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ABSTRACT

The anisotropic nature of solar wind magnetic turbulence fluctuations is investigated scale by scale using high
cadence in situ magnetic field measurements from the Cluster and ACE spacecraft missions. The data span five
decades in scales from the inertial range to the electron Larmor radius. In contrast to the inertial range, there is a
successive increase toward isotropy between parallel and transverse power at scales below the ion Larmor radius,
with isotropy being achieved at the electron Larmor radius. In the context of wave-mediated theories of turbulence,
we show that this enhancement in magnetic fluctuations parallel to the local mean background field is qualitatively
consistent with the magnetic compressibility signature of kinetic Alfvén wave solutions of the linearized Vlasov
equation. More generally, we discuss how these results may arise naturally due to the prominent role of the Hall term
at sub-ion Larmor scales. Furthermore, computing higher-order statistics, we show that the full statistical signature
of the fluctuations at scales below the ion Larmor radius is that of a single isotropic globally scale-invariant process
distinct from the anisotropic statistics of the inertial range.
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1. INTRODUCTION

In situ measurements of fields and particles in the interplane-
tary solar wind provide unique observations for the study of a tur-
bulent plasma (Tu & Marsch 1995; Horbury et al. 2005; Bruno
& Carbone 2005). As in neutral fluid turbulence, an inertial
range of magnetohydrodynamic (MHD) turbulence is indicated
by the observations of a power spectral density (PSD) exhibiting
a power-law form over a large range of scales. This power law is
a manifestation of a scale-invariant turbulent cascade of energy
from large to small scales. Unlike neutral fluids where dissipa-
tion is carried out by viscosity, interplanetary space plasmas are
virtually collisionless. On spatial scale characteristic of the ions
there is a transition in the PSD from the inertial range at lower
frequencies to a steeper power law spanning up to two decades
in scale to the electron scales (Sahraoui et al. 2009; Kiyani et al.
2009b). This second interval of scaling in the PSD was dubbed
the dissipation range in analogy with hydrodynamic turbulence
(Leamon et al. 1999). The nature of the fluctuations on these
kinetic scales, the mechanisms by which the turbulent energy
is cascaded and dissipated, and the possible role of dispersive
linear wave modes (Leamon et al. 1999; Bale et al. 2005; Gary
et al. 2008, 2010) are all hotly debated as vital ingredients of
any future model of this dissipation range (Schekochihin et al.
2009; Alexandrova et al. 2008; Howes et al. 2008; Sahraoui
et al. 2010).

Anisotropy, with respect to the background magnetic field, is a
central feature of plasma turbulence in the solar wind (Matthaeus
et al. 1996; Osman & Horbury 2007; Narita et al. 2010; Sahraoui
et al. 2010), with the fluctuating components transverse and
parallel to the background magnetic field displaying manifest
differences in both their dynamics and statistics. The seminal
study of Belcher & Davis (1971) used Mariner 5 observations to

investigate the field variance tensor projected onto an orthonor-
mal “field-velocity” coordinate system. They found that the
majority of the power is in the transverse fluctuations with a
ratio between transverse and parallel (compressible) compo-
nents ∼9:1. As first seen in high-cadence WIND spacecraft data
(Leamon et al. 1998b), this ratio decreases to ∼5:1 in the dissi-
pation range, indicating enhanced magnetic compressible fluc-
tuations in this sub-ion Larmor scale range. This result showing
an enhanced level of magnetic compressibility was repeated
with a large set of ACE spacecraft data intervals (Hamilton et al.
2008) and also in much higher cadence data from the Cluster
spacecraft (Alexandrova et al. 2008).

In this article, we conduct a scale by scale study of the
anisotropy in transverse and parallel fluctuations over five
decades in temporal scales from a few hours to tens of mil-
liseconds. Our background magnetic field is scale dependent,
computed self-consistently with the scale-dependent fluctua-
tions as in Horbury et al. (2008) and Podesta. (2009), i.e., a
local—as opposed to global—background magnetic field. We
show that the findings of Leamon et al. (1998b) and Alexandrova
et al. (2008) are in fact the result of a successive scale-invariant
reduction in the power ratio between the two components as
we move to smaller scales in the dissipation range. This re-
duction results in isotropy between all three components of
magnetic field fluctuations (two transverse and one parallel) at
the electron Larmor radius ρe, i.e., equipartition of magnetic
energy between all three magnetic field components. Using a
Hall-MHD model we provide a simple description of how the
Hall term in the generalized Ohm’s law is responsible for the
rise of parallel (compressible) magnetic fluctuations and the re-
sultant isotropy at scales around ρe. In addition, by comparing
with linear kinetic solutions of the Vlasov equation and com-
puting the magnetic compressibility (Gary & Smith 2009) we
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show that this scale-invariant reduction in the power ratio is
also qualitatively consistent with the transition from shear or
highly oblique Alfvénic fluctuations in the inertial range pos-
sessing no magnetic compressibility to kinetic Alfvén-wave-like
fluctuations which rapidly develop magnetic compressible com-
ponents at scales around the ion Larmor radius (Gary & Smith
2009; Sahraoui et al. 2012). This nature of the magnetic com-
pressibility is also suggested in the recent work by Salem et al.
(2012) who, using a global background field, also computed
the magnetic compressibility and compared it with wave solu-
tions of the linearized warm two-fluid equations. Importantly,
by calculating higher order statistics and the probability density
functions (PDFs) we show for the first time that the dissipation
range magnetic fluctuations are characterized statistically by a
single isotropic signature; in stark contrast to the anisotropic
inertial range.

We stress that the anisotropy discussed in this article is in
the full vector direction of field fluctuations, δB, projected
parallel and transverse to the local magnetic field direction
(also known as variance anisotropy; Belcher & Davis 1971).
This is in contrast to the anisotropy measured in the vector
r which characterizes the spatial scale of the fluctuations (or
wavevector k in Fourier space). In the context of the latter
anisotropy, the spatial variations in the magnetic field that we
measure are a sum of all the components of k which are projected
along the spacecraft trajectory through the solar wind, i.e.,
along the solar wind velocity unit vector −V̂sw; these are then
Doppler shifted (via the Taylor frozen-in-flow hypothesis) to
spacecraft frame frequencies, f, resulting in a reduced spectrum
P̃ (f, θBV ) = ∫

d3kP (k)δ(2πf − k · Vsw), where the δ function
is doing the “reducing,” and θBV shows the explicit dependence
of the reduced spectra on the angle between the background
magnetic field and the bulk solar wind velocity vectors (see
Forman et al. 2011 and Fredricks & Coroniti 1976 for further
details). The full k spectrum, P (k), can only be measured by
multispacecraft techniques which take into account the full
three-dimensional spatial variation of the magnetic field, e.g.,
k-filtering (Pinçon & Lefeuvre 1991). In the context of the
reduced spectrum, the magnetic field observations investigated
in this article are dominated by wavevector components which
are strongly oblique (70◦–90◦) to the background magnetic field,
as indicated by the angle between the background magnetic
field and solar wind velocity vectors. In such intervals, the
inertial range is ubiquitously seen to have a spectral index of
∼−5/3, while in the dissipation range this steepens to ∼−2.8
(Kiyani et al. 2009b; Alexandrova et al. 2009; Chen et al. 2010;
Sahraoui et al. 2010). Also, for such intervals, multispacecraft
observations of the full P (k) (Narita et al. 2010; Sahraoui
et al. 2010) suggest that most of the power is in the k⊥ rather
than the k‖ components, suggesting that highly oblique angled
components of k are very much representative of most of the
magnetic field fluctuation power.

A brief synopsis of the paper is as follows: Section 2 de-
scribes the spacecraft data and summarizes the plasma param-
eters involved, as well as the analysis methods used; Section 3
forms the bulk of the paper and is split between (1) a study and
discussion of the rising magnetic compressibility and compo-
nent anisotropy in the dissipation range and (2) an anisotropic
study of the higher-order statistics. Finally, Section 4 summa-
rizes our findings and brings together the insights obtained from
these results, concluding with an outlook for future investiga-
tions. Details of the undecimated discrete wavelet transform
(UDWT) that we use to decompose the magnetic field into

scale-dependent background field and fluctuations, for use in
this study, are described in the Appendix.

2. OBSERVATIONS AND METHODS

We discuss two near-similar intervals of quiet ambient solar
wind from observations of the Cluster and ACE spacecraft
missions (Escoubet et al. 1997; Garrard et al. 1998; all in
GSE coordinates). The Cluster (spacecraft 4) interval at 450 Hz
cadence (same interval as in Kiyani et al. 2009b) is of an hour
duration 2007/01/30 00:10–01:10 UT when the instruments
were operating at burst mode and will primarily be used to
study the dissipation range at spacecraft frequencies above 1 Hz.
We construct a combined data set from the DC magnetic field
(sampled at 67 Hz) of the flux gate magnetometer (FGM) for
frequencies below 1 Hz, with the high-frequency (oversampled
at 450 Hz) search-coil magnetometer data from the STAFF-
SCM experiment for frequencies above 1 Hz, using the wavelet
reconstruction method (Alexandrova et al. 2004; Chen et al.
2010). The ACE magnetometer (MAG) interval at 1 Hz cadence
is over two days 2007/01/30 00:00 UT to 2007/01/31 23:59 UT
and samples the inertial range at spacecraft frequencies below
1 Hz. The ACE interval was only needed in order to obtain better
estimates of the higher-order statistics in the inertial range (as
the Cluster FGM interval is relatively short for this), and thus
will only be restricted to this study in the penultimate section of
the paper; for the other studies of the inertial range, the FGM
data interval was used.

