constant of the motion defines the phase plane orbits: and
\[
E = \frac{y^2}{2} - \omega^2 \cos x \text{ has symmetry in } y \text{ and } x
\]

Phase plane: see lecture notes and handouts for sketch.

Separatrix has \(x = \pm \pi \to \cos x = -1 \) when \(y = 0 \), \(E_c = \omega^2 \) on the separatrix.
ii) **Damped oscillator**

\[
\frac{d^2 x}{dt^2} + \lambda \frac{dx}{dt} + \omega^2 \sin x = 0
\]

Now we will have first order DE:

\[
\frac{dx}{dt} = y
\]

\[
\frac{dy}{dt} = -\omega^2 \sin x - \lambda y.
\]

Fixed point \(y = 0, \omega^2 \sin x = 0 \),

ie: as undamped case \(y = 0, x = n\pi \).

Stability analysis

\(y = \delta y \quad x = \bar{x} + \delta x \)

So \(\frac{d\delta x}{dt} = \delta y \quad \frac{d\delta y}{dt} = -\delta y - \omega^2 (-1)^n \delta x \) (as before – same identities).

Now more complicated – solve using general formula as in lectures (given in detail here).

We write \(\delta x = \begin{pmatrix} \delta x \\ \delta y \end{pmatrix} \)

then pair of equations are just

\[
\frac{d\delta x}{dt} = \mathbf{J} \cdot \delta x \quad \mathbf{J} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}
\]

where we use notation

\[
\frac{d\delta x}{dt} = a \delta x + b \delta y \
\frac{d\delta y}{dt} = c \delta x + d \delta y
\]

We then have solutions of the form

\[
\delta x = C_1 e^{\delta t}\mathbf{u}_+ + C_2 e^{\delta t}\mathbf{u}_-\]
where the eigenvalues \(s_{\pm} \) are solutions of

\[
\begin{vmatrix}
 a-s & b \\
 c & d-s
\end{vmatrix} = 0
\]

ie:

\[
0 - (a-s)(d-s) - bc = s^2 - s(a+d) + ad - bc
\]

thus

\[
s = \frac{1}{2} \left((a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)} \right)
\]

here, this is

\[
s_{\pm} = \frac{1}{2} \left(-\lambda \pm \sqrt{\lambda^2 - 4(\omega^2 (-1)^n)} \right)
\]

Two cases:

\(n \) odd

\[
s_{\pm} = \frac{1}{2} \left(-\lambda \pm \sqrt{\lambda^2 + 4\omega^2} \right)
\]

\(n \) even

\[
s_{\pm} = \frac{1}{2} \left(-\lambda \pm \sqrt{\lambda^2 - 4\omega^2} \right)
\]

n odd:

\(s_{\pm} \) are real, distinct.

\[
s_{\pm} = \frac{1}{2} \left(-\lambda \pm \sqrt{\frac{4\omega^2}{\lambda^2}} \right)
\]

for \(\lambda \) +ve or -ve

\(s_{\pm} \) are real and of opposite sign – saddle points (as before).

n even:

\(s_{\pm} \) may be complex

\[
s_{\pm} = \frac{1}{2} \left(-\lambda \pm \sqrt{\frac{4\omega^2}{\lambda^2}} \right)
\]

complex if \(4\omega^2 > \lambda^2 \) otherwise real.

For \(\lambda > 0 \) – decay to stable fixed point
\(\lambda < 0 \) – growth – unstable fixed point

If \(4\omega^2 > \lambda^2 \) these are spiral.

