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A B S T R A C T

The effects of finite amplitudes on the transverse oscillations of a quiescent prominence represented by a magnetic
rope are investigated in terms of the model proposed by Kolotkov et al. (2016). We consider a weakly nonlinear
case governed by a quadratic nonlinearity, and also analyse the fully nonlinear equations of motion. We treat the
prominence as a massive line current located above the photosphere and interacting with the magnetised dipped
environment via the Lorentz force. In this concept the magnetic dip is produced by two external current sources
located at the photosphere. Finite amplitude horizontal and vertical oscillations are found to be strongly coupled
between each other. The coupling is more efficient for larger amplitudes and smaller attack angles between the
direction of the driver and the horizontal axis. Spatial structure of oscillations is represented by Lissajous-like
curves with the limit cycle of a hourglass shape, appearing in the resonant case, when the frequency of the
vertical mode is twice the horizontal mode frequency. A metastable equilibrium of the prominence is revealed,
which is stable for small amplitude displacements, and becomes horizontally unstable, when the amplitude ex-
ceeds a threshold value. The maximum oscillation amplitudes are also analytically derived and analysed. Typical
oscillation periods are determined by the oscillation amplitude, prominence current, its mass and position above
the photosphere, and the parameters of the magnetic dip. The main new effects of the finite amplitude are the
coupling of the horizontally and vertically polarised transverse oscillations (i.e. the lack of a simple, elliptically
polarised regime) and the presence of metastable equilibria of prominences.
1. Introduction

Solar prominences are the condensations of plasma at temperatures of
about 104 K (typical for the chromosphere) floating in the much hotter
solar corona (with temperatures typically greater than 106 K) (see e.g.
Parenti, 2014, for a comprehensive review). The main questions related
to prominences concern the physical mechanisms involved in their for-
mation and evolution. Indeed, prominences can be generally distin-
guished in two categories: quiescent prominences, which are observed
floating in the low solar corona with time scales ranging from hours to
several days before to slowly fade out or dissolve; and erupting promi-
nences, which become unstable in the presence of particular physical
conditions. As a consequence of the prominence eruption, a coronal mass
ejection (CME) could be formed and expelled from the solar corona. The
loss of equilibrium can be caused by various reasons: eruptions can be
triggered by a nearby flare (Panesar et al., 2015), or in response to an
emergingmagnetic flux or variation of the local magnetic helicity (Yeates
and Mackay, 2009), or maybe due to the action of MHD waves, as
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observed for some events before the eruption onset (see e.g. the discus-
sion in Shen et al., 2014a). Quiescent prominences are also very dynamic,
being a subject to MHD oscillations (Arregui et al., 2012), such as
transverse oscillations, for example triggered by a global coronal wave
(e.g. Hershaw et al., 2011; Asai et al., 2012), and longitudinal oscillations
(e.g. Vr�snak et al., 2007; Zhang et al., 2012; Luna et al., 2014). In turn,
based on the direction of the filament main axis displacements, trans-
verse oscillations can have horizontal (e.g. Kleczek and Kuperus, 1969;
Hershaw et al., 2011; Shen and Liu, 2012), or vertical polarisations (e.g.
Hyder, 1966; Eto et al., 2002; Okamoto et al., 2004; Kim et al., 2014;
Mashnich and Bashkirtsev, 2016). Furthermore, quiescent prominence
threads are also observed to experience more complicated, chaotic,
spatial dynamics during large amplitude oscillations (see e.g. Gilbert
et al., 2008; Takahashi, 2017). Complex behaviour of plasma in promi-
nences can be also described in terms of turbulent processes (Berger
et al., 2010; Leonardis et al., 2012). Such evidences may be strongly
affected by thermodynamic processes acting in prominences, which can
also influence the evolution of slow MHD waves (Kumar et al., 2016;
rch 2018
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Ballester et al., 2016). In addition, Kelvin–Helmholtz instability may take
place during oscillations of prominences, sustaining damping and plasma
heating (Antolin et al., 2014; Terradas et al., 2016). Also, the presence of
continuous transverse oscillations in prominences (Hillier et al., 2013)
may also be referred to as a self-oscillatory process caused by the inter-
action of plasma nonuniformities with a quasi-steady flow (Nakariakov
et al., 2016).

The equilibrium of prominences is thought to be of a magnetic origin
with the Lorentz force counteracting the gravity. In turn, gradient pres-
sure forces can provide an additional support. Considering this basic
idea, the following two-dimensional (2D) models of the prominence
equilibrium are the most popular: the Kippenhahn–Schlüter (KS, Kip-
penhahn and Schlüter, 1957) and the Kuperus–Raadu models (KR,
Kuperus and Raadu, 1974). The KS model considers the prominence as a
plasma slab embedded in the straight magnetic field lines with a dip
created by some external sources (e.g. photospheric currents). The
magnetic dip outlines a region of magnetic polarity inversion, which
justifies a general empirical evidence that prominences lie along the
polarity inversion line (also called a neutral line) of large extended bi-
polar regions (e.g. Bosman et al., 2012). In the KR model the prominence
is assumed to be a straight current-carrying horizontal wire located at
some height above the conductive photosphere. The support against the
gravity is provided by an upward magnetic force acting on the promi-
nence and caused by a virtual “mirror” current, which is located below
the photosphere and strictly symmetrical to the prominence. Interest-
ingly, the magnetic topology associated with the KR model resembles
that of a coronal cavity, that is a large quasi-circular structure observed
off limb in the extreme ultraviolet (EUV) band, and containing a prom-
inence in its interior (Habbal et al., 2010; Gibson et al., 2010).

In the last decades, starting from these two seminal works of KS and
KR, a number of studies of 2.5D and full 3D models of prominences have
been carried out, taking into account such observational aspects as the
presence of a current-aligned magnetic field component, magnetic
chirality, “barbs” or “feet” connecting the prominence to the photo-
sphere, Hα fibrils, flows, and their association to CMEs in case of erup-
tions. In this context, modelling of prominences supported in twisted flux
tubes (magnetic flux ropes) by linear force-free field was undertaken by
Aulanier and Demoulin (1998) and Aulanier et al. (1998), addressing the
natural presence of lateral feet and fibrils. A further approach is to
consider extrapolations from photospheric magnetic field data, and
comparemeasurements of prominence locations with the local dips in the
resulting coronal magnetic field configurations (Aulanier and D�emoulin,
2003; Su and van Ballegooijen, 2012). Blokland and Keppens (2011)
studied magneto-hydrostatic (MHS) equilibria for prominences by
reducing the MHS equations to an extended Grad–Shafranov equation,
and then numerically investigated the spectra of the oscillating structure.
A relaxation process is another approach to study the effect of support
against the gravity by the magnetic field, where the cold and dense
prominence plasma is injected into an initially unperturbed background,
and the subsequent evolution is studied numerically. Hillier and van
Ballegooijen (2013) studied equilibria for two distinct magnetic field
structures of an inverse polarity: a simple O-point configuration, and a
more complex one with an X-point. In the former case, the magnetic
tension of the field lines compressed at the base of the prominence and
stretched at its top is able to sustain prominences, while in the latter case
a convergence to a prominence equilibrium is not always guaranteed.
Terradas et al. (2013) investigated properties of MHD waves in normal
polarity prominences embedded in coronal arcades in terms of the
relaxation model too. Stable vertical fast and longitudinal slow MHD
oscillations were found. Luna et al. (2012) and Kra�skiewicz et al. (2016)
also considered prominences of a normal configuration, residing in a dip
formed by curved magnetic field lines. The effects of the magnetic field
geometry on longitudinal oscillations in prominences were addressed.