Both these intervals are in stationary fast wind (�667 km s−1)
with similar plasma parameters and are sufficiently large data
sets so that the sample size variance errors in the computed
statistics are negligible (Kiyani et al. 2009a). The following
plasma quantities are from the Cluster FGM, CIS, PEACE, and
WHISPER instruments: average magnetic field B � 4.5 nT,
electron plasma βe � 1.2, plasma density ne � 4 cm−3,
Alfvén speed VA � 50 km s−1, perpendicular ion temperature
Ti⊥ � 24 eV, electron temperature Te � 22 eV, and ion
and electron Larmor radii ρi � 110 km and ρe � 1.7 km,
respectively. The interval is free from any ion or electron
foreshock effects at Earth’s bow shock. Moreover, using high-
resolution proton moments computed from the 3DP instrument
(Lin et al. 1995) on board the WIND spacecraft at 1 AU and
at the same interval as Cluster, the proton plasma parameters
(parallel and perpendicular proton temperatures Tp‖ � 26 eV
and Tp⊥ � 34 eV, parallel proton plasma βp‖ � 1.2) indicate
that the intervals are stable to proton pressure anisotropy-
driven instabilities (Bale et al. 2009). From the ACE SWEPAM
instrument the ion plasma beta βi � 1.5 shows that the ion-
inertial length λi � ρi .

There is a growing opinion (Chapman & Hnat 2007; Horbury
et al. 2008; Podesta. 2009; Luo & Wu 2010) that it is a local
scale-dependent mean field consistent with the scale-dependent
fluctuations, rather than a large-scale global field, which should
be used in studies of anisotropic plasma turbulence. This is
not only self-consistent but also ensures that there are no sig-
nificantly large spectral gaps between the frequencies of the
fluctuations being studied and the mean fields being projected
upon. In accordance with this approach, we use the UDWT
method to decompose the fields into local scale-dependent back-
ground magnetic fields and fluctuations, B(t, f ) and δB(t, f ),
respectively, where f explicitly shows the frequency or scale
dependence—the parallel and transverse fluctuations,
δB(‖/⊥)(t, f ), are then obtained from these. The background
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Figure 1. Upper panel: PSD (from Cluster) of the transverse and parallel
components spanning the inertial and dissipation ranges. Standardized sample
size variance errors are smaller than the markers. The search-coil sensitivity
floor PSD is obtained from the z-component (spacecraft SR2 coordinates) of
a very quiet period in the magnetotail lobes (2007/06/30 15:00–15:05 UT)
as a proxy for the instrumentation noise. Lower panel: ratio of parallel over
transverse PSDs. Horizontal dot-dashed line indicates a ratio of 1/2 where
isotropy in power occurs. Vertical dashed and dash-dotted lines indicate ρi

and ρe , respectively, Doppler-shifted to spacecraft frequency using the Taylor
hypothesis. The little blip in PSD‖ at ∼0.25 Hz (and in PSD‖/PSD⊥) is due to
the residual spacecraft (∼4 s) spin tone in the FGM signal; it is more noticeable
in PSD‖ due to the lower power in parallel fluctuations in the inertial range.

(A color version of this figure is available in the online journal.)

to this particular wavelet method and brief details of the algo-
rithms are described in the Appendix.

3. RESULTS AND DISCUSSIONS

3.1. Power Isotropy and Enhanced Magnetic Compressibility

In keeping with Parseval’s theorem for the conservation of the
L2-norm (energy conservation) the wavelet PSD for the parallel
and transverse magnetic field components is given by

PSD‖(⊥)(f ) = 2Δ
N

N∑
j=1

δB2
‖(⊥)(tj , f ) , (1)

where δB⊥(tj , f ) =
√

δB2
⊥1(tj , f ) + δB2

⊥2(tj , f ) is the magni-
tude of the total transverse fluctuations at time tj and frequency
f, Δ is the sampling period between each measurement, and N
is the sample size at each frequency f. For the Cluster interval
the PSD‖ and PSD⊥ are shown in Figure 1. The spectral indices
obtained are �−1.62±0.01 and �−1.59±0.01 for parallel and
transverse components, respectively, in the inertial range; and
�−2.67 ± 0.01 and �−2.94 ± 0.01 for parallel and transverse

components respectively, in the dissipation range. The lower
panel of Figure 1 shows that not only do these results recover
the ∼9:1 anisotropy ratio of Belcher & Davis (1971), they also
show that the decrease in the anisotropy observed by Leamon
et al. (1998b), Alexandrova et al. (2008), and Hamilton et al.
(2008) in the dissipation range is actually a scale-free progres-
sion to isotropy. This progression of the anisotropy in the power
ratio PSD‖/⊥ (a measure of magnetic compressible fluctuations)
begins at the spectral break (spacecraft frequency ∼0.25 Hz),
just before the calculated ρi , and follows the power-law rela-
tionship PSD‖/⊥ ∼ f 1/3±0.05 to ρe, where isotropy in power
between the three components (one parallel and two transverse
components) is achieved. This isotropy corresponds to a value
of PSD‖/PSD⊥ = 1/2 and is indicated in the lower panel of
Figure 1. Although this enhancement of parallel, or compress-
ible, fluctuations in the dissipation range has already been com-
mented upon by various authors (Leamon et al. 1998b; Hamilton
et al. 2008; Alexandrova et al. 2008), it is normally shown to
be nearly constant (apart from in Salem et al. 2012). To our
knowledge, this is the first time that an observation of isotropy
has been noted to occur at kρe � 1, although it is also strongly
suggested in the PSDs in Sahraoui et al. (2010).

The lower panel of Figure 1 is calculated from the ratio of
the averages of the parallel and transverse fluctuations to show
a measure of the anisotropy. As such it does not constitute a
proper estimate of the ensemble average of the anisotropy. A
proper measure would be to take the ratio of δB2

‖ (tj , f ) and
δB2

⊥(tj , f ) at each time tj, and then average over this ensemble
of realizations of the anisotropy. However, this is prone to
large errors induced by very large spikes caused by purely, or
nearly pure, parallel fluctuations which result in divisions by a
very small number. To overcome this problem and to obtain a
proper ensemble averaged anisotropy measure, we compute an
alternative and robust metric of the magnetic compressibility
(similar in form to the expressions in Gary & Smith 2009 and
Alexandrova et al. 2008) defined as

C‖(f ) = 1

N

N∑
j=1

δB2
‖ (tj , f )

δB2
‖ (tj , f ) + δB2

⊥(tj , f )
, (2)

i.e., the compressibility is calculated locally from the time-
dependent fluctuations and then averaged. Converting the space-
craft frequency into wavenumber using the Taylor hypothesis
and normalizing by the averaged ion gyroradius for the in-
terval, Figure 2 shows C‖(kρi) computed using the local
scale-dependent mean field. We have binned the latter into 10◦
angle bins (angle between Vsw and e‖(tj , f )) to show which
components of the k variation we are measuring with respect
to the local background (scale-dependent) magnetic field. On
the same plot, and for comparison, we have also included the
calculation of the magnetic compressibility using a global back-
ground magnetic field—the latter consists of the mean average
of the magnetic field vector over the whole interval being stud-
ied. The angle of the solar wind velocity to the background
magnetic field using this global mean field would correspond
to wavevector components at an angle of ∼75◦ to the back-
ground field, both within the inertial and dissipation ranges.
From these plots of C‖(kρi) we can see that there is not only a
large difference between C‖ calculated using a local as opposed
to a global field, there is also no significant difference between
C‖ calculated using a local field for the separate k-component
angle bins. Also, similar to the lower panel of Figure 1, in
all the curves we again see the enhancement of the magnetic
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Figure 2. Magnetic compressibility C|| (from Cluster), computed as in
Equation (2), against the normalized wavenumber for both local (scale-
dependent) and global (computed over the whole interval) background magnetic
fields. The normalized wavenumber was computed assuming the Taylor hypoth-
esis. Numerical solutions of the linearized Vlasov equation, corresponding to
the kinetic Alfvén wave mode (computed using the solar wind parameters for
this interval), are also shown in comparison to illustrate the rising magnetic
compressibility possessed by these modes at the ion gyroscale. The horizon-
tal dashed line at C|| = 1/3 indicates the level at which full isotropy of the
magnetic field fluctuations occurs. As in Figure 1, the statistical sample size
variance errors are smaller than the markers, and the effect of the spacecraft
spin is clearly seen at kρi ∼ 0.25.

(A color version of this figure is available in the online journal.)

compressibility—with isotropy between all three components of
the vector magnetic field fluctuations being reached at kρe � 1.

