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Abstract

We present the Solar Bayesian Analysis Toolkit (SoBAT), which is a new easy to use tool for Bayesian analysis of
observational data, including parameter inference and model comparison. SoBAT is aimed (but not limited) to be
used for the analysis of solar observational data. We describe a new IDL code designed to facilitate the comparison
of a user-supplied model with data. Bayesian inference allows prior information to be taken into account. The use
of Markov Chain Monte Carlo sampling allows efficient exploration of large parameter spaces and provides
reliable estimation of model parameters and their uncertainties. The Bayesian evidence for different models can be
used for quantitative comparison. The code is tested to demonstrate its ability to accurately recover a variety of
parameter probability distributions. Its application to practical problems is demonstrated using studies of the
structure and oscillation of coronal loops.

Unified Astronomy Thesaurus concepts: Solar physics (1476); Bayesian statistics (1900); Astronomy data analysis
(1858); Astronomy software (1855); Markov chain Monte Carlo (1889)

1. Introduction

The use of Bayesian analysis and Markov Chain Monte
Carlo (MCMC) sampling is increasingly common in astronomy
(see, e.g., the review by Sharma 2017) and heliosesmology
(e.g., Broomhall et al. 2010; Howe et al. 2015). However, it is
not widely used in other branches of solar physics, with
exception of magnetohydrodynamic seismology of the solar
corona, where the advantages of the Bayesian approach are
intensively exploited. The details can be found in a recent
review by Arregui (2018) considering the use of Bayesian
analysis for coronal seismology in particular.

Traditionally, the problem of estimating model parameters
from observational data (parameter inference) is solved by the
best-fitting approach which aims to find in the parameter space
a point giving the best agreement between the model and
observations. This is usually done by computing the maximum
likelihood estimate (MLE) or least-squares estimate (LSE),
which is equal to the MLE in the case of the normally
distributed measurement errors. Thus, the aim of the best-fitting
approach is to find, in the parameter space, the global
maximum corresponding to the best fit of the model to the
observed data. The Bayesian approach is different: instead of
searching for the highest peak in the parameter space, it implies
making a map of the whole parameter space in the form of a
posterior probability distribution function (PDF) representing
all information available from both observations and prior
knowledge. This function gives a probability density for every
point in the parameter space reaching a global maximum at the
position corresponding to the best-fitting combination of model
parameters.

This leads us to the main advantage of the Bayesian
approach, which is a correct estimation of the uncertainties.
Although, least-squares fitting software often provides estima-
tion of uncertainties based on some assumptions like the
Gaussian shape of a parameter distribution; such an estimation

becomes incorrect when these assumptions are not valid, for
example if the parameter distribution significantly differs from
the normal one (e.g., asymmetric or multimodal). Since the
Bayesian analysis is capable of recovering even a complex
parameter distribution that is very different from the normal
one, it allows for correct and reliable estimation of the
uncertainties for a broad range of parameter inference
problems.
Often, there is more than one model that can explain

observational data. In this case, one needs to have a possibility
to quantitatively compare competing models. A good model
should have the following properties:

1. The best fit produced by the model should be close to the
observed data points.

2. The model should not be overfitted by having too many
free parameters.

3. It should be confined in the parameter space. The model
parameters should be well constrained based on the
observational data.

4. It should be confined in the observational data space. The
model should not predict observations far away from the
actual data points.

To assess a model within the traditional best-fitting approach
the reduced χ2 criterion is mainly used. Though it allows us to
assess the best fits (point 1) and accounts for the number of
model parameters (point 2), it does not take into account the
last two items from the list above and ignores the model
confinement in the parameter and data spaces. In contrast, the
Bayesian analysis offers a model comparison criterion called
the Bayes factor that assesses the whole models, not only the
best fits, and transparently accounts for all four properties
mentioned in the list above.
The advantage of the Bayesian approach could be illustrated

by the following specific example. In coronal seismology, one
of the standard operations is the determination of parameters of
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kink oscillations. Suppose the observations give us a time series of
the oscillating displacements of a coronal loop. Theory predicts
that the oscillation could be damped by either exponential or
Gaussian law, and that the oscillation could be a superposition of
several harmonics. Thus, the observationally obtained time series
could be approximated by several different theoretically prescribed
functions. For each specific function, its parameters that best fit the
data could be determined by the MLE or LSE. However, the
Bayesian analysis allows us to compare the quality of fittings by
those different functions with each other.

The aim of this work is to provide the solar physics community
with a reliable and easy to use tool for Bayesian analysis of
observational data, including parameter inference and model
comparison. Although there are a few efforts to bring Bayesian
methodology to the IDL community (see, e.g., idl_emcee sampler
athttps://github.com/mcfit/idl_emcee), according to our knowl-
edge our IDL code provides unique features such as high-level
routines for “fitting” observational data and numerical tools for
Bayesian model comparison.

This paper is organized as follows: the Bayesian method and
techniques used in the code are presented in Section 2, the code
itself is described in Section 3, tests of the sampling algorithm are
performed in Section 4, the code is demonstrated by applying it to
simple test problems in Section 5, and to practical solar physics
problems in Section 6. Concluding remarks are presented in
Section 7.

2. Bayesian Approach to Parameter Inference

A parameter inference problem implies that the observed data
D can be explained in terms of the model M (i.e., an analytical
function such as a sinusoid, a Gaussian, or even an underlying
numerical code) having a parameter set θ=[θ1,θ2, ..., θn]. For
example, in the case of a sinusoidal function, θi can be the values
of the period, amplitude, and phase. Thus, the aim is to find the
value of the parameters θ that gives the best possible agreement
with the observed data D. The formulation of the Bayesian
parameter inference relies on four main definitions:

1. The prior PDF P(θ) represents our knowledge about the
model parameters θ before considering the observational
data D. For example, this could be knowledge from
previous measurements or a requirement that the
particular model parameter lies inside a certain range.