Despite their exceptional importance, the KS and KR models sepa-
rately are not able to provide an exhaustive picture on the transverse
oscillations observed in prominences. For example, the KR model alone
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allows only for vertically polarised oscillations, while in the pure KS
model horizontally polarised oscillations cannot coexist with the verti-
cally polarised ones since the system becomes unstable (van den Oord
et al., 1998). A synthesis of these two models, that is a prominence
embedded in a magnetic field dip generated by two photospheric cur-
rents, accounting also for the effects of the prominence current interac-
tion with the conducting photosphere (via the inclusion of the mirror
current effect), has been recently developed in Kolotkov et al. (2016,
KNN16). The prominence has been modelled as a line current located
above the photosphere at a given height, thus being subject to the gravity
and Lorentz forces, which are attributed to the interaction between the
photospheric and prominence currents. Such a magnetostatic model,
despite its simplicity, provides straightforward results on the prominence
dynamics. In KNN16, horizontally and vertically polarised transverse
oscillations have been analysed in the linear regime, the equations of
motion analytically derived, and dependence of the oscillation properties
(e.g. the period) upon the parameters of the system (e.g. the currents in
the prominence and at the photosphere) has been determined. In addi-
tion, investigation of the mechanical stability of the system shows that
the prominence can be stable simultaneously in both horizontal and
vertical directions for a certain range of parameters.

In this work, we study oscillations of finite amplitude in terms of the
KNN16 model, addressing two main issues: determining the domain of
the applicability of the linear approximation derived in KNN16, and
responding to the observational detection of finite amplitude oscillations
in prominences (e.g. Tripathi et al., 2009). We show that the equations of
motion in the vertical and horizontal directions are nonlinearly coupled
with each other, in contrast to the linear regime where the motions are
essentially independent of each other. Therefore, the presence of
nonlinear terms in the governing equations makes the dynamics of the
system more various and rich. The paper is structured as follows: in Sect.
2 we present the model and the governing equations; in Sect. 3 we pro-
vide an analytical treatment of the equations of motion along the vertical
and horizontal directions in the presence of a weak nonlinearity, in Sect.
4 we present an analysis of the oscillation amplitudes and periods by the
consideration of a total energy of the system. Finally, discussion and
conclusions are provided in Sect. 5.

2. Model and governing equations

Consider a prominence as a horizontal line current i, located at the
height h above the plane photosphere in a magnetic dip produced by two
spatially separated photospheric line currents of the same strength I
parallel to the prominence current, with d being the half-distance be-
tween them (see Fig. 1, where the origin of the coordinate system co-
incides with the centre of the equilibrium current in the unperturbed
prominence). The magnetic configuration shown in Fig. 1 corresponds to
a normal polarity prominence, i.e. the polarity of the magnetic field lines
threading the prominence material coincides with that of the underlying
photospheric field (cf. Fig. 2 in Low and Zhang, 2002). Although prom-
inences of this type constitute about 10%–25% of the observed promi-
nences (see e.g. Leroy et al., 1984; Bommier et al., 1994; Parenti, 2014;
Ouyang et al., 2017), the flux ropes with a normal configuration are
usually observed in the vicinity of active regions (see e.g. Okamoto et al.,
2008; Guo et al., 2010; Kuckein et al., 2012; Sasso et al., 2014), and can
be responsible for fast CMEs (Low and Zhang, 2002). The horizontal
equilibrium of the prominence in such a magnetic system is provided
automatically because of the horizontal symmetry of the model, while
the vertical equilibrium is determined by the balance of the gravity force
Fg and three Lorentz forces F1, F2, and Fm acting on the prominence from
the external photospheric and mirror currents, respectively. In the pro-
jection onto the z-axis, the vertical equilibrium condition is

2k1h
d2 þ h2

þ k2
2h

¼ ℛg; (1)



Fig. 1. A massive prominence (indicated by the yellow blob) with a line current
i, located in a magnetic dip at the height h above the photosphere. The dip is
formed by two external current sources I separated by the distance 2d at the
photosphere. The mirror current i (the red blob) is located strictly below the
prominence. The magnetic field lines produced by these four currents are shown
for h ¼ 0:5 d and i ¼ 0:5 I(similar to Fig. 1 in Kolotkov et al., 2016). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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with k1 ¼ μ0Ii=2π, k2 ¼ μ0i2=2π. In (1) ℛg denotes the gravity force per
unit length assumed to be constant in the model, with the linear mass
density ℛ obtained as the volume mass density of the prominence,
multiplied by its cross-sectional area. In condition (1) and in the
following analysis we consider the forces normalised per unit length in
the direction parallel to the currents.

Dynamics of such a prominence, perturbed by an oblique displace-
ment with the corresponding x (horizontal) and z (vertical) components,
is governed by the following set of equations:

ℛ
d2 x
d t2

¼ Fx; (2)

ℛ
d2 z
d t2

¼ Fz; (3)

where

Fx ¼
2k1x

�ðhþ zÞ2 þ x2 � d2
�

ðd2 � x2Þ2 þ 2ðd2 þ x2Þðhþ zÞ2 þ ðhþ zÞ4;

Fz ¼
2k1ðhþ zÞ�d2 þ x2 þ ðhþ zÞ2�

ðd2 � x2Þ2 þ 2ðd2 þ x2Þðhþ zÞ2 þ ðhþ zÞ4 þ
k2

2hþ z
�ℛg:

We have to point out that in this study we do not take into account
any dissipative effects. This is justified by the need to develop the
analytical formalism that can provide important insights in the main
features of the oscillatory properties of prominences. Moreover, the
limited duration of the detected oscillations does not necessarily indicate
the presence of the oscillation damping, and may be caused by the
change of the observational conditions. Thus, it is not clear which
dissipative processes have to be included in the model. In any case, the
formalism to be developed in this work is applicable to the modelling of
the initial phase of transverse oscillations of prominences, before some
dissipative processes cause the oscillation damping.

Linear oscillatory solutions of Eqs. (2) and (3) have been recently
analysed in KNN16, treating the displacements x and z to be small and,
hence, using the first order Taylor expansions of Eqs. (2) and (3). In this
linear regime the regions of parameters, corresponding to fully stable
prominence oscillations (region I, Fig. 2), vertical instability (region II,
Fig. 2), and horizontal instability (region III, Fig. 2), were revealed.
Moreover, the linear vertical and horizontal modes were found to be
essentially decoupled, therefore, can be considered separately. However,
in the case of finite amplitude oscillations the coupling between the
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vertically and horizontally polarised modes cannot be ignored and must
be taken into account.

3. Weakly nonlinear coupling and resonance of vertically and
horizontally polarised oscillations

With the use of the Taylor expansion up to the second order of the
displacements x and z, Eqs. (2) and (3) can be re-written as

d2 x
d t2

¼ αxþ βxz; (4)

d2 z
d t2

¼ γzþ δx2 þ σz2; (5)

where

α ¼ 2k1ðh2 � d2Þ
R ðd2 þ h2Þ2; β ¼ 4k1hð3d2 � h2Þ

R ðd2 þ h2Þ3 ;

γ ¼ 2k1ðd2 � h2Þ
R ðd2 þ h2Þ2 �

k2
4R h2

; δ ¼ 2k1hð3d2 � h2Þ
R ðd2 þ h2Þ3 ;

σ ¼ 2k1hðh2 � 3d2Þ
ℛðd2 þ h2Þ3 þ k2

8ℛh3
:

In contrast to the first order expansion of Eqs. (2) and (3), considered
in KNN16, Eqs. (4) and (5) are coupled through the second order terms
on the right-hand sides of (4) and (5).