Lastly, one should note from Figure 2 that the difference
between the magnetic compressibility computed with global and
local scale-dependent background magnetic fields decreases as
we move to smaller scales. At a first glance this is a non-intuitive
result, as we would expect that the local field increasingly
mimics the global field at larger scales. However, this can be
easily resolved by the fact that if the fluctuations are isotropically
distributed, it does not matter which basis one is projecting the
fluctuations on—they will look the same in all bases. So if the
fluctuations are becoming more isotropic toward the smaller
scales, the difference between the global and local background
magnetic field bases will be less.

3.1.1. Rising Magnetic Compressibility in Kinetic Alfvén Wave
Solutions of the Linearized Vlasov Equation

Theories of plasma turbulence which advocate that a turbu-
lent energy cascade within the dissipation range is mediated by
the various linear wave modes of a plasma (Leamon et al. 1999;
Schekochihin et al. 2009; Gary et al. 2008, 2012; Chang et al.
2011), suggest predictions for C‖ (Gary & Smith 2009; Sahraoui
et al. 2012; TenBarge et al. 2012). As the wave modes advocated
to cascade energy at these scales are dispersive in nature (kinetic
Alfvén and Whistler waves), many of the proponents of such
theories suggest that what has been dubbed the dissipation range
for purely historical reasons, should actually be called the dis-
persive range (Stawicki et al. 2001; Sahraoui et al. 2012). Within
the context of sub-ion Larmor scales, there is a growing body of
work showing that the fluctuations at these scales share the char-
acteristic of kinetic Alfvén waves (Leamon et al. 1998b, 1999;
Bale et al. 2005; Howes et al. 2008; Sahraoui et al. 2009, 2010;
Salem et al. 2012). Indeed, the enhancement of the magnetic
compressibility seen above is strongly consistent with the tran-

sition, around kρi ∼ 1, of purely incompressible shear Alfvén
waves into kinetic Alfvén waves, with a strong compressive
component (Hollweg 1999) and propagating at highly oblique
(near-perpendicular) angles to the background magnetic field.

In Figure 2, we overlay the observational results of C‖
by predictions of C‖(kρi) from numerical solutions of the
linearized Vlasov equation for the kinetic Alfvén wave mode
at a highly oblique (85◦) angle and at a virtually perpendicular
(89.◦99) angle, using the same bulk plasma field and particle
parameters of our data. These numerical solutions were plotted
using the WHAMP code (Rönnmark 1982) which assumes a
strong guide field, i.e., a global background magnetic field. The
plot shows that our results are qualitatively consistent with C‖
predicted for kinetic Alfvén waves. This enhancement of the
compressive component in the kinetic Alfvén wave is due to
the coupling of the Alfvén mode to the purely compressive
ion acoustic mode (Leamon et al. 1999). In the inertial range
below kρi ∼ 1 both of these modes are decoupled (Howes
et al. 2006; Schekochihin et al. 2009). In the context of such
theories, the 10% compressible component that we see in the
inertial range is most likely due to the presence of magnetosonic
compressible modes in the data, all at highly oblique (nearly
perpendicular) angles to the background magnetic field. The
modes can be in the form of slow modes, fast modes or non-
propagating (ω = 0) pressure-balanced structures advected
by the flow (mirror modes), all of which have purely parallel
(compressible) fluctuations (Sahraoui et al. 2012). Although a
recent paper by Howes et al. (2011a) shows that slow modes
or pressure-balanced structures constitute the dominant part
of the compressible fluctuations in the inertial range, fast
magnetosonic modes may also exist. This can be supported
by the fact that these fast modes are shown to be considerably
undamped (compared to slow modes) in the linear theory at
highly oblique angles of propagation and high plasma beta
(βi � 1; Sahraoui et al. 2012), conditions very relevant to
the solar wind. In Figure 2, the departure of our results from
the theoretical solution at kρi < 1 can be explained by the fact
that the theoretical curve is only for kinetic Alfvén waves—an
addition of purely compressible magnetosonic modes might be
able to reduce the difference significantly (as in TenBarge et al.
2012). In addition, the theoretical plot is calculated assuming
a strong global background magnetic field. Importantly, the
theoretical plot for kinetic Alfvén waves shows that the magnetic
compressibility should start to rise before kρi ∼ 1 which is also
what our results show. Recently, Salem et al. (2012) showed a
similar result for magnetic compressibility (their definition of
C‖ not being a squared quantity as in this article) with better
agreement with the theoretical C‖ curve for kinetic Alfvén waves
than the results presented here. The differences in our results
and those of Salem et al. (2012) could be due to the intervals
analyzed: our interval is fast wind with βi ∼ 1.5, whereas their
interval is slow wind with βi ∼ 0.5; that they used two-fluid
linear warm plasma relations, instead of linear Vlasov solutions;
or their use of a global background magnetic field instead of a
local one. To put both these results in their proper place requires a
large data survey with intervals that sample more comprehensive
plasma conditions, as well as taking into account details such as
the linear polarization property of kinetic Alfvén waves.

3.1.2. The Role of the Hall Term in the Enhancement of Magnetic
Compressibility and Component Isotropy

In the more general nonlinear setting, this enhancement of
magnetic compressible fluctuations can be explained by the
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increased prominence of the Hall term, j×B, in the generalized
Ohm’s law, where j is the current density arising from unequal
ion and electron fluid velocities. To show this in the dynamical
evolution of the magnetic field, we will turn to the Hall-MHD
model, as it is the simplest physical model of a plasma with
unmagnetized ions (Shaikh & Shukla 2009). Although Hall
MHD might not be an accurate representation of the full kinetic
physics, especially the linear kinetic physics in hot plasmas (Ito
et al. 2004; Howes 2009), it serves as a simpler nonlinear model
to explain the rising magnetic compressibility and the isotropy
that we observe here. Primarily, we will look at the Hall-MHD
induction equation (in SI units):

∂B
∂t

= ∇ × (v × B) +
1

μene

∇ × (B · ∇B) + η∇2B , (3)

where v is the bulk (ion) velocity, η is the magnetic diffusivity,
μ is the permeability, e is the electron charge, and ne is the
electron number density. The first term on the right-hand side of
Equation (3) is the convective/dynamo term, the second term is
the Hall term, and the last term is the diffusive term. We have
neglected the effects of any electron pressure gradients here to
simplify the discussion, and as these are O(δne/n2

e) their effects
are considered small. We have kept the diffusive term—which is
normally negligible for these solar wind parameters—in order
to retain an energy sink in the equations, but also for the
possibility of a renormalized, or turbulent, magnetic diffusivity;
however, we will not be making use of this term in the following
arguments. Although other terms, such as the electron inertia
that are very relevant to high-frequency modes, e.g., Whistler
modes, become relevant at scales kλe ∼ 1 (where λe is the
electron inertial length), we stick to the Hall-MHD model above
and focus on the effects of the Hall term with respect to the
convective term. Importantly, in β ∼ O(1) plasmas (λi ∼ ρi as
λi = ρi/

√
β), such as the solar wind at 1AU, as one approaches

the ion-Larmor scale ρi , the Hall term becomes of the order
of the convective term (Goossens 2003). In the inertial range,
at scales above the Larmor radius, it is the convective term
which dominates and the magnetic field is frozen to the ion flow,
such that any flow of the plasma perpendicular to the magnetic
field affects the evolution of the magnetic field. Thus, if we
assume that much of the power in inertial range magnetic field
fluctuations is locally generated from the velocity fluctuations
(via the nonlinear evolution of the ion momentum equation) in
the form of a dynamo effect (∇ × (v × B) term in Equation (3)),
and is not being passively advected in the solar wind from the
Sun, then it is natural that most of the power in the inertial range
will be in transverse fluctuations—also considered a signature
of Alfvénic fluctuations (Belcher & Davis 1971; Horbury et al.
2005). Any residual parallel (compressible) fluctuations arise
from fluctuations in the plasma density (which also contribute
to the transverse fluctuations).