2. The sampling PDF P(D|θ) describes the conditional
probability to obtain the observed data D given that the
model parameters θ are fixed. The sampling PDF is
closely related to the measurement errors. For example, if
measurement errors in our experiment follow (or can be
assumed to follow) the normal distribution, the sampling
PDF would be a normalized Gaussian.

3. The likelihood function is literally the sampling PDF P(D|θ)
considered as a function of θ with fixed D. We note that in
contrast to the sampling PDF, the likelihood function is not a
probability density. In particular, its integral over θ is not
equal to unity. To become a posterior PDF, the likelihood
function needs to be normalized.

4. The posterior PDF P(θ|D) describes the conditional
probability that the model parameters are equal to θ under
condition of observed data being equal to D. This function
represents our knowledge on the model parameters θ after
the observation, when the observed data D is known
and fixed.

The Bayes theorem connects prior and posterior probability
density functions and describes how the observational data D
affects our knowledge about model parameters θ:

q
q q

=P D
P D P

P D
. 1( ∣ ) ( ∣ ) ( )

( )
( )

The normalization constant P(D) is the Bayesian evidence or
marginalized likelihood:

ò q q q=P D P D P d . 2( ) ( ∣ ) ( ) ( )

For our prescribed prior probability P(θ) and likelihood P(D|θ)
functions, the posterior probability distribution P(θ|D) can be
readily computed for any value of the parameter set θ using the
Bayes theorem in Equation (1). However, in practical
applications, we are interested in finding an estimate and
corresponding uncertainties for each parameter θi.
The most common choice in Bayesian statistics for an

estimate of unknown parameters θ is a maximum a posteriori
probability (MAP) estimate θMAP which is a point in the
parameter space where the posterior PDF reaches its global
maximum. Other estimates, e.g., the expected value or the
median can be also used.
To put uncertainties around the estimate, one needs to

calculate the marginalized (integrated) posteriors

òq q q q q= ¹P D P D d, ,..., . 3i N k i1 2( ∣ ) ( ∣ ) ( )

For a simple low-parametric model (two to three parameters),
the multiple integrals in Equation (3) can be directly calculated
using standard numerical methods. Unfortunately, it is
practically impossible to use direct numerical integration for
complicated models with a large set of parameters. Indeed,
every additional parameter increases the computation time by
several orders of magnitude. Therefore, sampling methods
based on MCMC are preferable for complex models. MCMC
allows us to obtain samples from the posterior probability
distribution P(θ|D). When enough samples are obtained, the
marginalized posterior (Equation (3)) can be approximated by a
histogram of the corresponding model parameter θi.

2.1. Posterior Prediction

Once the most credible value θMAP of the model parameters
is determined, one can calculate the predictive distribution of
observational data points (i.e., what the next observation Dnew

could be):

q q q= =P D P D . 4new MAP new MAP( ∣ ) ( ∣ ) ( )

However, Equation (4) does not account for the estimate θMAP

being uncertain itself. This uncertainty comes from the observa-
tional errors and model limitations, and is the width of the posterior
PDF in the vicinity of its global maximum. To account for all
uncertainties correctly, the posterior predictive distribution

ò q q q=P D D P D P D d 5new new( ∣ ) ( ∣ ) ( ∣ ) ( )

is used. It is usually broader than the distribution given by
Equation (4) because of the additional uncertainties in θ.
The posterior predictive distribution can be used for two

purposes. The first is to forecast future observations and to
provide reliable prediction intervals, if the model allows for
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extrapolation in time. The second application is a so-called
posterior predictive check, which allows for assessment of the
consistency of the chosen model with the observations in terms
of confinement of the model in the data space. A reliable model
should produce a narrow distribution predicting possible
observations of the same process to be close to the actual data
points.

2.2. Model Comparison

Before discussing model comparison criteria let us list
properties of a good model:t

1. the data points are well approximated by the best fit
provided by a model;

2. the model is sufficiently simple and does not “overfit”
the data;

3. the model is well confined in the parameter space and
provides sufficiently small uncertainties for free para-
meter estimates;

4. the model is well confined in the data space and does not
predict possible observations far away from the actual
data points.

The meaning of the words “well” and “sufficient” is, of course,
subjective. However, if one has to select the best model from
several available options, these criteria become objective and
can be quantitatively assessed.

A problem of model comparison often appears in a data
analysis workflow. This problem is traditionally used by
applying one of the best-fit comparison criteria such as the
classical (reduced) χ2 and likelihood ratio tests or the more
elaborated Akaike information criterion (AIC) and Bayesian
information criterion (BIC). The latter two are based on
information theory and Bayesian statistics, respectively. All
criteria mentioned above are based on comparison of the
deviation of the found fit from the data points. The AIC, BIC,
and reduced χ2 have a special term to penalize models with
larger number of free parameters.

Despite the great success, all best-fit comparison criteria,
including the BIC and AIC, have a major drawback. They
compare only the best fits, while the model complexity is
accounted for only partially by having an additional term
dependent on the number of free parameters. Thus, the best-fit
comparison criteria address only point 1 and partially point 2 in
the list above.

The Bayesian approach provides us with a quantitative
model comparison technique which transparently addresses all
properties of a “good” model mentioned above. The technique
is based on calculating the Bayesian evidence (2).