Note that if \(\lambda = 0 \) we have

\[
s_{\pm} = \pm \omega \quad n \text{ odd} - \text{saddle and}
\]

\[
s_{\pm} = \pm i\omega \quad n \text{ even} - \text{circle fixed points}
\]

So, essentially here, circle points \(\rightarrow \) spiral fixed points for \(4\omega^2 > \lambda^2 \).
Topology

Look for symmetries in original DE.

\[
\frac{d^2 x}{dt^2} + \lambda \frac{dx}{dt} + \omega^2 \sin x = 0
\]

\[
x \to -x \quad \frac{d^2 x}{dt^2} + (-1) \lambda \frac{dx}{dt} + \omega^2 \sin x(-1) = 0
\]

Same equation \(x > -x \) is this symmetry by reflection? Check what happens to \(y \) (below).

\[
t \to -t \quad (-1)^2 \frac{d^2 x}{dt^2} + (-1) \lambda \frac{dx}{dt} + \omega^2 \sin x = 0
\]

\(t \to -t \) is \(\lambda \to -\lambda \),

ie: damping and increasing \(t \equiv \) growth and decreasing \(t \)

Sufficient to sketch one of these and note that

\[
y = \frac{dx}{dt} \quad \text{so } x \to -x \text{ gives } y \to -y \text{ rotational symmetry.}
\]

See course handout for sketch
Lotka-Volterra

In our original notation

\[
\frac{dx}{dt} = (\lambda - \alpha y) x \\
\frac{dy}{dt} = -(\eta - \beta x) y
\]

Fixed points

\[
(\lambda - \alpha \bar{y}) \bar{x} = 0 \quad \bar{x} = 0 \text{ or } \bar{y} = \frac{\lambda}{\alpha}
\]

\[-(\eta - \beta \bar{x}) \bar{y} = 0 \quad \bar{y} = 0, \text{ or } \bar{x} = \frac{\eta}{\beta}
\]

ie: \(\bar{x} = 0, \bar{y} = 0 \quad \bar{x} = \frac{\eta}{\beta}, \quad \bar{y} = \frac{\lambda}{\alpha} \).

Stability – linearise

\[
x = \bar{x} + \delta x \quad y = \bar{y} + \delta y
\]

\[
\frac{d\delta x}{dt} = \lambda (\bar{x} + \delta x) - \alpha (\bar{y} + \delta y)(\bar{x} + \delta x)
\]

\[
= \lambda \bar{x} - \alpha \bar{y} \bar{x} + (\lambda - \alpha \bar{y}) \delta x - \alpha \bar{x} \delta y - \alpha \delta x \delta y
\]

\[
= 0
\]

\[
\frac{d\delta x}{dt} = (\lambda - \alpha \bar{y}) \delta x - \alpha \bar{x} \delta y
\]

\[
\frac{d\delta y}{dt} = -\eta (\bar{y} + \delta y) + \beta (\bar{x} + \delta x)(\bar{y} + \delta y)
\]

\[
= -\eta \bar{y} + \beta \bar{x} \bar{y} + \delta y(-\eta + \beta \bar{x}) + \delta x(\beta \bar{y}) + \beta \delta x \delta y
\]

\[
= 0
\]

\[
\frac{d\delta y}{dt} = (-\eta + \beta \bar{x}) \delta y + \beta \bar{y} \delta x
\]

again – can use formula but shown in full here: write in the form \(\frac{d}{dt} \delta x = J \cdot \delta x \)

then in notation of notes

\[
J = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} (\lambda - \alpha \bar{y}) & -\alpha \bar{x} \\ \beta \bar{y} & (\beta \bar{x} - \eta) \end{bmatrix}
\]
with eigenvalues

\[s_{\pm} = \frac{1}{2} \left\{ (a + d) \pm \sqrt{(a + d)^2 - 4(ad - bc)} \right\} \]

Consider two fixed points

\[\bar{x} = 0, \quad \bar{y} = 0 \quad \text{J} = \begin{bmatrix} \lambda & 0 \\ 0 & -\eta \end{bmatrix} \]

\[s_{\pm} = \frac{1}{2} \left\{ (\lambda - \eta) \pm \sqrt{(\lambda - \eta)^2 + 4(\lambda \eta)} \right\} \]

\[\lambda^2 - 2\lambda \eta + \eta^2 + 4\lambda \eta = (\lambda + \eta)^2 \]

\[s_{\pm} = \frac{1}{2} \left\{ (\lambda - \eta) \pm (\lambda + \eta) \right\} \]

ie: \[s_+ = \lambda \quad s_- = -\eta \quad \text{saddle point.} \]

