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We quantify the scaling of magnetic energy density in the inertial range of solar-wind turbulence seen
in situ at 1 AU with respect to solar activity. At solar maximum, when the coronal magnetic field is
dynamic and topologically complex, we find self-similar scaling in the solar wind, whereas at solar
minimum, when the coronal fields are more ordered, we find multifractality. This quantifies the solar-wind
signature that is of direct coronal origin and distinguishes it from that of local MHD turbulence, with
quantitative implications for coronal heating of the solar wind.
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The interplanetary solar wind exhibits fluctuations char-
acteristic of magnetohydrodynamic (MHD) turbulence
evolving in the presence of structures of coronal origin.
In situ spacecraft observations of plasma parameters are at
minute (or below) resolution for intervals spanning the
solar cycle and provide a large number of samples for
statistical studies. These reveal a magnetic Reynolds num-
ber �105 [1] and power spectra with a clear inertial range
over several orders of magnitude characterized by a power
law Kolmogorov exponent of �� 5=3. Quantifying the
properties of fluctuations in the solar wind can thus provide
insights into MHD turbulence and also improve our under-
standing of coronal processes and ultimately, the mecha-
nisms by which the solar wind is heated. Quantifying these
fluctuations is also central to understanding the propaga-
tion of cosmic rays in the heliosphere [2].

Coronal heating mechanisms are studied in terms of the
scaling properties of coronal structures [3,4], heating rates
[5], and diffusion via random walks of magnetic field lines
[6], all of which suggest self-similar processes. The solar
wind is also studied in situ to infer information pertaining
to coronal processes. Large scale coherent structures of
solar origin, such as coronal mass ejections, can be directly
identified in the solar wind. At frequencies below the
‘‘Kolmogorov- like’’ inertial range, the solar wind exhibits
an energy containing range which shows �1=f scaling
[7,8]. Solar flares show scale invariance in their energy
release statistics over several orders of magnitude [9]
which has been discussed in terms of self-organized criti-
cality (SOC) [10,11]. Within the inertial range, the ob-
served solar-wind magnetic fluctuations are principally
Alfvénic in character with asymmetric propagation anti-
sunwards [12]. In situ plasma parameters which directly
relate to cascade theories of ideal incompressible MHD
turbulence, such as velocity, magnetic field, and the
Elsasser variables have thus been extensively studied in
the solar wind ([13] and references therein). These show
multifractal scaling in their higher order moments consis-

tent with intermittent turbulence [14,15]. Intriguingly, the
magnetic energy density B2 and number density � show
approximately self-similar scaling in the inertial range
[16,17]. These parameters are insensitive to Alfvénicity
and do not relate directly to MHD cascade theories.

In this Letter we quantify the scaling seen in B2 in the
inertial range of solar-wind turbulence with respect to
coronal structure and dynamics. We employ a recently
developed technique [18] that sensitively distinguishes
between self-similarity and multifractality in time series.
This will allow us to distinguish and quantify the solar-
wind signature that is of direct coronal origin from that of
local MHD turbulence, with quantitative implications for
our understanding of coronal heating of the solar wind.

The WIND and ACE spacecraft spend extended inter-
vals at �1 AU in the ecliptic and provide in situ magnetic
field observations of the solar wind over extended periods
covering all phases of the solar cycle. We focus on a
comparison between solar maximum when the coronal
structure is highly variable with topologically complex
magnetic structure, with that at solar minimum when the
coronal magnetic structure is highly ordered. The most
magnetically ordered region of the corona is at the poles
at solar minimum and observations of the corresponding
quiet, fast solar wind are provided by the ULYSSES space-
craft. The four data sets [19] that we consider here are then
(a) WIND 60 seconds averaged MFI data at the solar
maximum year of 2000 and (b) at the solar minimum
year of 1996; (c) ACE 64 seconds averaged MFI data for
the year 2000; (d) ULYSSES 60 seconds averaged vector
helium magnetometer/flux gate magnetometer data for
July and August 1995. Data sets (a)–(c) consist of �4:5�
105 points, and (d) consists of �8:5� 104 data points.
Intervals corresponding to magnetospheric bow shock
crossings for WIND were removed by comparison with
[20]. The ACE spacecraft orbits around the Earth-Sun L1
point and the ULYSSES data were obtained for the North
polar pass of 1995. All of the above intervals show a
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�� 5=3 power law scaling inertial range in the power
spectra of jBj over several decades which is indicative of a
well developed turbulent fluid.