To understand the meaning of Bayesian evidence, let us use
the Bayes theorem to compute the posterior probability of a
model Mi in the case of N competing models M1, M2 ... MN:

=P M D
P D M P M

P D
, 6i

i i( ∣ ) ( ∣ ) ( )
( )

( )

where P(Mi) is the prior probability of model Mi. The
likelihood term P(D|Mi) is nothing but Bayesian evidence for
model Mi defined as in (2). P(D) is a normalization constant

and can be computed as

å=
=

P D P D M P M . 7
i

N

i i
1

( ) ( ∣ ) ( ) ( )

After applying the Bayes theorem, the Bayesian evidence
becomes a posterior probability for a model to be true under
condition of observed data D.
Thus, posterior model probabilities (6) are a complete

solution for the model comparison within the Bayesian
approach. It transparently addresses all points listed in the
beginning of this section, accounts for prior model probabilities
and determines the posterior probabilities of every competing
model. These probabilities allow for the quantitative model
comparison and should be interpreted in a Bayesian sense as a
degree of belief, where 0 is impossible and 1 is absolutely true.
The key ingredient in the Bayesian model comparison is the

Bayesian evidence. Unlike best-fit metrics (χ2, likelihood
maximum value, AIC, BIC, and others), it is an integral over
the whole parameter space and, thus, is rather a function of the
whole model than a best-fit metric.
Quantitative comparison of two models M1 and M2 with

equal prior probabilities can be done by calculating the Bayes
factor (Jeffreys 1961) which is the ratio of Bayesian evidences
(and posterior probabilities) for models M1 and M2:

=B
P D M

P D M
, 812

1

2

( ∣ )
( ∣ )

( )

where the evidences P(D|M1) and P(D|M1) are calculated
according to Equation (2). Traditionally, the doubled natural
logarithm of this factor is used, i.e.

=K B2 ln , 912 12 ( )

where values of K12 greater than 2, 6, and 10 correspond
to “positive”, “strong,” and “very strong” evidence for model
M1 over model M2, respectively (Kass & Raftery 1995). The
calculation of corresponding posterior model probabilities
using (6) and assuming P(M1)=P(M2)=0.5 gives P(M1|D)
of 73%, 95%, and 99% for “positive,” “strong,” and “very
strong” evidence, respectively.

3. Description of the Code

SoBAT consists of the following subroutines and functions:

1. MCMC_FIT is a high-level routine used to fit y=f (x,θ)
dependence to the measured data points [Xi, Yi] with
normally distributed measurement errors N(0, σ). The
errors σ can either be provided by the user via the
ERRORS keyword or automatically inferred as an
additional free parameter. The input parameters are the
observational data points [Xi, Yi], initial guesses for the
free parameters of the model, the IDL function
implementing y=f (x) dependence, and an array of
priors for each parameter. The generated samples will be
returned in the SAMPLE keyword parameter.

2. MCMC_FIT_EVIDENCE function can be used to calcu-
late the Bayesian evidence (2) from the output of the
MCMC_FIT subroutine. The input parameters are gener-
ated samples, data points [Xi, Yi], priors and an IDL
function implementing y=f (x) dependence. The func-
tion returns the calculated evidence as a scalar value.
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3. MCMC_SAMPLE is a low-level function which generates
samples from a target function provided by the user. This
function allows the user to sample a custom posterior
PDF and should be used for the cases where the observed
data cannot be modeled as y=f (x,θ)+N(0,σ). The
input parameters of MCMC_SAMPLE function are the
initial guess, the IDL function that calculates the target
PDF to sample, and the number of samples to generate.
The MCMC_SAMPLE returns generated samples as an
array.

4. MCMC_EVIDENCE function can be used to calculate the
Bayesian evidence (Equation (2)) from the output of the
MCMC_FIT subroutine. The input parameters are the IDL
function calculating the posterior PDF and samples array
returned by the MCMC_SAMPLE function. The computed
evidence is returned as a scalar number.

5. Functions for constructing priors, namely PRIOR_UNI-
FORM, PRIOR_NORMAL, PRIOR_HALFNORMAL, and
PRIOR_EXPONENTIAL, allow the setup of prior
distributions for the free parameters. SoBAT also
provides the PRIOR_CUSTOM routine, which allows
the passing of a user-defined IDL function as a prior PDF.

3.1. Sampling Algorithm

To generate a large number of samples from the posterior
distribution, SoBAT uses the MCMC technique. The margin-
alized posterior PDFs are then approximated by the histograms
of these samples.

The MCMC sampling algorithm is the most important part
of our code. It can generate samples from the posterior
distribution using any target function f (θ) which is proportional
to the posterior PDF P(θ|D) and is a known continuous
function that can be calculated for any value of θ. Thus, the
knowledge of the normalization constant (Equation (2)) is not
required for the inference.

Our sampling algorithm is the classical random walk
Metropolis–Hasting sampler with the multivariate normal distribu-
tion used as a proposal distribution. Its covariance matrix ŝ is
automatically tuned to keep the acceptance rate in the range of
10%–90% during the whole sampling procedure. In order to
generate the whole sequence of samples (chain) with the same
proposal distribution, we restart the sampling procedure every time
when the proposal distribution is tuned. The detailed description of
the algorithm is given below.

1. Initialize the starting point in the parameter space, Θ0.
2. Estimate the local covariance matrix ŝ for θ=Θ0.
3. Simulate the proposed sample Ξi from the multivariate

normal distribution sQN ,i( ˆ ) with the expected value Θi

and covariance matrix ŝ.
4. Compute the ratio R=f (Ξi|D)/f (Θi|D).
5. Pick a random number ε between 0 and 1.
6. Produce a new sample Θi+1:

e
e

Q = X = +
Q = Q = + >

+

+

N N R
N N R

accept: ; 1; if
reject: ; 1; if .

i i

i i

1 a a

1 r r

( )
( )

⎧⎨⎩
7. Calculate the acceptance rate r=Na/(Nr+Na).
8. If r<10% or r>90%5 then set Θ0=Θi+1 and go to

step 2.