Consider fixed point

\[\bar{x} = \frac{\eta}{\beta}, \quad \bar{y} = \frac{\lambda}{\alpha} \]

\[\text{J} = \begin{bmatrix} 0 & -\alpha \eta \\ \beta & 0 \\ \frac{\beta \lambda}{\alpha} \end{bmatrix} \]

\[S_{\pm} = \frac{1}{2} \left\{ \pm \sqrt{0 - 4 \left(\frac{\beta \lambda}{\alpha} \right) \left(\frac{\alpha \eta}{\beta} \right)} \right\} \]

\[= \pm \sqrt{-\lambda \eta} \]

ie: wholly imaginary – centre fixed point.

Topology: no \(t \) symmetry since

\[t \rightarrow -t \quad -\frac{dx}{dt} = (\lambda - \alpha y) x \]

\[-\frac{dy}{dt} = - (\eta - \beta x) y \]
Similarly, no symmetries in $x - y$ except change of sign in $\lambda, \eta, \beta, \alpha$ – unrealistic.

Phase plane:

\[
C = (\eta \ln R - \beta R) - (\alpha F - \lambda \ln F)
\]

\[
\frac{dC}{dt} = \frac{\eta}{R} \frac{dR}{dt} - \beta \frac{dR}{dt} - \alpha \frac{dF}{dt} + \lambda \frac{1}{F} \frac{dF}{dt}
\]

\[
= (\lambda - \alpha F)(\eta - \beta R) - (\lambda - \alpha F)(\eta - \beta R)
\]

\[
= 0.
\]

Hence C is a constant and different values of C specify trajectories (closed) about the centre fixed point.
Sheet 2 Question 3

Proof of existence of a limit cycle:

given \(\frac{dx}{dt} = x - y - x(x^2 + 2y^2), \frac{dy}{dt} = x + y(x^2 + y^2) \)

convert to plane polar coordinates \(r, \theta \) use

\[
x = r \cos \theta \quad y = r \sin \theta
\]

and

\[
x \frac{dx}{dt} + y \frac{dy}{dt} = r \frac{dr}{dt} \quad x \frac{dy}{dt} - y \frac{dx}{dt} = r^2 \frac{d\theta}{dt}
\]

then

\[
r^2 \frac{d\theta}{dt} = x \left[x + y' - y(x^2 + y^2) \right] - y \left[x' - y(x^2 + 2y^2) \right] = x^2 + y^2 + xy^3 = r^2 + r^4 \cos \theta \sin^3 \theta
\]

\[
r \frac{dr}{dt} = x \left[x - y' - x(x^2 + 2y^2) \right] + y \left[-y' + y(x^2 + y^2) \right]
\]

\[
= x^2 + y^2 - x^4 + 3y^2x^2 - y^4
\]

\[
= x^2 + y^2 - (x^2 + y^2)^2 - x^2y^2
\]

\[
= r^3 - r^4 - r^4 \cos^2 \theta \sin^2 \theta.
\]

Identity:

\[
\sin(A + B) = \sin A \cos B + \cos A \sin B
\]

\[
\sin 2A = 2 \sin A \cos A
\]

\[
r^2 \frac{d\theta}{dt} = r^2 + r^4 \frac{1}{2} \sin^2 \theta \sin 2\theta
\]

Giving

\[
r \frac{dr}{dt} = r^3 - r^4 \left(1 + \frac{1}{4} \sin^2 2\theta \right)
\]

now

\[
r \frac{dr}{dt} = r^2 - r^4 \left(1 + \frac{1}{4} \sin^2 2\theta \right) = r^2 \left(1 - r^2 B \right)
\]