If we now approach scales close to ρi the Hall term starts to
show its effects. This manifests itself in changing the direction of
the fluctuations such that if transverse fluctuations dominate, the
Hall term will generate parallel fluctuations and thus result in an
increase in the magnetic compressibility C‖. To see this we will
focus on the Hall term and assume an oversimplification that
(1) it is entirely transverse fluctuations δB⊥ which dominate
the turbulent fluctuations coming from the inertial range and
(2) that k⊥ fluctuations dominate (i.e., perpendicular gradients
∇⊥)—both of which are supported by our observations and
studies of the full three-dimensional k-spectrum (Sahraoui et al.
2010). This results in the Hall term contribution to the induction

equation becoming

∂B‖
∂t

∣∣∣∣
Hall

∼ ∇⊥1 × (B · ∇δB⊥2) + ∇⊥2 × (B · ∇δB⊥1) , (4)

where we have explicitly separated the two transverse compo-
nents to make clear that the two directions are not parallel to each
other in the vector cross product. Equation (4) clearly shows the
origin of the enhancement in the parallel magnetic compress-
ible fluctuations. In k-space the right-hand side of Equation (4)
would be in the form of the following convolution:

∫
d3j k ·B(k− j, t)(k⊥1 × δB⊥2(j, t) + k⊥2 × δB⊥1(j, t)), (5)

where the wavevector arguments are shown explicitly. More
importantly, Equations (4) and (5) also suggest the origin
of the isotropy that we observe among the different fluctua-
tion components at scales close to ρe, where terms similar to
Equations (4) and (5) are dominant and the convective term
becomes negligible. At such scales, the Hall term will domi-
nate and will also convert any parallel fluctuations which are
generated (or already present) into transverse ones. This will
evolve until a steady state is reached between the various terms
corresponding to the vector components of the magnetic field
fluctuations, i.e., isotropy between all the vector components. In-
terestingly, this simple observation of the role of the Hall term in
the enhancement of magnetic compressibility and the resultant
isotropy, also suggests some information on the k-anisotropy,
i.e., k‖/k⊥. If, say, Equation (5) was dominated by k‖ instead
of k⊥, then it is clear that an inertial range dominated by trans-
verse fluctuations will transition into something which is also
dominated by transverse fluctuations, with little or no parallel
fluctuations—this is not what we observe here. This indicates
that, in our Hall-MHD formalism, power in k‖ fluctuations is
not dominant. Intriguingly, however, this type of argument also
does not rule out the possibility that both k‖ and k⊥ fluctuations
are significant at sub-Larmor scales (Gary et al. 2010); the only
observational study of the full three-dimensional P (k) spectra
at such scales by Sahraoui et al. (2010) seems to indicate that
this is not the case. This and more detailed calculations of the
energy transfer between wavevector triads of fluctuations will
be the subject of a future investigation, so we can determine
a more precise nature of such steady states. Crucially, mea-
surements of the magnetic compressibility, in the context of a
Hall-MHD model, could possibly constrain the measurements
of the k vector anisotropy.

3.1.3. The Transition Range

A transition range between the inertial and dissipation ranges
was suggested by Sahraoui et al. (2010), which was, in the
context of dispersive waves, cited as a possible sign of where
magnetic field energy is Landau damped into ion heating. This
transition range, comprising just under a decade of scales around
kρi ∼ 1 is also seen in the reduced spectra in Kiyani et al.
(2009b) and Chen et al. (2010) and is distinctly different from
the power law which follows at smaller scales down to kρe ∼ 1
(see Figure 1 in Kiyani et al. 2009b and Figure 2 in Sahraoui
et al. 2010). Our arguments above suggest that the competition
between the convective and Hall terms could also explain such
a transition range. In this case, and from looking at where
the compressible fluctuations begin to rise in Figures 1 and 2
(kρi ∼ 0.1), it seems that the transition range could actually
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span a much larger range of scales. It is important to note here
that we do not know what the functional form of the transition
from the convective-dominated regime to the Hall-dominated
regime is. All we know is that in the inertial range, far from
the spectral break, one can neglect the effects of the Hall term;
well below the ion-Larmor radius and well past the spectral
break we can neglect the convective term; and at kρi � 1 (for
βi ∼ 1) these terms are of the same order as the other (Goossens
2003). Using the above arguments, and the latter observation
about the similar strengths of the convective and Hall terms at
kρi � 1, we can make the following observation: at kρi � 1 the
convective term will provide half of the fluctuation power (50%)
which we assume, from the arguments and observations above,
will be comprised of 10% fluctuations in the parallel direction;
the Hall term will contribute the other half of the fluctuation
power (50%), and 33% of these fluctuations will be in the
parallel direction. This means that the magnetic compressibility
at kρi � 1 will be

C‖ � 0.5 × 0.33 + 0.5 × 0.1 � 0.22. (6)

This value is in excellent agreement with the value of C‖ at
kρi � 1 extrapolated from the local field curves in Figure 2.

3.2. Higher-order Statistics and Intermittency

We next calculate higher-order statistics given by the structure
functions (absolute moments of the fluctuations; Kiyani et al.
2009b) for the different components of the magnetic field fluc-
tuations with respect to the local scale-dependent background
magnetic field. The mth order wavelet structure function (Farge
& Schneider 2006) is given by

Sm
‖(⊥)(τ ) = 1

N

N∑
j=1

∣∣∣∣δB‖(⊥)(tj , τ )√
τ

∣∣∣∣
m

, (7)

where, as detailed in the Appendix, τ = 2iΔ : i =
{0, 1, 2, 3, . . .} is the dyadic timescale parameter related to the
central frequency f used earlier, and Δ is the sampling period.
Scale invariance is indicated by Sm

‖(⊥)(τ ) ∝ τ ζ (m), where ζ (m)
are the scaling exponents. The structure functions and corre-
sponding scaling exponents ζ (m) are shown in Figure 3 for both
the inertial and dissipation ranges using the ACE and Cluster
intervals respectively.

Similar to the results by Kiyani et al. (2009b), the higher-
order scaling in the inertial and dissipation ranges are distinct.
The inertial range shows multiexponent scaling as evidenced
by a nonlinear ζ (m) characteristic of solar wind turbulence at
MHD scales (Tu & Marsch 1995). In contrast, the dissipation
range is monoscaling, i.e., characterized by a linear ζ (m) = Hm
and a single exponent H. Notably, both parallel and transverse
fluctuations in the dissipation range show this different scaling
behavior in the inertial and dissipation ranges. However, the
scaling behavior between the different components is also
distinct, with a more pronounced difference shown in the inertial
range. The difference in the dissipation range exponents for
parallel and transverse fluctuations is simply reflecting the
different spectral exponents seen earlier in Figure 1.

Before we discuss these higher-order scaling results, we com-
plete the statistical results by finally looking scale by scale at
the individual PDFs for the transverse (e⊥1 direction) and par-
allel fluctuations. It is necessary to pick one of the transverse
directions as the combined (magnitude of) transverse fluctua-
tions are positive-definite quantities, and thus do not illustrate
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Figure 3. (a) Transverse and parallel wavelet structure functions of order 1–5
(from the bottom) and (c) resultant scaling exponents for the inertial range
using the ACE data interval. Structure functions have been vertically shifted for
clarity. (b) and (d) have descriptions similar to (a) and (c) but are from data in
the dissipation range using the Cluster data interval. These are the anisotropic
generalizations of the differences in the scaling behavior between the inertial
and dissipation ranges first shown by Kiyani et al. (2009b).

(A color version of this figure is available in the online journal.)

any symmetric/asymmetric character of the fluctuations. There
is no a priori reason, from the symmetry of the physics, for one
not to expect the fluctuations to be axisymmetrically distributed
in the plane perpendicular to the background magnetic field.
However, if we look at the separate PSDs for the two trans-
verse components of the magnetic field fluctuations (not shown
here) we will notice that this symmetry is broken and the power
in the two transverse components is distinctly different. When
we constructed our scale-dependent orthonormal bases (see the
Appendix), it was natural to involve the background guide field
as it is ubiquitously known to order the physics in magne-
tized plasmas. The other two directions perpendicular to this
are relatively arbitrary, and we naturally chose the stable mean
bulk velocity field direction, V̂sw, to form these in the manner
of Belcher & Davis (1971): an orthonormal scale-dependent
“field-velocity” coordinate system. However, the solar wind
bulk velocity field picks a preferred sampling direction (in
k-space) resulting in the reduced spectrum mentioned earlier
in the Introduction. In introducing the velocity field in such a
way, the reduced spectrum breaks the transverse axisymmetry
of the magnetic field fluctuations and introduces a measure-
ment bias (for further details, see Turner et al. 2011, who use
comparisons with MHD turbulence simulations, and a model of
transverse waves to show the importance of the spectral slope in
this broken symmetry). The magnitude of the transverse vector
is not affected by such a bias, so all our results above are ambiva-
lent to this symmetry breaking. Although the PSD of the two
transverse components differs in this respect, we can confirm
that the standardized (rescaled) PDFs for both transverse com-
ponents are nearly identical. Thus, the breaking of the transverse
axisymmetry does not affect the results presented in this paper.

The PDFs for δB‖ and δB⊥1 are shown in Figure 4,
where we have used the self-affine scaling operation
Ps(δBiσ

−1) = σP (δBi, τ ) to rescale (standardize) the
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Figure 4. Rescaled (standardized) transverse and parallel PDFs of fluctuations
in the inertial and dissipation ranges (with Poisonnian error bars). Normalized
histograms with 300 bins each were used to compute the PDFs. Four values of
τ were used in the inertial range and four different values of τ were used in the
dissipation range: τ = {16, 32, 64, 128} s for the inertial range from ACE, and
τ = {0.036, 0.071, 0.142, 0.284} s for the dissipation range from Cluster.

(A color version of this figure is available in the online journal.)

fluctuations by their standard deviation so as to offer a compari-
son of the functional form of the PDFs for different τ . We show
overlaid rescaled PDFs corresponding to four values of τ in the
dissipation range, τ = {0.036, 0.071, 0.142, 0.284} s (from
Cluster), and in the inertial range, τ = {16, 32, 64, 128} s
(from ACE). Figure 4 shows that in the dissipation range the
same PDF functional form is obtained over the range of τ for
both parallel and transverse fluctuations—suggesting that the
dissipation range is in this sense “process isotropic” with a
(speculatively) single physical process determining the dynam-
ics. This supports our arguments and results above which show
the growing isotropy in the components of the magnetic field
fluctuations. This is in contrast to the inertial range where we see
that the transverse and parallel PDFs are clearly different as we
would anticipate from their distinct ζ (m) shown in Figure 3(c).