9. Repeat steps 3–8 until the desired number of samples is
generated.

10. Return all collected samples Θi as a result.

After several restarts, the sampling algorithm usually finds
the maximum probability area and stabilizes there with the
acceptance rate at about 10%–90%. Note that there is no
guarantee that the algorithm will find the global maximum for a
given number of iterations. Therefore, we recommend provid-
ing a rather good initial guess and generating a sufficiently
large number of samples.

3.1.1. Burning in Stage

The developed code runs the sampling procedure twice. The
first run is the so-called “burning in” and is used to allow
the chain to explore the parameter space and to converge to
the global probability maximum in the parameter space. The
second chain (main sampling) starts from the high probability
area found during the burning in stage and may use the samples
obtained during the first run to construct the optimal proposal
distribution. The chain collected during the main sampling is
then returned as a sampling result.

3.2. Estimation of the Proposal Distribution

The selection of the proposal distribution is essential for
constructing an effective Metropolis–Hastings sampler. The
developed code uses the multivariate normal distribution with
the expected value μ=Θ0 and the covariance matrix ŝ, which
is tuned to reflect the local properties of the parameter space
and to achieve an optimal acceptance rate. The algorithm of the
calculation of the optimal covariance matrix ŝ is given below.

1. Initialize variables.
(a) Θ0—a position in the parameter space
(b) ŝ—an initial guess for the covariance matrix
(c) S—an array to store generated samples

2. Simulate the proposed sample Ξi from the multivariate
normal distribution sQN ,0( ˆ ) with the expected value Θ0

and covariance matrix ŝ.
3. Compute the ratio = X

Q
Q
X

R min ,f D

f D

f D

f D
i

i0

0( )( ∣ )
( ∣ )

( ∣ )
( ∣ )

.

4. Generate a random number ε between 0 and 1.
5. If ε�R, accept and save sample S←Ξi;Na=Na+1

or reject it Nr=Nr+1 otherwise.
6. Calculate the acceptance rate r=Na/(Nr+Na).
7. Tune ŝ for better acceptance rate

(a) if r=0 during 500 subsequent iterations, set s s= 0.5ˆ ˆ
(b) if r>50%, set s s= 1.1ˆ ˆ

8. If more than 500 samples were accepted, set s =ˆ
Scovariance( )

9. Repeat steps 2–8 until the desired number of samples is
generated.

10. Return covariance(S) as a result.

3.3. Quantitative Model Comparison

The code allows evidences to be calculated by numerical
evaluation of the integral given by Equation (2). The ratio of
evidences for two models is the Bayes factor and can be
interpreted as described in Section 2.2. The numerical
integration of Equation (2) is implemented using the impor-
tance sampling Monte-Carlo technique (Hastings 1970). As an
importance function, we use a multivariate Gaussian with the5 For a particular problem this range can be tuned.
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covariance matrix computed from the simulated MCMC
samples from the posterior distribution.

To compute evidence for a given model, SoBAT offers the
MCMC_EVIDENCE function. The function has three required
parameters:

1. f (θ)—a function computing the natural logarithm of a
target function proportional to the posterior PDF;

2. Si,i=1..Ns—samples simulated from the posterior by
the MCMC_SAMPLE function;

3. N—number of iterations for the Monte-Carlo integration.

The importance sampling Monte-Carlo integration is inter-
preted in the following form:

1. Estimate the covariance matrix s[ ˆ ] and the expected value
[μ] from the posterior samples. The PDF n(θ) of the the
multivariate normal distribution m s ,( ˆ ) will be used as
the importance function.

2. Repeat N times (i=1..N):
(a) simulate a position6 θi in the parameter space from the
multivariate normal distribution m s , ;( ˆ )
(b) compute the value of the importance function for the

current position g i= n( θ i);
(c) compute the target function f ( θ) for the current

position in the parameter space f i= f ( θ i).
3. The integration result is calculated as å =N i

N f

g

1
1

i

i
.

Here, importance sampling is used to improve the conv-
ergence of the Monte-Carlo integration. The form of the
specific importance function does not have any implication for
the posterior PDF. Therefore, though we use the multivariate
Gaussian as the importance function, the posterior PDF can still
be an arbitrary function more or less confined in the parameter
space.

3.4. Fitting Functions

One of the most frequent applications of the Bayesian
analysis and MCMC is to infer parameters θ of a model M
which is an analytical function that describes theoretical
dependence of y upon x and has a set of free parameters θ:

q=y M x,( )

from the observed data points (D=[Xi,Yi]:i=1..N) where N
is the number of data points, and Xi and Yi are empirically
determined values of x and y in the ith measurement. The
uncertainties of the fitted parameters q q q q= , , , N1 2 p[ ] also
have to be estimated. SoBAT contains the (MCMC_FIT) routine
which aims to solve this problem.

MCMC_FIT utilizes the assumption that the error corresp-
onding to Y measurements is normally distributed with the
standard deviation σY. Thus, the likelihood function is the
product of N Gaussians

q
ps

q
s

= -
-

=

P D
Y M X1

2
exp

,

2
. 10

Y i

N
i

Y
2

1

2

2N
2

( ∣ )
( )

[ ( )] ( )
⎧⎨⎩

⎫⎬⎭
The measurement error σY is considered as one of the unknown
parameters. It is also assumed to be the same for all data points
and is inferred during the MCMC simulations together with θ.