We can access the statistical scaling properties of a time
series by constructing differences y�t; �� � jB�t� ��j2 �
jB�t�j2 on all available time intervals �. The statistical
scaling with � can be seen in the structure functions of
order m which follows that of the moments of the proba-
bility density function (PDF) of y, P�y; ��:

 Sm��� � hjyjmi �
Z 1
�1
jyjmP�y; ��dy; (1)

where hi indicate ensemble averaging over t. Statistical
self-similarity implies that any PDF at scale � can be
collapsed onto a unique single variable PDF P s:

 P�y; �� � ��HP s���Hy�; (2)

where H is the Hurst exponent. Equation (2) implies that
the increments y are self-affine; i.e., they obey the statisti-

cal scaling equality y�b���
d
bHy���, such that the structure

functions will scale with � as

 Sm��� � ���m�Sms �1�: (3)

For the special case of a statistically self-similar (random
fractal) process, ��m� � Hm. This scaling with H � 1=3
is characteristic of Kolmogorov’s 1941 theory of turbu-
lence [21], and intermittency corrections to this are mod-
eled by quadratic and concave ��m� (multifractals) [22]. A
difficulty that can arise in the experimental determination
of the ��m� is that for a finite length time series, the integral
(1) is not sampled over the range (�1, �1); the outlying
measured values of y determine the limits. In the case of a
heavy-tailed PDF the higher order moments (larger m) can
yield a ��m� that deviates strongly from the scaling of
P�y; �� in (2) [18] (hereafter KCH). An operational solu-
tion to this was demonstrated in KCH for a self-similar
process. Essentially one systematically excludes a minimal
percentage of the outlying events y from the integral in (1)
so that the statistics of the PDF tails become well sampled
and the integral (1) yields a � dependence with the correct
scaling of the self-similar process (2). This method is
sensitive in distinguishing self-affine scaling from weak
multifractality. We illustrate this with two reference mod-
els, the first of which is manifestly self-similar, an �-stable
Lévy process of index � � 1:0 (H � 1=�) [18], and the
second, manifestly multifractal, i.e., a p model [23] with
p � 0:6. These synthetic data sets each consist of 106 data
points. Figure 1 shows plots of the exponents ��m� versus
m obtained from (3) by computing the gradients of
logSm��� for (a) the Lévy process and (b) the multifractal
model, respectively. The exponents ��p� have been recom-
puted as outlying data points are successively removed,
and we can see that removing a small fraction,�0:001% of
the data, leads to a large change in the computed ��p�. A
reliable estimate of the exponents from the data requires
rapid convergence to robust values, shown in KCH to be a

property of a self-affine time series. We can see this
behavior in the Lévy model which quickly converges to
linear dependence of ��p� with p as expected. The multi-
fractal p model only begins to approach linearity after
�3% of the data is excluded. This apparent linearity in
the p model is actually a divergence in the values of the
��p�. We see this behavior if we plot the value of one of the
exponents from Fig. 1 versus the percentage of points
removed. This is shown for ��2� for the Lévy process
(upper panel) and the p model (lower panel) in Fig. 2. As
we successively exclude outlying data points, the self-
affine Lévy process quickly reaches a constant value for
��2� � 2=� � 2:0 whereas for the multifractal, the ��2�
exponent shows a continuing secular drift. Importantly,
successively removing outlying data points does not con-
vert the multifractal p-model time series into a self-affine
process. In addition, a plot of ��p� versus p (Fig. 1) is not
sufficient to distinguish self-affine from multifractal be-
havior; one also needs to examine the convergence prop-
erties of the exponents as outlying points are successively
removed, as shown in Fig. 2.

We now turn to the analysis of solar-wind data. In
Figs. 3(a) and 3(b) we plot ��2� versus the percentage of
points removed in B2 for intervals at solar maximum and
minimum, respectively. The � values for these plots were
obtained from an identified scaling range which spanned
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FIG. 1 (color online). ��m� vs m plots for (a) � � 1:0 sym-
metric Lévy process and (b) p � 0:6 p-model process.