In addition to the differences in the scaling behavior, both iner-
tial and dissipation range PDFs are highly non-Gaussian indicat-
ing high levels of intermittency. In contrast, the rescaled PDFs
of the STAFF-SCM instrument noise shown in Figure 5 are
clearly Gaussian, confirming that our results are robust to noise
contamination. Furthermore, we have analyzed other intervals,
2007/20/01 12:00–13:15 UT and 2007/20/01 13:30–14:10 UT,
and find broadly consistent results with those presented above
(H‖ = 0.78, H⊥ = 0.95 and H‖ = 0.8, H⊥ = 0.94, respec-
tively), but with lower signal-to-noise ratios. Please note that
we consider “intermittency” in the most general sense to simply
reflect the presence of rare, or “bursty,” large amplitude fluctu-
ations in our signals—something which is manifest in our non-
Gaussian PDFs in Figure 4. This is in contrast to the popular
definition, advocated by Frisch (1995), which links intermit-
tency to a dependency of the kurtosis κ(τ ) = S4(τ )/(S2(τ ))2 (or
another higher order moment ratio) with scale τ—a property of
multifractal (multiexponent) scaling, i.e., as seen for the inertial
range in our results. In this latter definition, the constancy of
the kurtosis with scale indicates “self-similar” signals such as

Figure 5. Rescaled PDF of Bz magnetic fluctuations from the instrument noise
proxy of Figure 1, at the same scales τ as in Figure 4 for the dissipation range.
A maximum likelihood estimate clearly shows the Gaussian nature of this noise
proxy—very different from the highly non-Gaussian statistics shown in Figure 4.
We can also confirm that the smallest scales in our data which coincide with
the noise floor, in terms of power and Gaussian statistics, are excluded from the
study presented in this article.

(A color version of this figure is available in the online journal.)

our monoscaling signature seen in the dissipation range. There
is no need to plot the kurtosis for our data as this can be very
easily seen if we use the scaling relationship of the mth-order
structure function Sm(τ ) = τ ζ (m)Sm(1) (see Kiyani et al. 2006
for notation) in the definition for the kurtosis. This will result
in κ(τ ) = τ ζ (4)−2ζ (2)κ(1), which, if ζ (m) is a linear function
of m (ζ (m) = Hm), is independent of τ , as is the case for
our results in the dissipation range. However, even though our
results show a monoscaling signature in the dissipation range,
there is still a small nominal dependence on the scale τ for κ(τ ).
This could be simply due to a statistical artifact associated with
finite sample size and the fact that the kurtosis is sensitive to
very large fluctuations. Our very largest events at the tails of our
distribution are not statistically well-sampled—an unavoidable
pitfall of heavy-tailed distributions, as seen by the large errors
at the tails of our PDFs in Figure 4.

3.2.1. Comparison with Other Works on Scaling at kρi > 1

We now compare our results for higher-order statistics in the
dissipation range to other studies from both observations and
simulations. In the case of the dissipation range, there are only
really two of these: the study of Alexandrova et al. (2008) who
used normal-mode (25 Hz) Cluster observations and Cho &
Lazarian (2009) who conducted 5123 electron MHD (EMHD)
simulations. Although EMHD is a high-frequency model for
magnetic field dynamics with inertialess ions (the opposite
of Hall MHD), within the scales that we are analyzing here,
ρ−1

i � k � ρ−1
e , the induction equation for both Hall MHD and

EMHD are nearly identical for an order unity βi plasma. Thus,
the authors (Cho & Lazarian 2009) also use EMHD to study the
dynamics and statistics of magnetic field fluctuations in solar
wind turbulence.

Alexandrova et al. (2008) used a continuous wavelet trans-
form using the Morlet wavelet to calculate both PDFs and flat-
ness (kurtosis) functions. They too found non-Gaussian PDFs
within the dissipation range but, in contrast to our monoscaling
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results, showed that the dissipation range has a kurtosis which
increases rapidly with scale τ , i.e., suggestive of multifractal
scaling. They also showed a dependence of this flatness func-
tion with βi . The increase of compressible fluctuations coincided
with a steepening of the spectral slope and the increase of in-
termittency, as reflected in the flatness function. This prompted
the authors to suggest that another nonlinear energy cascade,
akin to the inertial range, takes place in the dissipation range.
However, due to the increased role of compressible fluctuations
at these scales, driven by plasma density fluctuations, this is a
small-scale compressible cascade. Due to the dominance of the
Hall term at these scales, Alexandrova et al. (2008) then sug-
gest a simple model based on compressible Hall MHD, which
takes into account density fluctuations to describe the deviation
of the energy spectrum slope from the −7/3 predicted purely
by the induction equation for incompressible EMHD (Biskamp
et al. 1996). Without a further study of more data intervals, it
is difficult to say why our interval shows quite a different scal-
ing behavior to the interval investigated by Alexandrova et al.
(2008). However, considering our results and our earlier argu-
ments regarding the magnetic compressibility and the role of the
Hall term, the notion of a compressible cascade is an appealing
one. Although specific results were not explicitly shown, we
should also mention the work of Sahraoui & Goldstein (2010),
where the monoscaling result presented in this article and in
Kiyani et al. (2009b) was also independently confirmed with
Cluster magnetic field data.

The very informative article by Cho & Lazarian (2009)
describes the results of their EMHD turbulence simulations,
as well as ERMHD simulations. The UDWT digital filters used
in our study are similar (in spirit) to the multipoint structure
functions used in the analysis of Cho & Lazarian (2009). The
main feature of these simulations which is relevant to our
results is that, for the EMHD simulations, the monoscaling
behavior found in our results is also seen in the higher-order
statistics computed from multipoint structure functions for
moment orders up to m = 5. Computing higher order moments
greater than 5 becomes very difficult in non-Gaussian heavy-
tailed statistics due to the poor sampling in the tails (Dudok
De Wit 2004). The scaling exponent H for their ζ (m) = Hm
scaling (as they used ζ (p)/ζ (3)) is not explicitly stated in
their paper. However, this is easily obtained from the −7/3
spectral slope that they obtain in their energy spectrum (for
both EMHD and ERMHD), using the well-known relationship
β = −(2H + 1) (Kiyani et al. 2009b), where β is the spectral
slope. We can then infer that H = 2/3 � 0.66. This is
the scaling for the r⊥ (k⊥) variations. The results of Cho &
Lazarian (2009) also show moderately non-Gaussian PDFs.
The authors then compute two-point flatness functions, as well
as wavelet flatness functions using the Morlet wavelet similar
to Alexandrova et al. (2008). Interestingly, for r⊥ they find
a nominal dependence of the flatness with separation scale
r (equivalent to τ ) for the two-point flatness function, but a
larger increase with r for the wavelet flatness function. This
last part offers slightly conflicting results when considering
their multipoint structure function monoscaling for moments
of order less than 5. Nevertheless, the results of Cho &
Lazarian (2009) offer the closest agreement to our scaling results
presented in this article and serve as a good comparison to an
appropriate model for dissipation range fluctuations (EMHD
induction equation as opposed to ideal MHD). Similarly to
Alexandrova et al. (2008), we could speculate that the difference
in our exponents, H⊥ = 0.98 and H‖ = 0.85 (and also the

respective spectral exponents), and the −7/3 from EMHD could
be due to the differing role of density fluctuations. However, in
recent gyrokinetic simulations of anisotropic plasma turbulence,
Howes et al. (2011b) show that spectra steeper than −7/3 are
only obtained if the full kinetic physics is considered in terms
of retaining a physical damping mechanism, e.g., collisionless
Landau damping, transit time damping etc. This is absent in the
EMHD, ERMHD, and Hall-MHD descriptions (see also Howes
2009). The gyrokinetic description retains this missing physics
and thus Howes et al. (2011b) claim that their simulations
successfully recover the steeper scaling seen here and in Kiyani
et al. (2009b), Alexandrova et al. (2009), Sahraoui et al. (2010),
and Chen et al. (2010) for similar plasma parameters.

3.2.2. Data Uncertainties and Errors

There is a small but important data caveat that one should
mention with regards to these results. This concerns the noise
floor of the STAFF search-coil magnetometer and the signal-
to-noise ratio at small scales near the electron gyroradius.
Due to the dyadic frequency spacing of the UDWT that we
use, frequency resolution is poor. We pay this expense for
the faster algorithms and the smoother spectra that we gain,
the latter being preferred for broadband spectra where robust
estimates of the spectral slope are needed. This gives the
impression that the signal-to-noise ratio at the smaller scales
is higher than it might actually be. In reality there exist some
high power spikes in the noise-floor signal >60 Hz which
could contaminate the observations at the electron gyro-scale
(see Figure 1 in Kiyani et al. 2009b). These spikes are due
to interference from electrical signals of the Digital Wave
Processor (DWP) instrument on board Cluster (N. Cornilleau-
Wehrlin 2012, private communication). The DWP signals are
used to synchronize instrument sampling within the experiments
of the Cluster Wave Experiment Consortium (WEC), which
STAFF belongs to. These spikes only affect the last data point
in Figures 1 and 2 and thus should not change our results and
conclusions significantly. Intervals with higher power such as
those in the slow solar wind stream would be needed for better
estimates at these higher frequencies. In addition, the noise-
floor that we use is not the actual noise-floor but a proxy for
it, obtained from a very quiet period in the magnetotail lobes
where the magnetic field power is very low. The actual noise-
floor could be smaller. A discussion on the noise-response of
the STAFF search-coil instrument and its sensitivity in different
plasma conditions can be found in Sahraoui et al. (2011).