As a priori knowledge, a user can provide a range of the
possible model parameter values θ:

q q q  .i i i
min max

Thus, our prior probability distribution can be expressed as
follows

q q q q=
=

P H , , , 11
i

N

i i i
1

min max( ) ( ) ( )

where q q qH , ,i i i
min max( ) is the PDF of a uniform distribution in

the range q q,i i
min max[ ] which is defined as

q q q
q q q

= q q-
 

H , ,
,

0, otherwise
. 12i i i

i i imin max
1 min max

i i
max min( ) ( )

⎪

⎪

⎧
⎨
⎩

3.5. Posterior Predictive Check

One of the ways to check the correctness of the parameter
inference is to estimate the posterior predictive distribution by
sampling from it during the main sampling procedure. In the
MCMC_FIT routine, Equation (10) is used to generate a sample
from the posterior predictive distribution of the measured data
[Y] for every sample from the posterior distribution [P(θ|D)].
The generated samples are returned in the ppd_sample
keyword parameter. An example of using MCMC_FIT routine
for sampling posterior predictive distribution can be found in
Listing 2.
In the case of a user-supplied posterior PDF, the user has to

use the lower level MCMC_SAMPLES routine and is responsible
for simulating samples from the posterior predictive distribu-
tion and returning them in the ppd_sample keyword within
the user-supplied IDL function computing posterior PDF.

4. Tests of the Sampling Algorithm

The designed sampling algorithm (see Section 3.1) uses a
multivariate normal distribution as a proposal. Therefore, the
robustness of the sampling procedure should be tested on target
distributions that are significantly different from the normal
distribution. In this section, we present such tests for univariate
and bivariate target densities.

4.1. 1D Target Distributions

To test the sampling procedure used in the developed code,
we selected the following 1D distributions: slightly asymme-
trical triangular

=

<

< <

-
- -

-
- -



f x

a x c

c x b

for ,

for ,

0 otherwise

x a
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with a=0.5, b=3, and c=2.5 (see Figure 1(a)); uniform
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with a=0.5 and b=3 (see Figure 1(b)); exponential
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0 otherwise
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⎧⎨⎩6 Here θi denotes the full vector of free parameters.
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with λ=1 (Figure 1(c)); and a bimodal mixture of two normal
distributions with different expected values and dispersions

ps ps
= +

m

s

m

s

- -

f x e e0.8
1

2
0.2

1

21
2

2
2

x x1
2 1

2
2

2 2
2( )

with μ1=0, μ2=7, σ1=2, and σ2=1 (see Figure 1(d)).
Normalized histograms of the 105 MCMC samples generated
for each distribution are shown in Figure 1. The obtained
histograms perfectly coincide with the corresponding target
densities shown in Figure 1 with solid black lines.

4.2. 2D Target Distributions

To demonstrate the correctness of the sampling procedure in
the multiparametric case, we present the testing results for a set
of bivariate target probability densities. We selected 2D
versions of the distributions used in Section 4.1: pyramid
(Figure 2(a)), 2D uniform distribution bounded by a square
(Figure 2(a)), 2D exponential distribution, and a mixture of
three bivariate normal distributions with different expected
values and covariance matrices. The 2D histograms (see
Figure 2) perfectly coincide with the target densities, shown in
Figure 2 by contours.

5. Examples of Usage

In this section, we demonstrate examples of using the
SoBAT library to fit a simple linear dependence and consider
an example of the Bayesian model comparison.

5.1. Fitting a Linear Dependence

Let us consider a simple example of fitting a set of synthetic
data points Xi, Yi by a linear function to illustrate the practical
usage of SoBAT. The synthetic data points in our example are

generated using the linear dependence with the addition of
normally distributed noise

s= + +Y kX b N 0, ,i i ( )

where k=0.5, b=1, and σ=2.
First, we need to specify the model as a function describing

the linear dependence of y upon x. The model function for the
linear dependence is given in Listing 1.

Listing 1.

Model function for the linear dependence

1function lin_model, x, params
2k=params [0]
3b=params [1]
4return, k ∗ x+b
5end

Then, we define priors and initial guesses for the model
parameters k and b (lines 2–6 in Listing 2). For the parameter k,
the prior is defined as a normal distribution with zero
expectation and standard deviation of 2, while for the
parameter b, we set a uniform prior. After the call of
MCMC_FIT function (lines 12–16 in Listing 2), the variable
fit will contain the best-fitting values for Y. The fitted
parameters values and corresponding uncertainties will be
stored in the pars and credible_intervals variables.
The MCMC samples will be returned in the samples
keyword. The latter can be used to plot histograms approx-
imating the marginalized posterior distributions. The histo-
grams obtained for the slope (k), bias (b), and noise level (σ)
are given in Figures 3(b)–(d). Note that the true parameter

Figure 1. Normalized histograms of 105 MCMC samples obtained from different univariate target distributions: asymmetric triangular (a), uniform (b), exponential
(c), and a mixture of two normal distributions (d). The target distributions are plotted over histograms with solid black lines.

Figure 2. 2D histograms (background color) of 105 MCMC samples obtained from different bivariate target distributions: pyramid (a), uniform (b), exponential (c),
and mixture of three normal distributions (d). The target distributions are shown by contours.
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values (green vertical lines in Figure 3) do not coincide with
global maximum of the histograms, but lie within the high
probability area illustrated by the histograms. Such a behavior
is expected because our inference (as any measurement) is
uncertain. The uncertainty is described by the width of the
histograms and can be quantified for an arbitrary level of
significance by computing credible intervals as percentiles of
the samples generated with the MCMC code.

The keyword variable ppd_samples (line 16 in Listing 2)
will contain samples from the predictive posterior distribution
(PPD) in the form of an array with dimensions of [Nd, Ns],
where Nd is the number of data points and Ns is the number of
samples. Figure 4 demonstrates a 2D histogram of the PPD
overplotted with the data points. The plot in Figure 4
characterizes our inference as being correct and consistent
with the data, since the entire high probability area predicted by
the PPD is covered with data points on one hand, and there are
no data points located in the white colored areas where the PPD
probability is nearly zero on the other hand.

Listing 2.