The set of coupled nonlinear equations (4) and (5) represents a con-
servative system and for certain values of the parameters α, β, γ, δ, and σ,
was previously found to be integrable with the Hamiltonian of a
H�enon–Heiles form (see e.g. Eq. (3.1) in Bountis et al., 1982, the special
case of β ¼ 2 and δ ¼ 1). In the present analysis we obtain general so-
lutions of Eqs. (4) and (5), allowing for arbitrary values of those pa-
rameters, using the perturbation theory approach. Expressing the
displacements x and z through a small parameter ε as x � εx and z � εz
and expanding the new x and z with respect to ε, x ¼ x0 þ εx1 and z ¼
z0 þ εz1, one can re-write Eqs. (4) and (5) as

d2 x0
d t2

þ ε
d2 x1
d t2

¼ αx0 þ εðαx1 þ βx0z0Þ; (6)

d2 z0
d t2

þ ε
d2 z1
d t2

¼ γz0 þ ε
�
γz1 þ δx20 þ σz20

�
: (7)

The parameter ε demonstrates the smallness of the prominence dis-
placements in comparison with the equilibrium geometrical parameters
d and h. In such a representation of x and z, the lowest order terms, x0 and
z0, correspond to the decoupled harmonic oscillations of the prominence,
while the higher-order components, x1 and z1, describe, in particular, the
coupling between the horizontal and vertical modes. Indeed, collecting
together the terms with the lowest order of the parameter ε in Eqs. (6)
and (7), one obtains

d2 x0
d t2

þ ω2
1x0 ¼ 0; (8)

d2 z0
d t2

þ ω2
2z0 ¼ 0; (9)

where ω2
1 ¼ �α and ω2

2 ¼ � γ. Behaviour of ω1 and ω2 and their
dependence on the geometrical parameters of the model, h and d, mag-
netic constants, k1 and k2, and the prominence mass density, ℛ, and the
associated linear oscillations, has been investigated in detail in KNN16
model, where the notations ω1 ¼ 2π=Px and ω2 ¼ 2π=Pz were used, with
Px and Pz being the horizontal and vertical oscillation periods,
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respectively. Eqs. (8) and (9) have harmonic solutions written as

x0ðtÞ ¼ A1sinðω1t þ ϕ1Þ; (10)

z0ðtÞ ¼ A2sinðω2t þ ϕ2Þ; (11)

where A1, A2, ϕ1, and ϕ2 are the constants determined from the initial
conditions.

Then we combine the terms of the first order of ε in Eqs. (6) and (7).
This gives
d2 x1
d t2

þ ω2
1x1 ¼

A1A2 β

2

�
cos½ðω1 � ω2Þt þ ðϕ1 � ϕ2Þ �-cos½ðω1 þ ω2Þt þ ðϕ1 þ ϕ2Þ �

�
(12)
d2 z1
d t2

þ ω2
2z1 ¼ A2

1δsin
2ðω1t þ ϕ1Þ þ A2

2σsin
2ðω2t þ ϕ2Þ; (13)

where the solutions for x0ðtÞ and z0ðtÞ, given by Eqs. (10) and (11), have
been used. Solutions of Eqs. (12) and (13) can be written in a general
form as
x1ðtÞ ¼ B1sinðω1t þ ψ1Þ þ
A1A2 β

2

�
cos½ðω1 � ω2Þt þ ðϕ1 � ϕ2Þ �

ω2ð2ω1 � ω2Þ þ cos½ðω1 þ ω2Þt þ ðϕ1 þ ϕ2Þ �
ω2ð2ω1 þ ω2Þ

�
; (14)
z1ðtÞ ¼ B2sinðω2t þ ψ2Þ þ
A2
1δ

2
cos½2ðω1t þ ϕ1Þ �

4ω2
1 � ω2

2
þ σA2

2

cos½2ðω2t þ ϕ2Þ �
6ω2

2

þ δA2
1 þ σA2

2

ω2
2

;

(15)

where B1, B2, ψ1, and ψ2 are the constants determined from the initial
conditions.

Thus, combining solutions (10)–(11) for x0 and z0 and (14)–(15) for
x1 and z1, and recalling that x ¼ x0 þ εx1 and z ¼ z0 þ εz1, the oscillatory
solution of Eqs. (4) and (5) can be written as
xðtÞ ¼ C1sinðω1t þ Θ1Þ þ C1C2 β

2

�
cos½ðω1 � ω2Þt þ ðΘ1 � Θ2Þ �

ω2ð2ω1 � ω2Þ þ cos½ðω1 þ ω2Þt þ ðΘ1 þ Θ2Þ �
ω2ð2ω1 þ ω2Þ

�
; (16)
zðtÞ¼C2sinðω2tþΘ2ÞþδC2
1

2
cos½2ðω1tþΘ1Þ�

4ω2
1�ω2

2
þσC2

2

cos½2ðω2tþΘ2Þ�
6ω2

2
; (17)
∂2 x1
∂ t2 þ ω2

1x1 ¼
A1A2 β

2
fcos½ðω1 � ω2Þt� � cos½ðω1 þ ω2Þt�g � 2

d A1

d τ
ω1cosðω1tÞ;

∂2 z1
∂ t2 þ ω2

2z1 ¼
A2
1δ

2
þ A2

2σ
2

� A2
1δ

2
cosð2ω1tÞ � A2

2σ
2

cosð2ω2tÞ � 2
d A2

d τ
ω2cosðω2tÞ;
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where C1;2 � ½A2
1;2 þ B2

1;2 þ 2A1;2B1;2cosðϕ1;2 � ψ1;2Þ�1=2 and tanðΘ1;2Þ ¼
½A1;2sinðϕ1;2Þþ B1;2sinðψ1;2Þ�=½A1;2cosðϕ1;2Þþ B1;2cosðψ1;2Þ�, with ε ¼ 1.
The use of ε ¼ 1 in expressions (16)–(17) does not contradict to the sense
of generality as it was employed only for the quantification of the
smallness of amplitudes of the higher order components (B1, B2, A2

1, A
2
2,

and A1A2) in comparison with the lowest harmonic amplitudes, A1 and
A2. The set of solutions (16)–(17) describes the coupled horizontal and
vertical oscillatory dynamics of the prominence and, importantly, implies
a nonlinear resonance condition 2ω1 ¼ ω2, appearing in both polar-
isations simultaneously. One can re-write this resonance condition in
terms of the intrinsic physical parameters of the model, h, d, k1 and k2, as

h ¼ d

2
420k1 � k2 � 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25k21 � 5k1k2

q
40k1 þ k2

3
5

1=2

: (18)
This dependence is illustrated in Fig. 2, where the currents ratio I=i,
shown on the horizontal axis, is equivalent to k1=k2. We note, that the
resonant condition (18) implicitly accounts for the dependence on the
prominence mass via the equilibrium condition (1).

As long as 2ω1 6¼ ω2, the prominence dynamics governed by set
(4)–(5), is described by solutions (16)–(17). However, in the special
resonant case, when 2ω1 ¼ ω2, solutions (16)–(17) break down and are
no longer applicable. To describe analytically the prominence behaviour
in the resonant case with 2ω1 ¼ω2, we introduce an additional slow time
variable τ ¼ εt with ε being a small parameter, and allow the amplitudes
A1 and A2 in the harmonic solutions (10)–(11) to be slowly varying
functions of τ, A1 ¼ A1ðτÞ and A2 ¼ A2ðτÞ; thus x0;1ðt; τÞ and z0;1ðt;τÞ. In
such a formulation the time derivative transforms to d=dt � ∂=∂tþ
εð∂=∂τÞ, and taking the initial phases to be zero one can re-write Eqs. (12)
and (13) as
(19)

(20)
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with an additional term appearing on the right-hand side of both equa-
tions. According to solutions (16)–(17), the resonance originates from
the first and third terms on the right-hand side of Eqs. (19) and (20),
respectively. Hence, we can remove them by demanding

ω2
d A1

d τ
� A1A2

2
β ¼ 0; (21)

2ω2
d A2

d τ
þ A2

1δ

2
¼ 0; (22)

where the resonance condition ω2 ¼ 2ω1 has been used. The set of
coupled equations (21) and (22) has the following solution, derived in
detail in Appendix A:

A1 ¼ A0sech
h
A0ðλÞ1=2τ

i
; (23)

A2 ¼ �A0

	
δ

2β


1=2

tanh
h
A0ðλÞ1=2τ

i
; (24)

where λ ¼ � βδ=8γ, and A0 ¼ A1ð0Þ is determined by the initial condi-
tion. Then substituting solutions (23)–(24), A1ðτÞ and A2ðτÞ, into the full
expressions for the lowest order harmonic components (10)–(11), one
can obtain the relation between the time variations of the vertical and
horizontal coordinates, z0 and x0 (see Appendix A), describing the
prominence dynamics in the resonant case:

z20 ¼
2δ
β
x20sinh

2
h
A0ðλÞ1=2τ

i�
1� x20

A2
0
cosh2

h
A0ðλÞ1=2τ

i�
; (25)

with λ and A0 introduced above in Eqs. (23) and (24). We note that the
coefficients β, γ, δ, appearing in Eq. (25), are all functions of the intrinsic
parameters of the model, h, d, k1, and k2 (see Eqs. (4) and (5)), hence,
their values should be chosen according to the resonant condition (18)
when operating with solution (25). Prominence resonant space trajec-
tories described by (25) are illustrated in Fig. 3 being Lissajous-like
curves of a symmetric hourglass shape. In particular, Fig. 3 clearly
shows the nonlinear mode coupling effect, i.e. the increase in the vertical
amplitude of the prominence oscillation with time leads to a decrease in
its horizontal amplitude, thus manifesting the conservation of energy in
Fig. 2. Diagram showing the regions of parameters, where the prominence is
stable in both vertical and horizontal directions simultaneously (region I); un-
stable in the vertical direction (region II); and unstable in the horizontal di-
rection (region III). The regions were obtained in the linear theory developed in
Kolotkov et al. (2016, KNN16). The dashed line shows the nonlinear resonance
condition between vertical and horizontal oscillatory modes, determined by
Eq. (18).
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the system.
The spatial polarisation of nonlinear transverse oscillations of a

prominence in both resonant and non-resonant cases is shown in Fig. 4. It
demonstrates the evolutionary solutions of set (4)–(5), obtained with the
initial conditions xð0Þ ¼ 0, zð0Þ ¼ 0, _x ¼ 0:01 (written in units offfiffiffiffiffiffiffiffiffiffiffiffi
k2=ℛ

p
), and _z ¼ 0, at three different time intervals of the prominence

evolution. Such a set of the initial conditions implies that at the initial
instant of time the prominence is located at the equilibrium position and
is perturbed by a non-zero value of the horizontal speed. A possible driver
is, for example, a horizontally propagating coronal wave (e.g. Hershaw
et al., 2011; Shen et al., 2014a). As the initial perturbation occurs, the
prominence moves almost strictly along the x-axis (see panels (a) and (d)
in Fig. 4) until its amplitude becomes sufficiently large (about a half of
the maximum horizontal amplitude), and the vertical displacement of the
prominence is generated by the nonlinear coupling mechanism described
above. The latter clearly illustrates the uncoupled nature of the
small-amplitude prominence oscillations considered in KNN16, and, in
contrast, the highly pronounced nonlinear coupling between larger
amplitude vertical and horizontal displacements. Numerical tests per-
formed with the use of Eqs. (2)–(4))–(5) solved by the 4th order Run-
ge–Kutta scheme with the dsolve routine in Maple 2016, showed that the
coupling works more efficiently for larger amplitude oscillations and for
smaller angles between the direction of the initial perturbation and the
horizontal axis (an attack angle). In the limiting case when the initial
perturbation is directed strictly along the vertical axis, the set of equa-
tions (4) and (5) is uncoupled for arbitrarily large oscillation amplitudes.
This is illustrated by Fig. 5, where the numerical dependence of the
maximum vertical and horizontal displacement ratio upon the direction
of the initial perturbation is shown for small and large amplitude cases. In
the case of small amplitudes, the nonlinear coupling between the vertical
and horizontal modes is suppressed, and the dependence of the ampli-
tude ratio upon the attack angle is naturally governed by a tangent
function. In contrast, for larger amplitude displacements this dependence
clearly deviates from the tangent dependence upon the attack angle at
smaller angles of the initial perturbation, which is caused by a strong
nonlinear coupling.

In the resonant case, when the frequency of the vertical mode is twice
the horizontal mode frequency, 2ω1 ¼ ω2 (top panels of Fig. 4), hori-
zontal displacement of the prominence achieves a nearly maximum
amplitude during the first cycle of the prominence evolution (see panel
Fig. 3. Displacements of the prominence in the saturated resonant nonlinear
regime described by Eq. (25), shown for h=d � 0:244 (see Eq. (18)), I=i ¼ 0:5,
A0=d ¼ 0:01, and τ ¼ 50 (red), 150 (green), 250 (blue), measured in units offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℛd2=k2
p

. (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
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(a), Fig. 4), while its vertical amplitude grows gradually, accompanied
with the increasing ordering of the prominence trajectories in space. This
evolution continues until the resonant limit cycle of a symmetric shape,
described by Eq. (25) and shown in Fig. 3, is reached (panel (c), Fig. 4),
when all trajectories are highly concentrated in space. In contrast, in the
non-resonant case (bottom panels in Fig. 4), the prominence trajectories
do not experience such a localisation in space, and consequently the
vertical displacement remains relatively small in amplitude in compari-
son with the resonant case during the whole prominence evolution. Non-
resonant dynamics of the prominence can be represented by families of
space trajectories, shown in panels (d) and (f), switching one to another
through a transition state illustrated in panel (e). Fig. 4 also shows the
numerical solutions of the fully nonlinear set of equations (2) and (3),
obtained for the same values of the physical parameters of the model and
initial conditions as those of set (4)–(5). Both solutions are seen to be well
consistent with each other justifying the analytical treatment of a non-
resonant evolution of the prominence, developed in this section, except
the saturated regime of the resonant case shown in panel (c). This
apparent discrepancy indicates the presence of resonances also in other
higher-order terms which are not accounted for by Eqs. (4) and (5).
Despite these differences, the saturated resonant trajectories shown in
panel (c) are seen to possess similar topologies and amplitudes, which
justifies the resonant analytical solution (25) too.

4. Fully nonlinear case

4.1. Potential energy analysis

In this section we consider prominence oscillations, analysing Eqs. (2)
and (3) with the exact expressions of the forces Fx and Fz, without usage
of their Taylor expansions. First we note that the forces Fx and Fz acting
on the prominence in the horizontal and vertical directions, respectively,
can be re-written as
zc ¼ ð1=2Þ h
k2ðh2 þ d2Þ þ 4h2k1



2k1

�
d2 � 5h2

�� k2
�
h2 þ d2

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k2ðd2 þ h2Þ þ 2k1ðd2 þ 3h2Þ�2 þ 8k1k2ðd4 � h4Þ

q �
(31)

jxmj ¼
(
d2 � ð1=4Þ h2

ðk2ðh2 þ d2Þ þ 4h2k1Þ2
�
k2
�
h2 þ d2

�þ 2k1
�
d2 � h2

�þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½k2ðd2 þ h2Þ þ 2k1ðd2 þ 3h2Þ�2 þ 8k1k2ðd4 � h4Þ

q �2�1=2

: (32)
Fx ¼ k1
2

∂
∂ x ln D; (26)

Fz ¼ ∂
∂ z

�
k1
2
ln Dþ k2 lnð2hþ zÞ

�
�ℛg; (27)

where

D � �
d2 � x2

�2 þ 2ðhþ zÞ2�d2 þ x2
�þ ðhþ zÞ4:

Equations (2) and (3) are thus of a Hamiltonian form with Uðx; zÞ
being the prominence potential energy, and dx=dt and dz=dt being the
effective momenta. Using the relations Fx ¼ �∂ U=∂ x and Fz ¼ �
∂ U=∂ z, one can express the prominence effective potential energy
Uðx; zÞ as

Uðx; zÞ ¼ �k1
2
ln D� k2lnð2hþ zÞ þℛgzþ C; (28)
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where C is an arbitrary constant.
Behaviour of potential (28) is shown in Fig. 6 for three different

combinations of the intrinsic parameters of the model (i.e. h, d, k1, and
k2), corresponding to three regions on the parametric diagram shown in
Fig. 2. More specifically, all panels in Fig. 6 sustain small amplitude
decoupled prominence oscillations: in vertical and horizontal directions
simultaneously (panel (a)), in the horizontal direction only (panel (b)),
and in the vertical direction only (panel (c)), which is consistent with the
linear theory developed in KNN16. In the nonlinear case, panel (a) shows
the potential surface Uðx; zÞ with a local dip of a finite height, corre-
sponding to a locally stable (or metastable) equilibrium of the promi-
nence. Such a metastable prominence state allows for the essentially
coupled nonlinear oscillations with a critical amplitude, above which the
prominence becomes horizontally unstable. In turn, nonlinear large
amplitude oscillations in the cases shown in panels (b) and (c) may
quickly become unstable in the horizontal direction due to the nonlinear
coupling mechanism described in the previous section.

4.2. Maximum horizontal and vertical amplitudes

We now investigate the dependence of the maximum oscillation
amplitudes in a metastable prominence state upon the intrinsic physical
parameters of the model (h, d, k1, and k2) addressing the potential energy
example shown in Fig. 6, panel (a) with h < d and k1 < k2. For that we
analyse the positions xm and zc of the local extrema of the functionUðx; zÞ
(28) by solving the following set of coupled equations

Fxðxm; zcÞ ¼ 0; (29)

Fzðxm; zcÞ ¼ 0; (30)

where Fx and Fz are the forces given in Eqs. (2) and (3), respectively. In
addition to the trivial solution of set (29)–(30) with xm ¼ 0 and zc ¼ 0,
corresponding to the initial equilibrium of the prominence, another real
solution in the region of parameters h < d and k1 < k2 is possible:
The critical value Uc of the prominence potential energy, corre-
sponding to these xm and zc, can be found as Uc ¼ Uðxm; zcÞ with the
function Uðx; zÞ given in Eq. (28). This critical value Uc describes the
highest prominence potential energy, above which the prominence has
enough energy to escape the potential dip, becoming unstable in the
horizontal direction. Fig. 7, left panel illustrates the equipotential levels
corresponding to the closed contours in the ðx; zÞ–plane, including the
critical value Uc with the critical space contour shown in red. According
to the left panel of Fig. 7, the horizontal coordinate of the potential en-
ergy local extrema always shows the maximum possible horizontal
amplitude xm allowing for the stable large amplitude prominence oscil-
lations with energies being below the critical value of Uc. However,
because of the vertical asymmetry of the prominence potential energy
(directly connected to the vertical asymmetry of the whole model, see
Fig. 1 in KNN16), the corresponding critical value of the vertical coor-
dinate, zc, in general may represent not the highest possible vertical
oscillation amplitude. The latter, in turn, can be represented as (see



Fig. 4. Displacements of a current-carrying prominence in a magnetic dip during three different time intervals (shown above each panel), determined numerically as
solutions of Eqs. (4) and (5) (black solid lines) and Eqs. (2) and (3) (red dots), with the initial conditions xð0Þ ¼ 0, zð0Þ ¼ 0, _x ¼ 0:01 (written in units of

ffiffiffiffiffiffiffiffiffiffiffiffi
k2=ℛ

p
), and

_z ¼ 0. Panels (a)–(c) show a resonant case (see Eqs. (18) and (25) and Figs. 2 and 3) with h=d � 0:244 and I=i ¼ 0:5. Panels (d)–(f) show a non-resonant case with
h=d ¼ 0:3 and I=i ¼ 1. Time t is measured in the units of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℛd2=k2

p
. (For interpretation of the references to colour in this figure legend, the reader is referred to the

Web version of this article.)
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Fig. 7):

zm ¼ zc þ δz; (33)

and implicitly determined by the condition Uðx ¼ 0;zmÞ ¼ Uc, with Uc ¼
Uðxm; zcÞ and zc and xm given in Eqs. (31) and (32).

In the limit d≫h, when the external photospheric currents are located
at sufficiently large but finite distances from the prominence position,
and hence the magnetic dip is significantly shallowed, the maximum
horizontal oscillation amplitude xm can be estimated by the lowest order
expansion with respect to a small parameter h=d, as xm � d. This co-
incides with the case considered in Kuperus and Raadu (1974), where
d tends to infinity and the magnetic dip is completely degenerated,
therefore horizontal prominence oscillations are essentially impossible
and vertical oscillations may have large amplitudes limited by the height
of the prominence above the surface of the Sun only. In contrast, our
model supports oscillations in both directions simultaneously, and the
appearance of a maximum vertical amplitude, zm given in (33), is
attributed to the nonlinear coupling between the horizontal and vertical
modes.

Dependence of the maximum horizontal and vertical amplitudes, xm
and zm given by Eqs. (32) and (33) upon the intrinsic parameters of the
model, including the limiting case d≫h, is illustrated in Fig. 7, right
panel. In contrast to the horizontal maximum amplitude xm (32), which is
a monotonically decreasing function of the prominence height above the
photosphere, h, the vertical maximum amplitude zm (33) has a maximum
at a certain value of h. For example, for a nearly equal photospheric and
prominence currents, I ¼ 0:9 i (blue lines), the highest value of the
maximum vertical amplitude appears for h � 0:28 d and is about 0:55 d,
which forces the horizontal critical amplitude to be about 0:7 d.

Fig. 8 shows the spatial structure of large amplitude transverse os-
cillations of the prominence, determined by the solution of the full set
(2)–(3). Panel (a) illustrates the case when the prominence energy is
slightly lower than the critical value of Uc, all amplitudes are always
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restricted by the maximum displacement (shown in red), corresponding
to Uc, and hence the oscillations are always stable. Another case is shown
in panel (b), when the prominence energy is slightly greater than Uc. In
this regime oscillation amplitudes may exceed the critical values, which
forces the prominence to become horizontally unstable in a few oscilla-
tion cycles. We need to mention that in the stable regime shown in panel
(a) of Fig. 8, the horizontally and vertically polarised modes are not
strictly periodic, but could be considered as quasi-periodic with a rela-
tively stable oscillation period and slowly modulated amplitude (see
Fig. 9).
4.3. Periods of nonlinear oscillations

In this section we estimate analytically typical periods of finite
amplitude nonlinear transverse oscillations in both horizontal and ver-
tical directions. For this we use the conditions z ¼ 0 and x ¼ 0 in the
equations of motion (2) and (3), respectively. In order to avoid the
prominence instability caused by the nonlinear mode coupling, we
restrict the oscillation amplitudes in both directions to be lower than or
equal to xm (32) and zm (33). The latter means that the prominence os-
cillates strictly inside the potential dip shown in Fig. 6, panel (a), and
hence the oscillations are always stable.