We would also like to note that the PDF for the parallel
fluctuations seen in Figure 4 for the inertial range from ACE,
show an unusual skew toward positive fluctuations. This is
an artifact for this particular interval of ACE magnetic field
data due to large spike-drops (discontinuities) in the magnetic
field magnitude |B|. As these spikes arise in |B| and not in the
components, this reflects itself more in the parallel component
of the fluctuations rather than the transverse components as, in
many cases, one can use |B| as a proxy for parallel fluctuations,
e.g., in Alexandrova et al. (2008). This is also reflected in the
large errors for the parallel scaling exponents in the inertial range
shown in Figure 3(c). However, as these spikes are primarily
in the large rare events in the positive tail of the PDF, we
believe that the differences in the PDFs of the transverse and
parallel fluctuations within the inertial range still occur and our
discussion above remains valid.
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3.2.3. Discussion

The isotropy that we observe between the power in the
different fluctuation components at kρe ∼ 1 is by no means
a result which would apply to all plasma environments. Indeed,
there is some strong observational evidence that the ion/proton
plasma βi also has a strong role to play here. This was shown
by Hamilton et al. (2008), who repeated the inertial range
analysis of Smith et al. (2006b) within the dissipation range
and showed that the variance anisotropy followed the empirical
power-law relationship δB2

⊥/δB2
‖ ≡ PSD⊥/PSD‖ ∼ β−0.56

p

in open field line intervals of the solar wind from the ACE
spacecraft. However, these results were limited to 3Hz cadence
and thus could not sample as much of the dissipation range
as in this article. Also Hamilton et al. (2008) used a global
field (mean field over the entire interval) rather than the
local scale-dependent field used in this article. This same
dependence of the magnetic compressibility on βi was also
indicated in higher cadence (25 Hz) Cluster data in the work
by Alexandrova et al. (2008), again suggesting that higher βi

implies higher levels of C‖ (these authors used δ|B| as a proxy
for δB‖). The effect of varying βi is not mentioned explicitly
in our arguments using the Hall term explained above, as we
have neglected density fluctuations to simplify the discussion.
However, purely from the induction equation point of view, βi

is taken into account in dissipation range scales if we retain
the effects arising from density fluctuations at scales kρi > 1
as in the formulation of electron-reduced MHD (ERMHD;
Schekochihin et al. 2009; Cho & Lazarian 2009). In ERMHD,
the explicit βi dependence is shown, assuming pressure balance,
in the pre-factor of the ∇⊥ × (B · ∇B⊥) term in the induction
equation for B‖. Thus, this addition of density fluctuations
can generalize our arguments above which were essentially
based on the Hall term alone. At higher or lower than unity
βi , this will break the isotropy of the fluctuation components
seen in this article at kρe ∼ 1, as an additional anisotropic
source of magnetic compressibility will be introduced via the
density fluctuations (see also Malaspina et al. 2010 for high-
cadence measurements of density fluctuations in the solar wind
between ρ−1

i < k < ρ−1
e ). The explicit βi dependence for

the rising compressibility is also seen in the fluid version of
the kinetic Alfvén wave solution of compressible Hall MHD
where the compressible component to the linear solution goes as
δB‖ ∼ kλi(βi + 1 + sin2 θkB)/ sin θkB (Sahraoui 2003), where
λi is the ion inertial length and θkB is the angle between the
wavevector k and the magnetic field vector B. This solution
assumes that sin θkB �= 0, thus it is not valid for purely parallel
propagating Alfvén waves. However, the rising compressibility
is clearly seen here as k → λi .

Note that in most of the previous arguments we have been
slightly cavalier in our discussion of field components. Our
introduction of the local background magnetic field should not
be looked upon lightly. It is clear that in cases where δB � B0,
where B0 is the global background magnetic field, both global
and local field descriptions should have negligible differences.
However, as we observed in the section describing higher-order
statistics, it is not obvious that this is the case here, as the
distribution of δB is highly non-Gaussian with very heavy tails.
In our explanation of the rising compressibility in sub-Larmor
scales using the Hall-term and also the lower levels of the
compressibility in the inertial range using the convective term
in the induction equation, we did not mention the spatial (and
possibly temporal) gradients which arise due to the now locally

varying background magnetic field. In a global DC background
field, or very slowly evolving field, these gradients are null or
negligible. If there is a large spectral separation between the
scales of the background magnetic field and the fluctuations
that we are projecting on it, then this conclusion could still be
quite valid. However, as our UDWT method ensures that no
such large gap exists, the statistics we calculate will include the
effects of such gradients. Further investigation and mathematical
grounding of a local-field is of crucial importance, as the notion
of using a local versus a global background magnetic field
is intimately tied with the issue of whether we have a strong
background guide field or a weaker more stochastic one (see the
discussion by Schekochihin et al. 2009 and references therein for
further details and exploration of this topic; and also the recent
discussion by Matthaeus et al. 2012 on the stochastic nature
of the local background field and its relationship with global
background field statistics). This also brings into question the
use of linear wave modes, such as the kinetic Alfvén wave,
which are normally described as small amplitude perturbations
on a static or slowly evolving equilibrium field. Although finite
amplitude propagating nonlinear Alfvén waves are an exact
(Elsässer) solution to the ideal MHD equations and similar
arguments in the context of the ERMHD equations are made by
Schekochihin et al. (2009) for finite amplitude kinetic Alfvén
waves, this topic also requires further exploration (see also the
excellent discussion of this by Dmitruk & Matthaeus 2009, who
explore the importance of the strength of the mean background
field using direct numerical simulations of the incompressible
MHD equations).

One might question a conclusion of a single physical process
or type of mediating dynamics (in the dissipation range) by the
observation that both transverse and parallel components have
slightly different scaling exponents and spectral indices. This
can be reconciled by realizing that there is no contradiction in the
fact that the two components can have slightly different scaling
exponents but have identical PDF functional forms. Take for
example the case of fractional Brownian motion (fBm), which is
a non-Markovian generalization of Brownian motion. Two fBm
stochastic processes with different scaling exponents will still
have the same Gaussian functional form for their fluctuations. In
fBm the scaling exponents are simply an additional parameter
representing the degree of statistical dependence between the
fluctuations (Mandelbrot 1983; Samorodnitsky & Taqqu 1994).

If we look from the point of view of linear wave mode
characteristics, the distinction between inertial and dissipation
range scalings could also be seen to reflect the decoupled
and coupled nature of the wave modes in the inertial range
and dissipation ranges respectively (Leamon et al. 1999).
The decoupling of these modes in the inertial range also
results in the decoupling between transverse and compressible
magnetic field fluctuations (Schekochihin et al. 2009). In this
picture, the scaling in the dissipation range could then be
described by nonlinearly interacting kinetic Alfvén waves. In
all these cases, as they involve linear wave modes, the nonlinear
cascade would then take the form of “critical-balance” type
cascades as in the works of Schekochihin et al. (2009) and
Howes et al. (2008, 2011b), or if one can show that the
nonlinearity is small, a “weak-turbulence” type description
(Galtier et al. 2002). Although there is no justification for
the latter in the inertial range, there might be a case for it in
the dissipation range if the coupling between modes becomes
weak and results in small amplitude fluctuations (Rudakov
et al. 2011). In hydrodynamics described by the Navier–Stokes
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equations, this latter assumption can be valid if one uses a local
Reynolds number (see Batchelor 1953), which is small in the
high-k regime (when the spectral amplitudes become small)
well into the hydrodynamic dissipation range. This can then
provide a suitably small parameter to base a convergent (or
asymptotic) perturbation expansion. Of course, without concrete
measurements of nonlinearity, this is all speculation. However,
it could possibly be an avenue for a future (maybe fruitful)
investigation.

An open question is why such a transition from multifractal
scaling to self-similar monoscaling occurs between the inertial
and dissipation ranges. Kiyani et al. (2010) briefly discuss
this using hydrodynamic analogies (Frisch & Vergassola 1991;
Chevillard et al. 2005) of a near-dissipation range where the
increased effect of viscosity successively switches off the
available scaling exponents of the multifractal field—equivalent
to narrowing the “f (α)” spectrum in multifractal models.
However, no such apparent analogies with a viscous “fractal-
dampening” can happen in a near-collisionless solar wind. Also,
unlike the hydrodynamic analogy this transition happens very
fast as we cross kρi ∼ 1, although a scaling analysis within
the “transition range” might yet reveal an intermediate scaling
behavior which shows this successive “switching-off” of scaling
exponents. Indeed, the steepening of the spectral slope in the
transition region is strongly suggestive that such an intermediate
scaling range could possibly exist. This is an exciting prospect
and will be the subject of a future investigation. This latter
investigation is not feasible with our UDWT technique as due
to the dyadic spacing, it has poor frequency resolution—a
more detailed “fine-toothed comb” technique such as the use
of wavelet packets (Walden & Cristan 1998) or the continuous
wavelet transform (Horbury et al. 2008; Podesta. 2009) would
be needed here.