PRL 98, 211101 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
25 MAY 2007

211101-2



from �5:2 min to �2:7 h (see, e.g., [16,24] ). Comparison
of these plots with Fig. 2 strongly suggests that at solar
maximum, the magnetic energy density is self-affine; we
can clearly identify a plateau with a H � ��2�=2 value of
H ’ 0:44� 0:02 for WIND andH ’ 0:45� 0:01 for ACE.
At solar minimum, there is no clear plateau and the behav-
ior is reminiscent of the multifractal pmodel. We have thus
differentiated the distinct scaling behavior at solar maxi-
mum and solar minimum. Intriguingly, it is at solar maxi-
mum that we see self-similar behavior, whereas at solar
minimum the time series resembles a multifractal, remi-
niscent of intermittent turbulence. Since the corona is
complex and highly structured at solar maximum, this is
highly suggestive that this self-similar signature in B2 is
related to coronal structure and dynamics rather than to
local turbulence.

We can test this conjecture by considering observations
of the solar wind where the coronal structure is maximally
ordered. We repeat the above analysis on a two month
interval of ULYSSES data during solar minimum. The
resulting plot of ��2� versus percentage of points excluded
is shown in Fig. 4. This plot again does not support self-
affine scaling and is reminiscent of that of the p model,
strengthening previous results [15,25]. Clearly, the behav-
ior of B2 in the solar wind originating from a corona
dominated by ordered open field lines is not self-affine.
The appearance of fractal versus multifractal behavior in

B2 is not a strong discriminator of variability in the average
solar-wind speed per se. We see multifractal scaling both in
the ecliptic at minimum in an interval that contains periods
of alternating high and low speed streams, and at the poles,
where the average speed is fast and uniform. We see fractal
scaling in the ecliptic at maximum, where the average
speed also alternates between fast and slow streams.
Previous studies [25] have shown a variation with latitude
and solar cycle of the level of multifractality of compo-
nents of magnetic field. This may be related to the signa-
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FIG. 3 (color online). Exponent of the second moment ��2� vs
the percentage of points excluded for (a) WIND and ACE at
solar maximum and (b) WIND at solar minimum.

 

FIG. 2 (color online). Exponent of the second moment ��2� vs
the percentage of points excluded for (a) the Lévy model and
(b) p model.
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FIG. 4 (color online). Exponent of the second moment ��2� vs
the percentage of points excluded for ULYSSES at solar mini-
mum.
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ture of the level of complexity in coronal magnetic struc-
ture which we have identified in B2 within the inertial
range of turbulence, but may also simply reflect a correla-
tion with average solar-wind speed. We have also verified
that jBj does not show evidence of self-similarity for the
intervals chosen for our study. More specifically, jBj ex-
hibits multifractal behavior. This confirms the earlier re-
sults of Hnat et al. [24].

The corona contains many long-lived structures which
extend far out into the solar system mediated by the
interplanetary solar wind [4]. At solar maximum these
structures show a high degree of topological complexity.
One model for these structures and their propagation is as a
random walk or braiding of magnetic field lines with a
measurable diffusion coefficient [2,6,26]. A diffusion pro-
cess such as this intrinsically generates self-similar scaling
and may in a straightforward manner account for that
shown here in B2 at solar maximum. Alternatively, the
relevant process may be that of reconnection in the com-
plex magnetic structure of the emerging coronal flux.
Models for this include SOC based random networks
[11] which again imply self-similar scaling. Our quantita-
tive determination of the Hurst exponent H ’ 0:45 of the
self-affine scaling seen in the solar wind provides a strong
constraint to these models.

The PDF resulting from such a self-similar process can
be captured by a solution to a generalized Fokker-Planck
equation (FPE) with power law scaling of the transport
coefficients [17,24]. Intriguingly, the associated Langevin
equation transforms nonlinearly into that for a constant
diffusion coefficient. The transformation may be equiva-
lent to introducing a diffusion process with constant diffu-
sion coefficient, on a space with non-Euclidean, self-
similar, fractal geometry. This may provide a quantitative
basis for models of transport of initially random fractal
fields (the coronal source) in a turbulent flow (the solar
wind). At solar minimum we see quite a different picture.
Here the corona is topologically well ordered magnetically.
Thus in this case the fluctuations in B2 are dominated by
the evolving turbulence of the interplanetary solar wind
which is well known to exhibit multifractal behavior.
Intriguingly, this self-affine signature quantified here in
B2 extends over the �� 5=3 exponent inertial range
seen in the solar wind. This is at higher frequencies than
the �1=f behavior previously identified as a coronal sig-
nature in the solar wind [8]. Although models involving
reconnection and flares and nanoflares have been proposed
[27], estimates of the total energy contained in such struc-
tures falls significantly short of that required for coronal
heating [28]. Thus the high-frequency self-similarity re-
ported here may suggest further processes responsible for
coronal heating.
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