Bracket \(B \) is bounded \([1, \frac{5}{4}]\)
Minimum value of $B = 1$ has $\frac{dr}{dt} = 0$ for $r = 1$

Maximum $B = \frac{5}{4}$ has $\frac{dr}{dt} = 0$ for $r = \frac{\sqrt{4}}{\sqrt{5}}$

If $r > 1, \frac{dr}{dt} < 0$

If $r < \frac{\sqrt{4}}{\sqrt{5}}, \frac{dr}{dt} > 0$

orbits are attracted into the annulus for any θ

and $\frac{d\theta}{dt} \neq 0$ in annulus

therefore, limit cycle.
Problem Sheet 3 – Non Linearity, Chaos and Complexity Solutions

Sheet 3 Question 1

Lyapunov exponent.

For a general map \(x_{n+1} = f(x_n) \)

This has iterates \(x_1, x_2, \ldots, x_n \) initial condition \(x_0 \) so \(x_1 = f(x_0), \ x_2 = f(x_1) \), etc.

For initially neighbouring points \(x_0 = x_0 + \epsilon_0, \ x_0 \) with \(\epsilon_0 << 1 \).

After one iterate \(\bar{x}_1 = f(x_0) = f(x_0 + \epsilon_0) = f(x_0) + \epsilon_0 \frac{df}{dx}(x_0) + \ldots \) by Taylor expansion.

Now, two points separated by \(\epsilon_1 \) after one iterate, i.e.

\[\bar{x}_1 = x_1 + \epsilon_1 = f(x_0 + \epsilon_0) = f(x_0) + \epsilon_0 \frac{df}{dx}(x_0) + \ldots \] so \(\epsilon_1 = \epsilon_0 \ f'(x_0) \) to first order in \(\epsilon_0 \).

Generally, for \(j^{th} \) iterate we have \(\bar{x}_j = x_j + \epsilon_j \) thus \(\epsilon_j = \epsilon_{j-1} \ f'(x_{j-1}) \) provided \(\epsilon_j << 1 \ 0 < j < n \).

Then,

\[\bar{x}_n = x_n + \epsilon_n = x_n + \epsilon_{n-1} f'(x_{n-1}) \]
\[= x_n + \epsilon_{n-2} f'(x_{n-2}) f'(x_{n-1}) \]
\[= x_n + \epsilon_0 f'(x_0) f'(x_1) \ldots f'(x_{n-1}) \]

or

\[\bar{x}_{n+1} = x_{n+1} \epsilon_0 f'(x_0) \ldots f'(x_n) \]
\[\bar{x}_n = x_n + \epsilon_0 \prod_{j=0}^{n-1} f'(x_j) \]

Now write

\[f'(x_j) = e^{\ln[f'(x_j)]} \]

and neglecting signs of \(f' \) we can write

\[\bar{x}_n = x_n + \epsilon_0 \exp \left[\sum_{j=0}^{n-1} \ln|f'(x_j)| \right] \]

and hence Lyapunov exponent defined as:

\[\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{j=0}^{n-1} \ln|f'(x_j)| \]

which is a measure of exponential divergence

\[\bar{x}_n - x_n = \epsilon_0 e^{\lambda n} \]

If \(\lambda < 0 \) then \(\bar{x}_n \to x_n \) for large \(n \), converging – this is attractor (attractive fixed point).

If \(\lambda > 0 \) – exponential divergence for large \(n \). repellor (repulsive fixed point).
Sheet 3 Question 2

The map

\[x_{n+1} = \frac{x_n}{a}, \quad 0 < x < a \]

\[x_{n+1} = \frac{(1-x_n)}{(1-a)}, \quad a < x < 1 \]

where \(0 < a < 1\).

Consider fixed points

\[\bar{x} = 0 \] and

\[\bar{x} \] in the range \([a,1]\)

ie: \(\bar{x} = \frac{1-\bar{x}}{(1-a)} \)

\[\bar{x} - a\bar{x} = 1 - \bar{x} \]

or \((2-a)\bar{x} = 1\)

thus fixed points \(\bar{x} = 0 \quad \bar{x} = \frac{1}{(2-a)}\).