Running MCMC fitting of the linear dependence for the data defined by Listing
1 (line 3 has been changed, line 16 has been added)

1; define priors
2priors=objarr (2)
3priors [0]= prior_normal (0d, 2d)
4priors [1]= prior_uniform (−5d, 5d)
5; define the initial guess
6pars=[1d, 1d]
7; define the number of samples
8n_samples=100000
9; define the number of burn in samples
10burn_in=10000
11; run MCMC fitting
12fit= mcmc_fit (x, y, pars, “lin_model,” $
13priors=priors, burn_in=burn_in, $
14n_samples=n_samples, samples=samples, $
15credible_intervals=credible_intervals, $
16ppd_samples=ppd_samples)

5.2. Example of Bayesian Model Comparison

To illustrate quantitative comparison of different user-
defined models, we use the same synthetic data set as in
Section 5.1 with the linear dependence contaminated by white
noise. Now we attempt to fit it with a second model with the
quadratic dependence:

s= + + +y kx b cx N 0, . 132 ( ) ( )

Listing 3 shows the IDL representation of this model.

Listing 3.

Model function for the quadratic dependence

1function quad_model, x, params
2k=params [0]
3b=params [1]
4c=params [2]
5return, k ∗ x+b+c ∗ x ̂2
6end

The MCMC Bayesian inference is done for both models and
then the models are compared by calculating the Bayes factor.
Figures 5 and 6 show the MCMC inference results for the
quadratic model given by Equation (13). Though the best fits
and posterior predictive distributions (see Figures 4 and 6) are
very similar, the histograms of marginal posterior distributions
are found to be significantly broader in comparison with the
linear case. This demonstrates that the additional quadratic term
does not improve the fit. The χ2 and reduced χ2 metrics are
almost the same for both models (see Table 1) and do not show
any significant advantage of one model against the other.
SoBAT includes the MCMC_EVIDENCE function which

allows us to calculate Bayesian evidences and hence the Bayes
factor for comparing the models as described in Listing 4,
where samples_l and samples_q are the MCMC samples
simulated using the linear and quadratic models, respectively.
The computed Bayes factor (28.8) indicates very strong
evidence in favor of the linear model. This result is expected

Figure 3. (a) Linear dependence y=kx+b (green line) fitted to the noisy
synthetic data points (crosses) using the MCMC_FIT function. (b)–(d)
Normalized histograms approximating marginalized posterior distributions of
the gradient k (b), bias b (c), and noise level σ (d) obtained from 105 MCMC
samples. True values of the parameters used to generate synthetic data points
are shown by vertical green lines on panels (b)–(d).

Figure 4. Posterior predictive probability distribution for a linear dependence
fitted to the noisy synthetic data using the MCMC_FIT function. Data points are
indicates by white circles while the white line shows the best fit.
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since we generated the synthetic data using the linear
dependence with the background normally distributed noise.

Listing 4.

Calculating the Bayes factor

1e_l= mcmc_fit_evidence(samples_l, $
2x, y, priors, “lin_model”)
3e_q= mcmc_fit_evidence (samples_q, $
4x, y, priors, “quad_model”)
5Bayes_factor=e_l/e_q

6. Application to Coronal Seismology Problems

In this section we illustrate the application of SoBAT to
problems in solar physics.

6.1. Coronal Loop Seismology Using Damped Kink
Oscillations

Coronal loops are frequently observed to perform large-
amplitude, rapidly damped, transverse oscillations when
perturbed by events such as flares and coronal mass ejections.
Their rapid damping is explained by resonant absorption which
causes a transfer of energy from the kink mode to the torsional
Alfvén mode (e.g., see the recent review by De Moortel et al.
2016). Pascoe et al. (2013) proposed a method to infer the
transverse density profile in the oscillating coronal loop using
the shape of the damping profile of the kink oscillation (Pascoe
et al. 2012, 2015, 2016a, 2019; Hood et al. 2013). The method
was first applied in Pascoe et al. (2016b) using a Levenberg–
Marquardt least-squares fit to the data using the IDL code MPFIT
(Markwardt 2009). It was extended in Pascoe et al. (2017a) to
include additional physical effects and also use Bayesian
inference. Pascoe et al. (2017c) also included the presence of a
large initial displacement of the loop equilibrium position. A
benefit of the MCMC approach is that we can readily extend
our models in this way, allowing us to investigate further
details in the data.
We note that in previous applications of our MCMC code

to coronal seismology (Pascoe et al. 2017a, 2017b, 2017c;
Goddard et al. 2017), posterior summaries were given using the
median value (and uncertainties by the 95% credible interval).
Here (and in Pascoe et al. 2018, 2020) the MAP estimate is
used rather than the median.
In this paper, we use the simplified version of the oscillation

profile model published in Pascoe et al. (2017a):

f
= +

+

<

p- t 
y t y t

A e t

x t
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, 0
, 14
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where f = arcsin x

A0
0

0( ) is the initial phase, A0 is the initial

amplitude, t0 is the start time of the oscillation, = -t t t0˜ , P is
the oscillation period, and x0 is the initial displacement which
prescribes the oscillation phase. The parameter n prescribes the
damping profile. The background trend (ytr) prescribes the
equilibrium position and is calculated using spline interpolation
from the reference points located at the time instances when the
loop comes through the equilibrium (blue diamonds in Figure 7).
The positions of the reference points are free parameters of the
model and are identified during the Bayesian inference.
As an example, we consider the time series of the loop position

taken for Event 43 Loop 3 from the catalog of oscillations by
Goddard et al. (2016). This loop is also referred to as Loop#1 in
the seismological analysis by Pascoe et al. (2016b, 2017a). The
observational data points and the best fit obtained using the
MCMC_FIT function are shown in Figure 7. The histograms
approximating marginal posterior distributions of oscillation
period, amplitude, decay time, initial displacement, start time,
and the position of a trend reference point are given in Figure 8.
The posterior predictive distribution inferred using our MCMC

code is given in Figure 9. The shaded area demonstrates the
region on the plot where the data points are predicted to be

Figure 5. Normalized histograms approximating marginalized posterior
distributions of the slope k (a), bias b (b), quadratic term c (c) and noise
level σ (d) obtained from 105 MCMC samples using the quadratic model
y=kx+b+cx2. True values of the parameters used to generate synthetic
data points are shown by vertical green lines.