Substituting z ¼ 0 in the equation of motion along the horizontal axis
(2), one can obtain its first integral representing the prominence's con-
servation energy law in the horizontal direction,

ℛ
2

	
d x
d t


2

þ UxðxÞ ¼ E x; (34)

where

Ux ¼ �k1
2
ln

"
ðd2 � x2Þ2 þ 2ðd2 þ x2Þh2 þ h4

ðd2 þ h2Þ2
#



Fig. 5. Dependence of the maximum vertical and horizontal displacement ratio
upon the angle between the direction of the initial perturbation and the hori-
zontal axis, shown for small (blue circles) and finite (red diamonds) amplitude
transverse oscillations of the prominence. The grey solid line shows the tangent
of the attack angle. Vertical axis is shown in the logarithmic scale. The example
is shown for h=d ¼ 0:5 and I=i¼ 0.5, corresponding to a non-resonant case. (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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is the prominence potential energy in the horizontal direction, which can
be derived from Eq. (28) in the limit z ¼ 0. The constant E x in Eq. (34)
shows the total energy of horizontal oscillations and can be obtained
from the initial conditions _xð0Þ ¼ 0 and xð0Þ ¼ Ax, as

E x ¼ �k1
2
ln

"�
d2 � A2

x

�2 þ 2
�
d2 þ A2

x

�
h2 þ h4

ðd2 þ h2Þ2
#
;

with Ax being the horizontal oscillation amplitude.
The period Px of the horizontal oscillations of an arbitrary amplitude

as a function of the oscillation amplitude Ax and intrinsic parameters of
the model, can be derived from Eq. (34) as

Px ¼ 4
ffiffiffiffiffi
ℛ

p
∫ Ax
0

d xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE x � UxÞ

p ; (35)

where the functions Ux and E x are determined in Eq. (34).
Similarly to the horizontal case, the equation of motion along the

vertical axis (3), integrated once, reduces to the vertical conservation
energy law
Fig. 6. Potential energy Uðx; zÞ of the prominence, given by Eq. (28) and normalised t
0:45, I=i ¼ 1:5 (region II, Fig. 2). Panel (c): h=d ¼ 1:5, I=i ¼ 0:5 (region III, Fig. 2). R
interpretation of the references to colour in this figure legend, the reader is referred
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ℛ
2

	
d z
d t


2

þ UzðzÞ ¼ E z; (36)
where the vertical potential energy, obtained from Eq. (28) with x ¼ 0, is

Uz ¼ �k1
2
ln

"
d4 þ 2d2ðhþ zÞ2 þ ðhþ zÞ4

ðd2 þ h2Þ2
#
� k2ln

�
2hþ z
2h

�
þℛgz;

and the total vertical oscillation energy can be determined from the
initial conditions _zð0Þ ¼ 0 and zð0Þ ¼ Az, with Az being the vertical
oscillation amplitude, as

E z ¼ �k1
2
ln

"
d4 þ 2d2ðhþ AzÞ2 þ ðhþ AzÞ4

ðd2 þ h2Þ2
#
� k2ln

�
2hþ Az

2h

�
þℛgAz:

We note that the vertical equilibrium condition (1) can be used in the
above expressions for Uz and E z to re-write the gravitational termℛg in
terms of h, d, k1, and k2. The subsequent integration of Eq. (36) allows us
to derive the dependence of the arbitrarily large amplitude vertical
oscillation period upon the parameters of the model and the vertical
oscillation amplitude Az as

Pz ¼ 4
ffiffiffiffiffi
ℛ

p
∫ Az
0

d zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðE z � UzÞ

p ; (37)

with the functions Uz and E z given above in Eq. (36).
Dependences of the horizontal and vertical oscillation periods, Px

(35) and Pz (37) upon the oscillation amplitudes Ax and Az, respectively,
are illustrated in Fig. 10 for different sets of the equilibrium parameters
of the model, taken in the range h < d and k1 < k2. In these examples the
amplitudes Az and Ax were additionally restricted by the maximum
values of zm (33) and xm (32), respectively, corresponding to each
particular set of parameters. The latter guarantees the prominence os-
cillations being always stable, even in the case of strong coupling be-
tween horizontal and vertical modes. More specifically, in the limiting
case of small amplitudes, the periods in all panels are nearly constant,
which coincides with the linear theory results obtained in KNN16, where
the oscillations were found to be isochronous, i.e. the oscillation periods
are independent of the oscillation amplitude. In contrast, in the nonlinear
large amplitude regime the horizontal period Px was found to be always
increasing with the amplitude Ax (panels (a) and (b) in Fig. 10), with the
highest increase appearing for larger values of h=d (panel (a)) and lower
values of k1=k2 (or I=i, panel (b)). The dependence of the vertical period
Pz upon the vertical amplitude Az in the nonlinear case shows rather
different behaviour (panels (c) and (d)). Namely, it increases with the
amplitude for lower values of h=d and k1=k2, and then changes its
gradient to a negative one for higher values of these two parameters,
through a transient state (green and blue lines in panels (c) and (d),
respectively), where the periods are nearly constant for all allowed
o k2 ¼ μ0i2=2π. Panel (a): h=d ¼ 0:5, I=i ¼ 0:5 (region I, Fig. 2). Panel (b): h=d ¼
ed and blue curves show Uðx; z ¼ 0Þ and Uðx ¼ 0; zÞ functions, respectively. (For
to the Web version of this article.)



Fig. 7. Left: space contours showing the equipotential levels of the prominence
potential energy shown in Fig. 6, panel (a), up to the critical value shown in red
and determined by Uc ¼ Uðxm; zcÞ, with Uðx; zÞ, xm, and zc given in Eqs. (28),
(31) and (32), respectively. Right: parametric plot showing the dependence of
the maximum vertical amplitude, zm of the prominence oscillation upon its
maximum horizontal amplitude, xm through the parameter h=d varying from
0 to 1 and shown in the left top corner (see Eqs. (32) and (33)). The de-
pendences are shown for k1=k2 ¼ 0:9 (blue), k1=k2 ¼ 0:5 (green), and k1=k2 ¼
0:2 (red). (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)

Fig. 9. Temporal quasi-periodic variations of the horizontal (top) and vertical
(bottom) displacements of the prominence in the large amplitude oscillatory
regime shown in the left-hand panel of Fig. 8. Time is normalised to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℛd2=k2

p
.
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amplitudes. However, the period Pz was detected to be weakly dependent
upon the amplitude Az. Indeed, the nonlinear relative change of the
vertical period Pz with the amplitude is of about several percent only for
all examples shown in panels (c) and (d).

5. Summary of results and conclusions

We studied analytically finite amplitude transverse oscillations of
massive quiescent current-carrying prominences in a magnetic field dip,
representing a synthesis of the Kippenhahn–Schlüter (Kippenhahn and
Schlüter, 1957) and Kuperus–Raadu (Kuperus and Raadu, 1974) models.
The model accounts for the effect of a non-zero value of the electric
current in the prominence, and is based upon the electromagnetic
interaction between the prominence current and the external photo-
spheric currents producing a magnetic dip. We derived and analysed the
equations of motion in the horizontal and vertical directions, (4)–(5) for
weakly nonlinear oscillations, which account for the effects of the
quadratic nonlinearity. Also, we studied the fully nonlinear exact set of
the governing equations in both directions, (2)–(3). Dissipative effects
such as resonant absorption, aerodynamic friction, viscosity and re-
sistivity, and effects of partial ionisation are neglected in this work. It
allows us to perform an analytical study of the nonlinear effects,
including mode coupling, on the oscillations. Even in the case of effective
dissipation, our results are important for understanding the initial stage
of the oscillations.
Fig. 8. Displacements of the prominence in the large amplitude oscillatory
regime, governed by Eqs. (2) and (3) with h=d ¼ 0:5 and k1=k2 ¼ 0:5, obtained
with the initial conditions: xð0Þ ¼ 0, zð0Þ ¼ 0, _z ¼ 0, and _x ¼ 0:26 (in units offfiffiffiffiffiffiffiffiffiffiffiffi