Stability

Linearize

\[x_n = \bar{x} + \delta x_n \quad x_{n+1} = \bar{x} + \delta x_{n+1}. \]

sub into

\[x_{n+1} = \frac{(1-x_n)}{(1-a)} \]

\[\bar{x} + \delta x_{n+1} = \frac{(1-\bar{x} - \delta x_n)}{1-a} \]

\[\bar{x} + \delta x_{n+1} = \frac{(1-\bar{x})}{(1-a)} - \frac{\delta x_n}{(1-a)} \]

ie: \(\delta x_{n+1} = \frac{-\delta x_n}{1-a} = \frac{\delta x_n}{(a-1)} \)

hence unstable for all \(0 < a < 1\): \(\delta x_{n+1} = \frac{1}{(a-1)} \delta x_n \)
Find "folding points" such that $M^2(x) = 0$ or $M^2(x) = 1$.

$M^2(x) = 0$

Clearly, $M^2(x) = 0$ for $M(x) = 0$ or 1, i.e.: $M(x) = 0$, $x_R = 0$ or $x_R = a$

$M^2(x) = 1$

Since $M(a) = 1$ we seek x_R such that $M(x_R) = a$.

Two possibilities

$0 < x < a$ \hspace{1cm} $M(x) = \frac{x}{a}, \quad a = \frac{x_R}{a}, \quad x_R = a^2$

$a < x < 1$ \hspace{1cm} $M(x) = \frac{1-x}{1-a}, \quad a = \frac{1-x_R}{1-a}, \quad x_R = 1 - a(1 - a)$

Sketch:

here \(a > \frac{1}{2} \) thus

\(a^2 > \frac{a}{2} \) (try it!).

\(1 - a(1 - a) < \frac{1 - a}{2} \)

Same topology as symmetric case (stretching and folding) just asymmetric.
Lyapunov exponent for $M(x)$

Fixed point is in the range $[a, 1]$

so $M(x) = \frac{(1-x)}{(1-a)}$

\[
\frac{dM}{dx} = \frac{1}{1-a} \quad \text{and} \quad 0 < a < 1
\]

so $\frac{dM}{dx} > 1$ hence $\lambda = \ln\left(\frac{1}{1-a}\right)$

$\lambda > 0$ exponential divergence

Special cases $a = 0$ and $a = 1$

\[a = 0\]

Now $M(x) = 1 - x$

fixed point $\bar{x} = 1 - \bar{x}$

$\bar{x} = \frac{1}{2}$

gradient $\frac{dM}{dx} = -1$ everywhere.

Lyapunov exponent $\lambda = \ln|-1| = 0$

$\lambda = 0$ is marginally stable –

now $M(\bar{x}) = \bar{x} = \frac{1}{2}$

for any $0 < x < 1, \ x \neq \frac{1}{2}$ write $\bar{x}_0 = \bar{x} + \varepsilon$

\[
M(x_0) = 1 - \bar{x} - \varepsilon = x_1
\]

\[
M^2(x_0) = M(x_1) = 1 - (1 - \bar{x} - \varepsilon) = \bar{x} + \varepsilon = x_0
\]
hence \(M^2(x_0) = x_0 \) these are period two orbits

\[
M(x) = 1
\]

\[
\text{graphically}
\]

or by simply calculating \(M^2(x) = 1 - (1 - x) = x \)

\[
M^2(x) = x
\]

This is a return map \(M^2(x) = x \)

\[
1
\]

\[
x_0
\]

\[
x_0
\]

\[
1
\]

\[
a=1
\]

\[
M(x) = x \quad \text{again, a return map}
\]

\[
\frac{dM}{dx} = \frac{d(x)}{dx} = 1 \quad \text{so Lyapunov exponent} \quad \gamma = \ln|\| = 0 \quad \text{marginally stable}
\]

true for both orbits of \(M(x, a = 1) \) and of \(M^2(x, a = 0) \) [period 2 orbits of \(M \)]
Sheet 3 Question 3