Figure 6. Posterior predictive probability distribution for a quadratic
dependence fitted to the noisy synthetic data using the MCMC_FIT function.
Data points are indicates by white circles while the white line shows the best fit.

Table 1
Quantitative Comparison of the Linear and Quadratic Models

Model
Chi-

squared
Reduced chi-

squared Evidence
Bayes
Factor

M1: Linear 346.8 3.539 4.7×10−94 28.8
M2: Quadratic 346.2 3.569 1.6×10−95 −28.8
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observed. For a data consistent inversion, the measured data
points should be located inside the shaded region and the shaded
area itself should not broaden far away from the data points. That
means that a model should predict the observed data points, but it
should not predict observations being far away from the actually
observed data.

7. Conclusions

In this paper, we have described a new code written in IDL
to perform MCMC sampling and Bayesian inference for the
purpose of testing data against one or more models. This
method and code is applicable to a wide range of problems. It
requires that the user supplies a function which returns the
predicted values of the data using model parameters, and the
prior ranges for these parameters. These priors may either be
prescribed limits for the parameter, or else reasonable estimates
for the data being considered.

Since the method is based on forward modeling of the data
and efficient sampling of the parameter space it is able to
describe model parameters which have arbitrary posterior
probability distributions. This allows reliable estimations of the
values and uncertainties of model parameters. Furthermore, it
allows the method to accommodate both well-posed and ill-
posed problems. This is convenient for attempts to reliably
extract the maximum information from the available data. For
example, the seismological method of determining the density
profile of coronal loops using damped kink oscillations uses the
shape of the damping profile to make the problem well posed.
In the case of the data not supporting a reliable determination of
the shape, the problem reverts to being ill posed and the
MCMC sampling recovers an inverse relationship between the
density contrast and inhomogeneous layer width (see Pascoe
et al. 2018 for further discussion).

Our code has also been used to estimate the density profile of
a coronal loop (Goddard et al. 2017; Pascoe et al. 2017b, 2018)
using a simple procedure for forward modeling the extreme
ultraviolet (EUV) emission based on the isothermal approx-
imation (e.g., Aschwanden et al. 2007), and recently applied to

the problem of analyzing quasiperiodic pulsations in solar and
stellar flares (Broomhall et al. 2019).
The Bayesian evidence may be used to compare two or more

competing models for the same data. In comparison to other
tests such as the (reduced) chi-squared, its robustness is
increased by considering all prior and posterior information
rather than simply the goodness of the model best fits.
The code is available at GitHub pagehttps://github.com/

Sergey-Anfinogentov/SoBAT. According to our knowledge it
is the only available MCMC code written in IDL which is
ready to use out of the box. Example of the code usage are in
the Appendix and are also available on GitHub.
As the next step, we plan to continue improving the code and

introducing new features. Specifically, we plan to add a possibility
to combine several MCMC inferences in a chain, by forwarding
samples generated in one MCMC inference as a prior distribution
for the next MCMC run. For instance, this will allow us to, e.g.,
infer the density and density contrast from the EUV intensity
profile and use obtained MCMC samples as a prior distribution
for subsequent seismological analysis of kink oscillations.
Currently, the high-level MCMC_FIT routine supports only
normally distributed errors and if the errors are have another
distribution, the user needs to manually introduce the likelihood
function and pass it to the low-level MCMC_SAMPLE routine. To

Figure 7. Best fit (green line) computed for the simplified model of decaying
kink oscillations. Observational data points are shown by gray circles. The
inferred background trend computed by spline interpolation from the reference
points (blue diamonds) is shown by a blue line. The vertical red dashed line
denotes the oscillation start time.

Figure 8. Histograms approximating marginalized posterior PDFs obtained
using the MCMC_FIT routine for the simplified model of exponentially
decaying kink oscillations. The MAP estimates are indicated with the vertical
red lines, while the dotted lines show 95% credible intervals.

Figure 9. Posterior predictive distribution PDF (background color) overplotted
with the observed data points (circles).
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improve the user experience in inferring such problems, we will
add an option of using customized error distributions in the
MCMC_FIT function. Also, we plan to optimize the memory
usage and sampling performance.
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Foundation under research grant No. 18-72-00144 (the develop-
ment of the code, Sections 2–5). V.M.N. was supported by the
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and the STFC consolidated grant ST/T000252/1. D.J.P. was
supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program
(grant agreement No. 724326). The data is used courtesy of the
SDO/AIA team.
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Appendix
Listing of Kink Oscillation Parameter Inference

Listing 5.