4. CONCLUSIONS

In this article, we have performed a systematic scale-by-
scale anisotropic decomposition of magnetic field fluctuations
in the solar wind across both the inertial and dissipation ranges,
from MHD to electron scales. We use a novel scheme based on
discrete wavelet filters which self-consistently decomposes the
magnetic fields into scale-dependent background and fluctuating
fields. From the background fields we then construct a local
orthonormal scale-dependent field-velocity coordinate system,
on which we then project the fluctuations and calculate our
statistical quantities. Our main findings, based on the one hour
high-cadence burst-mode data from Cluster, are as follows.

1. There exists a successive scale-invariant reduction in the
power ratio between parallel and transverse components as
we move to smaller scales below the ion-Larmor radius ρi .
Importantly, at kρe � 1 with k components highly oblique/
perpendicular to the background magnetic field, the fluctua-
tions become isotropically distributed between the power in
all three components (two transverse and one parallel), i.e.,
equipartition of magnetic energy between all components.

2. By comparing with linear solutions of the Vlasov equation
and computing the magnetic compressibility we show
that the scale-invariant reduction in the power ratio is
also qualitatively consistent with the transition to kinetic
Alfvén wave solutions which rapidly develop magnetic
compressible components at scales around ρi .

3. Using a Hall-MHD model we provide a simple (nonlinear)
description of this new result in terms of how the Hall

term is responsible for the rise of parallel (compressible)
magnetic fluctuations and the resultant isotropy at scales
around ρe.

4. Higher order statistics and PDFs for parallel/transverse
fluctuations reveal that the dissipation range is charac-
terized by a single monoscaling statistical signature with
an isotropic distribution of fluctuations, thus supporting
the above observations of isotropy. This is in contrast to
the inertial range where the corresponding signature is
anisotropic and multiscaling (multifractal).

In the compressible Hall-MHD framework, at such scales
the velocity field is expected to decouple from the evolution
of the magnetic field and some researchers (Servidio et al.
2007; Alexandrova et al. 2008) have suggested that a new
nonlinear compressible cascade is responsible for the new
power-law regime in the PSD. In this context, we should also
mention that all of the arguments presented in this paper do
not include any discussion of the possibility of phenomena
arising from the effects of (turbulent) reconnection (Lazarian
et al. 2012) or of the possible role of a turbulent or renormalized
magnetic diffusivity—of which either, or both, are purported
to be important at such scales. Neither have we discussed the
role of density fluctuations, which have been neglected in our
arguments, but are shown to play a possibly significant role
through the electron compressibility (Gary & Smith 2009).
Future work would involve looking at the possible importance
of such fluctuations as well as investigating the energy transfer
between modes in Hall-MHD/Electron MHD theories.

In the context of theories of turbulence which invoke plasma
wave modes as the mediators of the energy cascade, two candi-
date wave modes are classically suggested in the dissipation
range: quasi-perpendicular kinetic Alfvén waves and quasi-
parallel Whistler waves. As first suggested by Gary & Smith
(2009) and shown in Salem et al. (2012), the magnetic com-
pressibility, C‖, might be a more robust measurement to dis-
tinguish between the different wave modes possibly mediating
the energy cascade, than the phase speed plots calculated by
E/B ratios (Bale et al. 2005; Sahraoui et al. 2009). In hot plas-
mas (βi � 2) and at highly oblique angles to the background
magnetic field, classical Whistlers arising as an extension of
the fast magnetosonic modes at high frequencies �ωci (where
ωci is the ion cyclotron frequency) are strongly damped and
split up into different ion Bernstein modes. Recently, however,
Sahraoui et al. (2012) have shown that, under the same condition,
a Whistler-like branch having similar properties (e.g., dispersion
and polarization) as the classical Whistler mode rises from the
kinetic Alfvén wave mode and extends it to very high frequen-
cies ω � ωci . Also, if there is a significant amount of power in
shallow angles, e.g., 30◦, between k-vectors and the background
magnetic field, then the classical quasi-parallel Whistlers could
also show the same amount of magnetic compressibility that we
observe in this paper (Gary & Smith 2009; Salem et al. 2012).

Our study of higher order statistics show a new and significant
result of the change of anisotropy at ρi . As in the behavior of
the inertial range, these scalings and statistics are a distinctive
and important characteristic of the turbulence at sub-ion Larmor
scales and any cascades which take place there. Therefore, it is
essential that any comprehensive statistical theory of plasma
turbulence for such scales should be able to describe such
statistics.

An open question is whether these results depend upon bulk
plasma parameters such as βi and in particular on the angle of
k to the background magnetic field. A limitation of the current
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work is that it is based on a handful of data sets with very
similar plasma parameters. A significant and maybe conclusive
advance would be made if a more comprehensive survey was
conducted. This would undoubtedly be a fruitful avenue for
future investigations.
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APPENDIX

ORTHONORMAL SCALE-DEPENDENT BASIS AND THE
UNDECIMATED DISCRETE WAVELET TRANSFORM

We use the UDWT method (also known as the stationary,
translation-invariant, redundant, or a’trous wavelet transform
(Nason & Silverman 1995; Ogden 1997; Mallat 2009)) to
decompose the vector magnetic field observations into scale-
dependent background and fluctuating components. Unlike the
standard discrete wavelet transform (DWT), the UDWT does
not downsample the data at each stage of the transform. Thus,
the UDWT provides information about the signal at each
observation time and so retains event information (Walden &
Cristan 1998; Percival & Walden 2000). This timing information
is necessary to project the fluctuations onto a mean background
field at each observation time. However, the extra redundancy
due to no downsampling means that the orthogonality properties
of the DWT are no longer present in the UDWT.

In this article, we use the Coiflet 2 wavelet (coif2), which
provides a 12-tap high/low pass filter pair, chosen due to the
compromise between time-frequency compactness, smoother
spectral index estimate, and as its first four moments are zero
it captures spectral indices as steep as −9 (Farge & Schneider
2006). This latter property is very important as the standard
method of using increments (equivalent to using a Daubechies
order 1 (db1), or Harr, wavelet with only one zero moment) to
calculate two-point structure functions in turbulence is limited
to spectral slopes shallower than −3 (Farge & Schneider 2006;
Cho & Lazarian 2009). This is adequate for studying the inertial
range of turbulence where the spectral slope is ubiquitously
greater than −2 (Salem et al. 2009), but is inadequate in the
dissipation range where spectral slopes have been observed
(Leamon et al. 1998a; Smith et al. 2006a) and theoretically
predicted (Schekochihin et al. 2009) to have much steeper slopes
between −3 and −5. Crucially, for data analysis purposes, the
filters corresponding to the coif2 wavelet are virtually symmetric
and thus possess a virtually linear phase response (Daubechies
1992). The coif2 wavelet (and corresponding scaling function)
filters used here are identical to the ones published in Daubechies
(1992).

The UDWT scheme presented below is similar to the wavelet
technique pioneered by Horbury et al. (2008) who used a
continuous wavelet transform (CWT), where the background
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Figure 6. Upper panel: a schematic, in terms of spectral frames, showing the
first stage of a UDWT decomposition in frequency space: the raw signal is
decomposed into a low-pass (approximation), “a1,” and a high-pass (detail)
component, “d1,” using the coif2 wavelet filters (low–high pass quadrature
mirror filter pair). Each of these components has an equal (half) share of the
frequency space. Lower panel: at the next stage, the “a1” low-pass filtered signal
is then further decomposed into a low-pass signal, “a2,” and a high-pass signal,
“d2” (again equal share of frequency space). In this way the signal is decomposed
into dyadic frequency bands—equivalent to the application of a dyadic filter
bank of bandpass filters to the signal. The resultant set of “details” {d1,d2,d3...}
provides the fluctuations, and the set of “approximations” {a1,a2,a3...} (once
inverse transformed) provides the respective background fields to be projected
upon. The stars represent the central frequency of the resultant bandpass filtered
signals used for the fluctuations.

(A color version of this figure is available in the online journal.)

magnetic field was defined as convolutions with the scale-
dependent envelope of the Morlet wavelet used. However, the
method described here differs from the CWT scheme used by
Horbury et al. (2008), as the DWT and UDWT filters used are
explicitly designed self-consistently to provide both fluctuations
and background fields such that no information is lost and the
signal can be reconstructed exactly—the so-called quadrature
mirror filter (Daubechies 1992). Thus, these filters also ensure
that there is no spectral gap between the background field and
fluctuations. Details of the actual fast pyramidal algorithms used
to implement the UDWT can be found in Percival & Walden
(2000) and Mallat (2009). For this article, we simply attempt to
summarize what are the salient outcomes of the technique. Thus,
the description will be necessarily brief with limited details.
A detailed description of the technique as applied to plasma
turbulence anisotropy, as well as an extension of this to non-
dyadic wavelet packets, will be described in a longer article.