k2=ℛ
p

, panel (a)) and _x ¼ 0:3 (same units, panel (b)). Time t is measured in

units of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℛd2=k2

p
.
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The nonlinear oscillatory dynamics of the prominence is determined
by the oscillation amplitude and was found to be highly sensitive to the
parameters of the equilibrium: the value of the prominence current, its
mass and position above the photosphere, and the properties of the
magnetic dip. In contrast to the other parameters, that can be obtained
from observations, the prominence current is not a directly observable
quantity (e.g. Mackay et al., 2010). However, its value could be evaluated
indirectly. For example, based on the analysis of vector magnetograms,
vertical electric currents in a near-sunspot environment were found to be
about 1011 A (Severny, 1964), and of about 4� 1010 A in a flaring region
(Sharykin and Kosovichev, 2014). Similar values of the electric currents
should exist in the corona, in particular in the magnetic flux ropes of
prominences. For example, values of the electric currents in
current-carrying magnetic loops were detected with seismological
methods to be about 6� 1010–1:4� 1012 A (Zaitsev et al., 1998) and 3�
1010–1011 A (Zaitsev et al., 2013). The currents in eruptive prominences
and pre-eruptive filaments were found to have typical values of
1011–1012 A (Wu et al., 1994) and 4� 1012 A (estimated from Fig. 7 (c)
of Canou and Amari (2010), taking the mean value of the parallel current
density to be 0.05 A m-2 and the flux rope diameter � 10 Mm). For es-
timations, we consider a quiescent (i.e. non-eruptive) prominence of the
mass density � 10�10 kg m�3, and diameter � 10 Mm, oscillating
transversally with the amplitude in the range of 1–5 km s�1 and
20–100 km s�1, which correspond to the weakly and highly nonlinear
regimes of oscillations, respectively (see e.g. Tripathi et al., 2009). For
such a prominence, taking the values of the normalised initial horizontal
speed _x, used for solutions shown in Fig. 4 ( _x ¼ 0:01) and 8 ( _x ¼ 0:26),
the electric current in the prominence would correspond to about 1:5�
1010–1011 A. These values of the prominence current are by an order of
magnitude consistent with the results mentioned above, thus justifying
the practical interest of both Sect. 3 and Sect. 4 and their attribution to
the weakly nonlinear and fully nonlinear regimes of oscillations,
respectively. Furthermore, taking the prominence current i ¼ 2:1� 1010

A from the detected range, additionally assuming the prominence height
h above the solar surface to be 26Mm (Parenti, 2014), and fixing the
other parameters of the model as h=d ¼ 0:4 and I=i ¼ 0:5 (providing the
initial equilibrium of the prominence, determined by Eq. (1), to exist),
the horizontal and vertical nonlinear oscillation periods would have the
approximate values of 86 and 75min, respectively. These estimations are
also consistent with observations (see e.g. Bocchialini et al., 2011).

Unlike the linear case considered in KNN16, finite amplitude hori-
zontal and vertical oscillations are found to be coupled with each other.
In a weakly nonlinear case the mode coupling is governed by set (4)–(5).
It represents an asymmetric nature of the mode coupling mechanism, i.e.
the horizontal displacement is always able to generate the vertical
displacement (see panels (a) and (d) in Fig. 4), while a pure vertical mode



Fig. 10. Dependences of horizontal and vertical pe-
riods Px (35) and Pz (37) upon the corresponding
amplitudes, Ax and Az , shown for different sets of the
equilibrium parameters of the model. Panel (a): h=d ¼
0.7 (purple), 0.6 (blue), 0.5 (green), 0.4 (red); k1=k2 ¼
0:5. Panel (b): h=d ¼ 0:5; k1=k2 ¼ 0.2 (purple), 0.4
(blue), 0.6 (green), 0.8 (red). Panel (c): h=d ¼ 0.7
(purple), 0.6 (blue), 0.5 (green), 0.4 (red); k1=k2 ¼
0:5. Panel (d): h=d ¼ 0:5; k1=k2 ¼ 0.75 (purple), 0.6
(blue), 0.4 (green), 0.2 (red). Vertical dashed lines
indicate the maximum possible amplitudes, xm and zm ,
determined by Eqs. (32) and (33), respectively, in each
case. Periods Pz and Px are measured in the units offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℛd2=k2

p
. (For interpretation of the references to

colour in this figure legend, the reader is referred to
the Web version of this article.)
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is fully uncoupled with the horizontal one. Such asymmetry in the
coupling mechanism can be attributed to a vertical asymmetry of the
initial equilibrium of the model (see Fig. 1 in KNN16). The efficiency of
the coupling between the horizontal and vertical modes increases with
the oscillation amplitude. In the case of oblique perturbations of the
prominence, the mode coupling was detected to be more efficient for
smaller angles between the direction of the initial perturbation and the
horizontal axis, and is asymptotically degenerated when the prominence
is perturbed almost perpendicular to the horizontal axis (see Fig. 5). For
the case shown in Fig. 5 with h ¼ 0:5d and I ¼ 0:5i, the ratio of the
maximum vertical and horizontal finite amplitude displacements was
found to be of about 0.5–0.7, evenwhen the initial attack angles are small
(approximately up to 25	 with respect to the horizontal axis). The latter
shows that the direction of the initial driver plays an important role in the
initiation of the filament transverse oscillations. Due to strong mode
coupling both vertically and horizontally polarised finite amplitude dis-
placements can be expected to be simultaneously detectable in obser-
vations, even if the initial perturbation, for example a global coronal
shock wave, is directed almost horizontally (e.g. Berger et al., 2008; Shen
et al., 2014b). We would like to point out, that in addition to the
mechanism based on the operation of the Kelvin–Helmholtz instability
during the prominence evolution (e.g. Terradas et al., 2016), our model
suggests an alternative mechanism for the excitation of the filament
displacements in the direction perpendicular to the direction of the initial
driver by the nonlinear mode coupling.

Spatial structure and temporal evolution of transverse oscillations of
the prominence in a weakly nonlinear case are described by the general
analytical solution of set (4)–(5), given by Eqs. (16) and (17). For a
special case when the frequency of the vertical mode is twice the hori-
zontal mode frequency, ω2 ¼ 2ω1, solutions (16)–(17) imply a nonlinear
resonance. The resonant condition written through the physical param-
eters of the initial equilibrium of the prominence is given by Eq. (18) and
illustrated in Fig. 2. Prominence oscillatory dynamics in both resonant
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and non-resonant cases is shown in Fig. 4. Its space trajectories exhibit a
Lissajous-like behaviour, with a limit cycle of a symmetric hourglass
shape (Fig. 3 and panel (c) in Fig. 4), appearing in the resonant case and
determined analytically by Eq. (25). Such a non-trivial polarisation of
transverse oscillations is caused by the nonlinear coupling between
vertical and horizontal displacements, described above, and potentially
may be detected in observations (Hershaw et al., 2011; Pant et al., 2015).