We have

\[\frac{dg}{dt} = \lambda_s g - eR \quad \frac{dR}{dt} = \lambda_g g - \alpha FR \]

and from Lotka-Volterra equations \(\frac{dF}{dt} = (\eta - \beta R) F \)

fast growing grass \(\lambda_s \gg \lambda_g \)

then we assume the grass is enslaved to the rabbits –

\[\frac{dg}{dt} = 0 \quad \lambda_s g - eR = 0 \quad g = \frac{eR}{\lambda_s} \]

giving \(\frac{dR}{dt} = \frac{e\lambda_b}{\lambda_s} R - \alpha FR = (\lambda - \alpha F) R \)

where \(\lambda = \frac{e\lambda_b}{\lambda_s} \)

which are the original Lotka-Volterra equations so dynamics of foxes and rabbits are the same and the grass is enslaved to rabbits.
Problem Sheet 4 – Non Linearity, Chaos and Complexity Solutions

Sheet 4 Question 1

(a) $B = 0$ case

$$F(M) = \alpha (T - T_c)M^2 + \beta M^4$$

minima $M = 0, \ M = \pm \sqrt{\frac{\alpha (T_c - T)}{2\beta}}$

Thus, if we normalise M to some \tilde{M} $M^* = \frac{M}{\tilde{M}}$

$$M^* = \pm \sqrt{\frac{\alpha T_c}{2\beta M^2}} \left(1 - \frac{T}{T_c}\right)$$

Two dimensionless groups $\pi_1 = \frac{\alpha T_c}{2\beta M^2}$, $\pi_2 = \frac{T}{T_c}$.

$B = B_0$ case

$$F(M) = \alpha (T - T_c)M^2 + \gamma M^3 + \beta M^4$$

extrema at $M = 0$ and $M = -3\gamma \pm \sqrt{9\gamma^2 - 32\alpha \beta (T - T_c)}$

Normalise M to \tilde{M} $M^* = \frac{M}{\tilde{M}}$

$$M^* = \frac{-3\gamma}{8\beta M} \pm \left[\frac{9\gamma^2}{(8\beta \tilde{M})^2} - \frac{32\alpha \beta T_c}{(8\beta \tilde{M})^2} \left(1 - \frac{T}{T_c}\right) \right]$$

3 dimensionless groups

$$\pi_1 = \frac{3\gamma}{8\beta M}, \quad \pi_2 = \frac{32\alpha \beta T_c}{(8\beta \tilde{M})^2}, \quad \pi_3 = \frac{T}{T_c}.$$
(b) Microscopic model

<table>
<thead>
<tr>
<th>Quantity</th>
<th>dimension</th>
<th>what it is</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>$[M^c] = [M]^{1/2}/[L]^{1/2}[T]$</td>
<td>Magnetization/spin</td>
</tr>
<tr>
<td>η</td>
<td>$[L]$</td>
<td>Spin separation</td>
</tr>
<tr>
<td>L_0</td>
<td>$[L]$</td>
<td>box size</td>
</tr>
<tr>
<td>Δt</td>
<td>$[T]$</td>
<td>time step</td>
</tr>
<tr>
<td>ε</td>
<td>$[M^c][T]^{-1}$</td>
<td>average charge in magnetization due to random fluctuations per spin</td>
</tr>
<tr>
<td>B_0</td>
<td>$[M^c]$</td>
<td>externally applied field</td>
</tr>
</tbody>
</table>

Since $\text{Tesla} = [M]^{1/2}/[L]^{1/2}[T]$.