The UDWT is equivalent to the following operation. At
each temporal scale τ (corresponding to a frequency) we
successively apply a pair of high- and low-pass wavelet filters
on the data: these provide the “details” (fluctuations) and the
“approximations” (precursor to background field). Since these
are dyadic filters, they divide the available frequency space in
half at each stage. These filters are then upscaled by two and the
process is then repeated on the previous approximation signal.
The results of the first two stages of this process are shown
in Figure 6. Importantly, at each stage of the UDWT, it is the
approximations that are being decomposed into a further set
of approximations and details. The effective end result of this
successive filtering is a series of dyadic bandpass filtered signals
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of the magnetic field B(tj ) (sampled at discrete times tj) to give a
fluctuation in terms of the wavelet coefficient δB(tj , τ ) (at time
tj based on a temporal scale τ ):

δB(tj , τ ) =
N∑

k=1

B(tk)
[√

τψ(τ tk − tj )
]

, (A1)

where τ = 2iΔ : i = {0, 1, 2, 3, . . .} is the dyadic scale
parameter, Δ is the sampling period of the observations, and
ψ is the effective bandpass filter comprised of a succession of
the low-pass and high-pass filters. Note that without the factor√

τ and choosing the db1 (Harr) wavelet instead of the coif2, the
definition in Equation (A1) is identical to calculating increments
which are used in structure function analysis of intermittency
studies in turbulence (Katul et al. 2001; Farge & Schneider
2006; Salem et al. 2009). Note also that the resultant wavelet
coefficients δB(tj , τ ) have to be phase-corrected due to the
linear phase shift introduced by the filtering (Walden & Cristan
1998). Also, edge artifacts due to incomplete convolutions of
the signal with the filters are discarded before the construction
of the “approximation” and “detail” signals.

The scale τ can be related to a central frequency f in Hz
(Abry 1997) of a dyadic frequency band and so we can write
δB(tj , f ). The result of the low-pass filter at each stage can
similarly be written as B̃(tj , f ) using the wavelet conjugate
scaling function (Ogden 1997). It is important to note that
both δB(tj , f ) and B̃(tj , f ) live in a function space spanned
by the bases constructed from shifts and dilations of the coif2
wavelet and scaling functions (i.e., shift tj and dilation τ as in
Equation (A1)). We use the inverse UDWT operation on B̃(tj , f )
in order to obtain the mean background field B(tj , f ), in the
direction of which we then project the fluctuations δB(tj , f ).

The mean field direction unit vector is then defined as
e‖(tj , f ) = B(tj , f )/|B(tj , f )|. This is distinct from the
mean field coordinate presented in Belcher & Davis (1971)
and Leamon et al. (1998b) as the mean field here is a lo-
cally varying scale-dependent field consistent with the scale-
dependent fluctuations. The other two perpendicular axes
are e⊥1(tj , f ) = (e‖(tj , f ) × 〈V̂sw〉)/|e‖(tj , f ) × 〈V̂sw〉| and
e⊥2(tj , f ) = e‖(tj , f ) × e⊥1(tj , f ), where 〈V̂sw〉 is the solar
wind velocity direction unit vector time-averaged over the en-
tire interval. Since the solar wind velocity is in a very fast
and steady stream, and is within ∼3◦ of the GSE x direc-
tion in both the ACE and Cluster intervals, it is reasonable
to take a time-averaged global, rather than a local, velocity
field. Together [e⊥1(tj , f ), e⊥2(tj , f ), e‖(tj , f )] form a time-
and scale-dependent orthonormal basis. The fluctuations paral-
lel δB‖(tj , f ) and transverse [δB⊥1(tj , f ) , δB⊥2(tj , f )] to the
mean field are then given by projections onto this new basis.
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Cho, J., & Lazarian, A. 2009, ApJ, 701, 236
Daubechies, I. 1992, Ten Lectures on Wavelets (Philadelphia: SIAM)
Dmitruk, P., & Matthaeus, W. H. 2009, PhPl, 16, 062304
Dudok De Wit, T. 2004, PhRvE, 70, 055302
Escoubet, C. P., Schmidt, R., & Goldstein, M. L. 1997, SSRv, 79, 11
Farge, M., & Schneider, K. 2006, in Encyclopedia of Mathematical Physics, ed.

J. P. Françoise, G. Naber, & T. S. Tsun (Elsevier), 408
Forman, M. A., Wicks, R. T., & Horbury, T. S. 2011, ApJ, 733, 76
Fredricks, R. W., & Coroniti, F. V. 1976, JGR, 81, 5591
Frisch, U. 1995, Turbulence (Cambridge: Cambridge Univ. Press)
Frisch, U., & Vergassola, M. 1991, EL, 14, 439
Galtier, S., Nazarenko, S. V., Newell, A. C., & Pouquet, A. 2002, ApJL, 564, 49
Garrard, T. L., Davis, A. J., Hammond, J. S., & Sears, S. R. 1998, SSRv, 86,

649
Gary, S. P., Chang, O., & Wang, J. 2012, ApJ, 755, 142
Gary, S. P., Saito, S., & Li, H. 2008, GeoRL, 35, L02104
Gary, S. P., Saito, S., & Narita, Y. 2010, ApJ, 716, 1332
Gary, S. P., & Smith, C. W. 2009, JGR, 114, A12105
Goossens, M. 2003, An Introduction to Plasma Astrophysics and Magnetohy-

drodynamics (Dordrecht: Kluwer)
Hamilton, K., Smith, C. W., Vasquez, B. J., & Leamon, R. J. 2008, JGR, 113,

A01106
Hollweg, J. V. 1999, JGR, 104, 14811
Horbury, T. S., Forman, M., & Oughton, S. 2008, PhRvL, 101, 175005
Horbury, T. S., Forman, M. A., & Oughton, S. 2005, PPCF, 47, B703
Howes, G. G. 2009, NPGeo, 16, 219
Howes, G. G., Bale, S. D., Klein, K. G., et al. 2011a, arXiv:1106.4327
Howes, G. G., Cowley, S. C., Dorland, W., et al. 2006, ApJ, 651, 590
Howes, G. G., Dorland, W., Cowley, S. C., et al. 2008, PhRvL, 100, 065004
Howes, G. G., TenBarge, J. M., Dorland, W., et al. 2011b, PhRvL, 107, 035004
Ito, A., Hirose, A., Mahajan, S. M., & Ohsaki, S. 2004, PhPl, 11, 5643
Katul, G., Vidakovic, B., & Albertson, J. 2001, PhFl, 13, 241
Kiyani, K., Chapman, S., Khotyaintsev, Y., Dunlop, M., & Sahraoui, F. 2010,

in AIP Conf. Proc. 1216, Twelfth International Solar Wind Conference, ed.
M. Maksimovic et al. (Melville, NY: AIP), 136

Kiyani, K., Chapman, S. C., & Hnat, B. 2006, PhRvE, 74, 051122
Kiyani, K. H., Chapman, S. C., & Watkins, N. W. 2009a, PhRvE, 79, 036109
Kiyani, K. H., Chapman, S. C., Khotyaintsev, Yu. V., Dunlop, M. W., & Sahraoui,

F. 2009b, PhRvL, 103, 075006
Lazarian, A., Eyink, G. L., & Vishniac, E. T. 2012, PhPl, 19, 012105
Leamon, R. J., Matthaeus, W. H., Smith, C. W., & Wong, H. K. 1998a, ApJL,

507, 181
Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., & Wong, H. K.

1998b, JGR, 103, 4775
Leamon, R. J., Smith, C. W., Ness, N. F., & Wong, H. K. 1999, JGR, 104, 22331
Lin, R. P., Anderson, K. A., Ashford, S., et al. 1995, SSRv, 71, 125
Luo, Q. Y., & Wu, D. J. 2010, ApJL, 714, 138
Malaspina, D. M., Kellogg, P. J., Bale, S. D., & Ergun, R. E. 2010, ApJ,

711, 322
Mallat, S. 2009, A Wavelet Tour of Signal Processing: The Sparse Way (San

Diego: CA Academic Press)
Mandelbrot, B. B. 1983, The Fractal Geometry of Nature (New York: Freeman)
Matthaeus, W. H., Ghosh, S., Oughton, S., & Roberts, D. A. 1996, JGR,

101, 7619
Matthaeus, W. H., Servidio, S., Dmitruk, P., et al. 2012, ApJ, 750, 103
Narita, Y., Glassmeier, K.-H., Sahraoui, F., & Goldstein, M. L. 2010, PhRvL,

104, 171101
Nason, G. P., & Silverman, B. W. 1995, in Wavelets and Statistics, ed. A.

Antoniadis & G. Oppenheim (Lecture Notes in Statistics, Vol. 103; New
York: Springer), 281

Ogden, R. T. 1997, Essential Wavelets for Statistical Applications and Data
Analysis (Boston, MA: Birkhäuser)
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