Running MCMC fitting of decaying sinusoid into the observed displacements
of the oscillating coronal loop

1pro kink_example_data, x, y 2;observational data points 3x=[0.00, 0.20,
0.40, 0.60, 0.80, 0.99, 1.19, 1.39, 1.59, 1.79, 1.99, 2.19, $

42.39, 2.59, 2.78, 2.98, 3.18, 3.38, 3.58, 3.78, 3.98, 4.18, 4.38, 4.57, $
54.77, 4.97, 5.17, 5.37, 5.57, 5.77, 5.97, 6.16, 6.36, 6.56, 6.76, 6.96, $
67.16, 7.36, 7.56, 7.76, 7.95, 8.15, 8.35, 8.55, 8.75, 8.95, 9.15, 9.35, $
79.55, 9.74, 9.94, 10.14, 10.34, 10.54, 10.74, 10.94, 11.14, 11.34, 11.53, $
811.73, 11.93, 12.13, 12.33, 12.53, 12.73, 12.93, 13.13, 13.32, 13.52, $
913.72, 13.92, 14.12, 14.32, 14.52, 14.72, 14.92, 15.11, 15.31, 15.51, $
1015.71, 15.91, 16.11, 16.31, 16.51, 16.70, 16.90, 17.10, 17.30, 17.50, $
1117.70, 17.90, 18.10, 18.30, 18.49, 18.69, 18.89, 19.09, 19.29, 19.49, $
1219.69, 19.89, 20.09, 20.28, 20.48, 20.68, 20.88, 21.08, 21.28, 21.48, $
1321.68, 21.88, 22.07, 22.27, 22.47, 22.67, 22.87, 23.07, 23.27, 23.47, $
1423.67, 23.86, 24.06, 24.26, 24.46, 24.66, 24.86, 25.06, 25.26, 25.45, $
1525.65, 25.85, 26.05, 26.25, 26.45, 26.65, 26.85, 27.05, 27.24, 27.44, $
1627.64, 27.84, 28.04, 28.24, 28.44, 28.64, 28.84, 29.03, 29.23, 29.43, $
1729.63, 29.83, 30.03, 30.23, 30.43, 30.63, 30.82, 31.02, 31.22, 31.42, $
1831.62, 31.82, 32.02, 32.22, 32.42, 32.61, 32.81, 33.01, 33.21, 33.41, $
1933.61, 33.81, 34.01, 34.21, 34.40, 34.60]
20y=[3.95, 3.79, 3.78, 3.63, 3.81, 3.88, 3.78, 3.72, 3.88, 3.99, 4.17, 4.49, $
214.71, 4.82, 4.96, 5.05, 5.02, 5.00, 5.03, 4.87, 4.73, 4.61, 4.37, 4.23, $
224.01, 3.84, 3.67, 3.49, 3.41, 3.34, 3.67, 4.10, 4.27, 4.56, 4.81, 5.08, $
235.14, 5.28, 5.46, 5.40, 5.37, 5.22, 5.10, 4.97, 4.75, 4.48, 4.27, 4.12, $
243.85, 3.85, 3.73, 3.72, 3.78, 3.90, 4.12, 4.35, 4.54, 4.71, 4.87, 5.01,$
254.99, 5.15, 5.25, 5.22, 5.12, 5.03, 4.93, 4.88, 4.64, 4.51, 4.40, 4.29, $
264.16, 4.09, 4.04, 4.11, 4.20, 4.22, 4.29, 4.36, 4.47, 4.63, 4.78, 4.86, $
275.01, 5.02, 5.13, 5.05, 5.02, 4.97, 4.90, 4.87, 4.72, 4.66, 4.64, 4.61, $
284.57, 4.53, 4.49, 4.46, 4.43, 4.42, 4.49, 4.50, 4.51, 4.55, 4.55, 4.57, $
294.60, 4.66, 4.71, 4.75, 4.77, 4.75, 4.69, 4.67, 4.67, 4.64, 4.59, 4.58, $
304.57, 4.53, 4.52, 4.55, 4.54, 4.53, 4.54, 4.58, 4.65, 4.74, 4.80, 4.77, $
314.81, 4.90, 4.86, 4.85, 4.86, 4.85, 4.88, 4.89, 4.88, 4.88, 4.90, 4.94, $
324.89, 4.87, 4.89, 4.84, 4.80, 4.76, 4.59, 4.71, 4.73, 4.72, 4.70, 4.67, $
334.69, 4.70, 4.71, 4.73, 4.74, 4.81, 4.69, 4.77, 4.72, 4.71, 4.73, 4.77, $
344.68, 4.75, 4.79, 4.72, 4.70, 4.76, 4.65]
35end
36
37; model function accepts keyword parameter N_TREND
38; that will be passed to it
39function model_exp_decay, x, a, n_trend=n_trend
40tstart=a [0];oscillation start time
41period=a [1];oscillation period
42q_factor=a[2];oscillation decay_time
43amp=a [3];initial amplitude

(Continued)

Running MCMC fitting of decaying sinusoid into the observed displacements
of the oscillating coronal loop

44displ=a [4]
45ref_y=a [5:5+n_trend-1];trend reference points
46ref_x= linspace (x[0], x[-1],n_trend)
47tau=q_factor∗period;decay time
48tosc=x-tstart
49omega=2.d ∗!dpi/period
50phi= asin ((displ));initial phase
51; decaying profile
52damp=amp∗ exp (-(tosc/tau)1̂) ∗ (x ge tstart)
53oscillation=damp ∗ sin(omega∗(tosc>0d) + phi)
54trend= spline (ref_x, ref_y, x)
55return, trend + oscillation
56end
57
58pro example_kink
59kink_example_data, x, y
60plot, x, y, /psym
61; use 5 reference points for the trend
62n_trend=5
63; initial values
64pars=[1d, 2d, 2d, 1d, 0d, 5d, 5d, 5d, 5d, 5d]
65priors=[$
66prior_uniform(0d, 5d), $ ; start time
67prior_uniform(1d, 10d), $ ; period
68prior_uniform(1d, 10d), $ ; q factor
69prior_uniform(0d, 10d), $ ; amplitude
70prior_uniform(-1d, 1d), $ ; initial displacement
71; trend reference points
72replicate (prior_uniform (min(y), max(y)), n_trend) $
73]
74model=“model_exp_decay”
75; sample posterior distribution using the MCMC
76y_fit= mcmc_fit(x, y, pars, model, n_samples=100000 l, prior-
s=priors, $

77burn_in=50000 l, samples=samples, n_trend=n_trend)
78end
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