In absence of B_0

| $N = 5$ | $R = 3$ | 2 groups |

With applied B_0

| $N = 6$ | $R = 3$ | 3 groups |

These are:

$$\pi_1 = \frac{\varepsilon}{m} \Delta t \quad \pi_2 = \frac{L_0}{\eta} \quad \pi_3 = \frac{B_0}{m},$$

so in absence of applied B_0 we have π_1 and π_2 only. With applied B_0 we have π_3 as well.

Then we can identify

$$\frac{\varepsilon}{m} \Delta t \equiv \frac{T}{T_c} \quad \frac{\alpha T_c}{2\beta M^2} \equiv \frac{L_0}{\eta} \quad \frac{3\gamma}{8\beta M} \equiv \frac{B_0}{m}.$$
Sheet 4 Question 2

Fireflies

Fly around at random, and each has a "clock" to tell it when to flash

![Clock Diagram]

cycle length τ_c

firefly flashes as $t=12$ say……

all start at random time τ_s

flash duration τ_d

<table>
<thead>
<tr>
<th>Quantity</th>
<th>diversion</th>
<th>what it is</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_c</td>
<td>$[T]$</td>
<td>cycle length</td>
</tr>
<tr>
<td>$\langle \tau_s \rangle$</td>
<td>$[T]$</td>
<td>average start time</td>
</tr>
<tr>
<td>τ_d</td>
<td>$[T]$</td>
<td>duration</td>
</tr>
<tr>
<td>R</td>
<td>$[L]$</td>
<td>interaction radius</td>
</tr>
<tr>
<td>N_f</td>
<td>–</td>
<td>No of flashes to reset</td>
</tr>
<tr>
<td>L_0</td>
<td>$[L]$</td>
<td>Size of box</td>
</tr>
<tr>
<td>Δt</td>
<td>$[T]$</td>
<td>timestep</td>
</tr>
<tr>
<td>v</td>
<td>$[L] [T]^{-1}$</td>
<td>speed</td>
</tr>
<tr>
<td>N</td>
<td>–</td>
<td>number of fireflies</td>
</tr>
</tbody>
</table>

$N = 9 \quad R = 2 \quad 7$ parameters
(most are trivial)
There are some 'trivial' and 'non-trivial' parameters here.

Trivial

1. \(\pi_1 = \frac{R}{L_0} \) if \(\pi_1 > 1 \) fireflies all see each other

2. \(\pi_2 = \frac{v \Delta t}{L_0} \) \(\pi_2 > 1 \) fireflies cross box in one timestep

3. \(\pi_3 = \frac{R}{v \Delta t} \) \(\pi_3 < 1 \) fireflies rush past each other

4. \(\pi_4 = \frac{\tau_d}{\tau_c} \) \(\pi_4 > 1 \) fireflies 'always switched on'

5. \(\pi_5 = \frac{\tau_s}{\tau_c} \) – only relevant if no synchronization – otherwise system 'forgets' initial phase

6. \(\pi_6 = \frac{\tau_c}{\Delta t} \) need \(\pi_6, \pi_7 \gg 1 \) to resolve the dynamics

7. \(\pi_7 = \frac{\tau_d}{\Delta t} \)

Thus, to realise the 'interesting' dynamics on computer we need

\[\pi_1 \ll 1, \quad \pi_2 \ll 1, \quad \pi_3 \ll 1, \quad \pi_4 \ll 1, \quad \pi_6, \pi_7 \gg 1. \]

In this case these are 'trivial'.

Non-trivial parameters

For synchronization a firefly must see \(N_f \) flashes within \(R \) – at least 'some of the time'.

Let number of flashes seen with \(R \) be \(\alpha \)

\[\alpha = \frac{R^2 N \tau_d}{L_0^2 \tau_c} \]

\(\uparrow \quad \uparrow \)

number within \(R \) fraction of these ‘on’

want \(\alpha \geq N_f \) for synchronization.

Thus, non-trivial parameters are \(\pi_1 = \alpha, \pi_2 = N_f \) and for synchronization \(\alpha \geq N_f \).