Analysis of the fully nonlinear equations of motion (2)–(3) allowed us
to perform a comprehensive study of the prominence transverse oscilla-
tions of arbitrary amplitudes and assess the applicability of the approx-
imate solutions. More specifically, the set of equations (2) and (3) was
found to be of a Hamiltonian form with the potential energy of the
prominence, obtained in the exact analytical form in Eq. (28). In the
range of parameters h < d and I < i (region I in Fig. 2), the potential
energy (28) was revealed to have a dip of a finite depth (panel (a) in
Fig. 6), corresponding to a so-called metastable state of the prominence.
It is characterised by a critical value of the prominence potential energy,
below which the prominence is always stable and experiences oscilla-
tions within the potential dip, and, in contrast, may escape the dip and
become unstable in the horizontal direction, when its energy exceeds this
threshold value. In other words, this equilibrium is stable to small
amplitude oscillations, while becomes unstable when the amplitude ex-
ceeds a certain threshold. In particular, in this regime the prominence
may experience several oscillation cycles of varying polarisation, and
then become unstable (see the right panel of Fig. 8). A similar behaviour
of an erupting filament was observed by Isobe and Tripathi (2006).
However, we should note here that the discussed model does not describe
an eruption mechanism. It only addresses an initial loss of the promi-
nence equilibrium, which may potentially lead to its eruption. Similarly
to a weakly nonlinear case (Fig. 4), fully nonlinear oscillatory trajectories
also have a Lissajous-like shape, which is worth searching for in the
complex dynamics of oscillating prominences, detected in observations
(e.g. Gilbert et al., 2008; Takahashi, 2017). The maximum vertical and
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horizontal oscillation amplitudes, as well as the critical space contour,
corresponding to that critical value of the prominence potential energy,
are derived in Eqs. (32) and (33) and illustrated in Fig. 7. For a broad
range of the intrinsic physical parameters of the model, h, d, i, I, and ℛ,
determining the initial equilibrium of the prominence, the values of the
maximum vertical and horizontal amplitudes were found to be close to
each other by an order of magnitude, and comparable with typical
geometrical sizes of the system, h and d. In the limiting case of large
distances between the external photospheric currents, d, when the
magnetic dip is sufficiently suppressed, the maximum horizontal ampli-
tude, xm is of about d, which is consistent with the Kuperus–Raadu model
(Kuperus and Raadu, 1974).

Typical periods of horizontal and vertical oscillations as a function of
the oscillation amplitude and the prominence equilibrium parameters h,
d, i, I, and ℛ were determined analytically in Eqs. (35) and (37),
respectively. The horizontal oscillation period (panels (a) and (b) in
Fig. 10) was found to increase with the oscillation amplitude andwith the
height of the filament above the photosphere, which is consistent with
the recent observational results (Hershaw et al., 2011; Hillier et al.,
2013). In turn, the vertical oscillation period (panels (c) and (d) in
Fig. 10) appears to increase with the oscillation amplitude for lower
values of the ratios h=d and I=i, and decreases for higher values of these
two parameters. In the limiting cases when h≪d and i � I, horizontal
oscillations were found to be nearly isochronous, i.e. the oscillation
period weakly depends on the oscillation amplitude. Similarly, the
approximate isochronous nature of the vertically polarised mode is
detected for h=d � 0:5 and I=i � 0:6. Hence, in these special cases the
analytical dependences of oscillation periods upon the intrinsic param-
eters of the magnetic system, derived for linear oscillations in KNN16,
can be used with a good certainty for observed transverse oscillations of
an arbitrary amplitude. Another interesting feature clearly shown by
Fig. 10 is that the dependences of the horizontal period upon the
amplitude for all shown examples have positive second derivatives (see
panels (a) and (b)), while the corresponding dependences of the vertical
period (panels (c) and (d)) are seen to have negative second derivatives.
The latter fact could be straightforwardly used to distinguish between
polarisations of observed large amplitude prominence oscillations as this
quantity is rarely detectable without spectroscopic instruments. For
example, Hillier et al. (2013) performed a statistical study of transverse
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oscillations in prominence threads. They revealed the dependence of the
oscillation period, P upon the oscillation amplitude, A to be in the power
law form P∝A1:35, implying its second derivative, 0:4725 A�0:65, is al-
ways positive. According to our analysis, the positive sign of this deriv-
ative indicates that the considered transverse oscillations are of the
horizontal polarisation (cf. Fig. 10), that agrees with the results of Hillier
et al. (2013), where the oscillations are thought to be driven by hori-
zontal photospheric motions.

We need to mention that the developed model should be considered
as a simple one. It clearly misses a number of important physical phe-
nomena connected with thermodynamical, partial ionisation, and dissi-
pative effects. They can affect, in particular, time evolution of the
oscillations, leading to their damping or amplification. Another poten-
tially important effect is connected with the nonuniformity of the phys-
ical parameters across the plane of the model, for example the curvature
of the magnetic rope (Cargill et al., 1994; Vr�snak, 2008). The line-tying
boundary conditions for the guiding magnetic field would add an addi-
tional force, affecting the estimated oscillation periods and the stability
conditions. It makes our model acceptable only when the height h of the
magnetic rope axis above the solar surface is much smaller than the
distance between the footpoints of the guiding field, and an eventual
axial component of the guiding field is therefore strictly aligned with the
y-axis. Likewise, the effects of an inverse magnetic polarity of the
prominence could also be investigated in terms of this model, which can
alter the values of oscillation periods and threshold amplitudes. These
and other phenomena may be taken into account in the further devel-
opment of the model. Nevertheless, we believe that the model sufficiently
advances our understanding of prominence oscillations, attracts atten-
tion to the important observables, such as the oscillation polarisation and
finite amplitude, demonstrates the existence of metastable equilibria,
and provides a foundation for seismological estimation of the value of the
macroscopic current in coronal magnetic ropes.
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Appendix A. Solution of set (21)–(22)

From Eq. (21) the function A2ðτÞ can be expressed as

A2 ¼ 2ω2

βA1

d A1

d τ
: (A.1)

Using (A.1), Eq. (22) reduces to the following second order ordinary differential equation

1
A1

d2A1

d τ2
� 1
A2
1

	
d A1

d τ


2

þ λA2
1 ¼ 0; (A.2)

with λ ¼ βδ=8ω2
2. Then writing d A1=d τ ¼ PðA1Þ, and hence d2A1=d τ2 ¼ Pðd P=d A1Þ, Eq. (A.2) takes the form

1
A1

d
d A1

	
P2

2



� P2

A2
1
¼ �λA2

1: (A.3)

With the use of a new variable s ¼ A2
1, so that d=d A1 ¼ 2A1ðd=d sÞ, Eq. (A.3) can be re-written as

d P2

d s
� P2

s
¼ �λs: (A.4)

Now expressing the function P through a new unknown function qðsÞ as P2 ¼ sqðsÞ, Eq. (A.4) goes to

d q
d s

¼ �λ; (A.5)
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which can be integrated once and has the solution

q ¼ q0 � λs; (A.6)

with q0 being a constant determined from the initial conditions A1ð0Þ ¼ A0 and _A1ð0Þ ¼ 0, as q0 ¼ λA2
0.

Now recalling that P ¼ d A1=d τ, P2 ¼ sqðsÞ, and s ¼ A2
1, we obtain the following equation

	
d A1

d τ


2

¼ A2
1

�
q0 � λA2

1

�
; (A.7)

whose integral has the form

τ ¼ ∫ A1
A0

d A1

A1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0 � λA2

1

q ¼ 1

A0ðλÞ1=2
sech�1

	
A1

A0



: (A.8)

Using (A.8), we are able to write the explicit solution A1ðτÞ as

A1 ¼ A0sech
h
A0ðλÞ1=2τ

i
: (A.9)

Substitution of (A.9) into (A.1) gives the explicit form of the dependence A2ðτÞ,

A2 ¼ �A0

	
δ

2β


1=2

tanh
h
A0ðλÞ1=2τ

i
: (A.10)

Having obtained the explicit solutions for A1ðτÞ and A2ðτÞ, we use them in the lowest order harmonic solutions given in (10)–(11) to obtain

x0 ¼ A0sech
h
A0ðλÞ1=2τ

i
sinðω1tÞ; (A.11)

z0 ¼ �A0

	
δ

2β


1=2

tanh
h
A0ðλÞ1=2τ

i
sinðω2tÞ: (A.12)

Finally, using the resonant condition ω2 ¼ 2ω1 one can obtain an explicit relation between the vertical and horizontal coordinates, z0 and x0,
describing the prominence space dynamics in the special resonant case:

z20 ¼
2δ
β
x20sinh

2
h
A0ðλÞ1=2τ

i�
1� x20

A2
0
cosh2

h
A0ðλÞ1=2τ

i�
: (A.13)
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