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Abstract

Impulsively excited sausage oscillations of a plasma cylinder with a smooth radial profile of Alfvén speed are
analyzed with a numerical solution of the initial-value problem for a partial differential equation of the Klein–
Gordon type, describing linear magnetoacoustic oscillations with a fixed axial wavelength and an azimuthal mode
number. The range of analyzed ratios of Alfvén speeds outside and inside the cylinder is from 2 to 10. Both trapped
and leaky regimes of the oscillations are considered. It is shown that even in the long-wavelength limit, i.e., for
axial wavenumbers much smaller than the cutoff values, damping times of higher radial sausage harmonics could
be significantly greater than the oscillation periods, i.e., several oscillation cycles could be present in the signal.
The quality factors decrease with decfreasing ratios of Alfvén speeds outside and inside the cylinder. Oscillation
periods of the second and third radial harmonics remain practically independent of the axial wavelength even when
the wavelength is shorter than the radius of the cylinder. The ratios of oscillation periods of fundamental and higher
radial and axial harmonics are found to be significantly different, up to a factor of two in the long-wavelength limit.
It is concluded that higher radial harmonics could be responsible for the departure of observed sausage oscillation
signals from a harmonic shape, especially during the first several cycles of the oscillation. Even in the absence of
spatially resolved data, higher axial and radial harmonics can be distinguished from each other by the period ratios.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Solar oscillations (1515); Magnetohydrody-
namics (1964)

1. Introduction

Solar flare emissions commonly show flux variations called
quasi-periodic pulsations (QPPs). QPPs have been observed in
a wide range of wavelengths from radio to gamma-rays (see,
e.g., Nakariakov & Melnikov 2009; Van Doorsselaere et al.
2016; McLaughlin et al. 2018, for comprehensive reviews). In
solar flares the period of QPPs ranges from sub-seconds to a
few tens of minutes, while in longer stellar flares the QPP
period can reach one hour or longer (e.g., Pugh et al. 2016). It
has become clear that QPPs are a common and possibly
intrinsic feature of flares (Kupriyanova et al. 2010; Simões
et al. 2015; Inglis et al. 2016). Various mechanisms of QPPs
have been suggested (Van Doorsselaere et al. 2016; McLaugh-
lin et al. 2018), with two major categories comprising
magnetohydrodynamics (MHD) oscillations and repetitive
regimes of magnetic reconnection (magnetic dripping). How-
ever, other options remain open. One interesting feature of
QPPs is the often detected anharmonic modulation patterns,
i.e., the shape of the oscillatory signal could be different from
the harmonic one (Nakariakov et al. 2019). Possible mechan-
isms responsible for the anharmonic signal are the coalescence
instability of two coronal loops (Tajima et al. 1987; Kolotkov
et al. 2016), MHD auto-oscillations (Nakariakov et al. 2010)
and the superposition of several different oscillation modes
(e.g., Van Doorsselaere et al. 2011; Kupriyanova et al. 2013;
Kolotkov et al. 2015).

Theoretical models describing MHD oscillations, which
have been used for interpretation of QPPs, are usually based on
the consideration of standing perturbations of a straight
magnetic cylinder or a slab that represents the flaring loop
(e.g., Rosenberg 1970; Zajtsev & Stepanov 1975; Edwin &
Roberts 1983). Properties of different MHD modes are

determined by a set of three mode numbers that describe the
mode structure in the radial, azimuthal, and axial directions.
The axisymmetric fast magnetoacoustic mode, with the
azimuthal number m=0, is called a sausage mode. This
mode is also known as “radial” or “peristaltic.” The need to
satisfy the line-tying boundary conditions at the photospheric
footpoints of the oscillating loop introduces the axial
wavenumber kz. The axial mode number is the number of
axial half-wavelengths along the loop. The wave with the
lowest axial mode number is called the fundamental, or global
mode (Nakariakov et al. 2003). The number of nodes in the
radial structure of the radial velocity in a sausage oscillation
determines the radial wavenumber.
In observations, sausage modes appear to be responsible for

QPPs the periods ranging from a fraction of a second up to a
minute (e.g., Van Doorsselaere et al. 2016), which is usually
detected in the non-thermal emission. In particular, Nakariakov
et al. (2003) interpreted 4–17s QPPs of the gyrosynchrotron
emission in a solar flare, as a fundamental sausage harmonic.
Van Doorsselaere et al. (2011) associate 8.5s QPP in the
flaring chromospheric and coronal emission with a sausage
oscillation. Su et al. (2012) interpreted sub-minute quasi-
periodic variations of the EUV intensity with sausage
oscillations. Yu et al. (2013) demonstrated that 1 s wiggles of
zebra patterns in the dynamic spectra of the radio emission
generated by a flare could be produced by a sausage oscillation.
Tian et al. (2016) interpreted 25 s oscillations of the intensity
and Doppler shift of the Fe XXI in a flare as a sausage
oscillation. The observed quarter-period phase shift between
the Doppler shift and intensity oscillations strengthens this
interpretation. Mészárosová et al. (2016) found signatures of
sausage oscillations with characteristic periods of 0.7s and 2s
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in the broadband microwave emission around 1GHz.
Recently, Carley et al. (2019) suggested that 2.3s QPPs of a
228MHz radio source in a flare were caused by a sausage
oscillation, too. Similar periodicities have been detected in the
lightcurves of stellar flares, suggesting that sausage oscillations
could be present there as well (e.g., Zaitsev et al. 2004;
Contadakis et al. 2004, 2012; Tsap et al. 2011; Doyle et al.
2018).
Sausage modes occur in two regimes: the trapped regime,

when the oscillations are evanescent outside the oscillating
plasma cylinder, and the leaky regime, when the energy is
radiated outward (or “leak”) in the form of fast magnetoacous-
tic waves (e.g., Cally 1986; Vasheghani Farahani et al. 2014).
The two regimes are separated by the cutoff axial wavelength.
Sausage oscillations with an axial wavelength longer than the
cutoff wavelength are subject to damping by leakage, i.e., the
plasma cylinder acts in this regime as a fast magnetoacoustic
antenna. The effectiveness of the wave damping caused by the
leakage is not necessarily high, and the oscillation may be
detectable for several oscillation cycles. In this case, leaky
sausage oscillations could be responsible for observed QPP,
and should not be excluded from consideration (Nakariakov
et al. 2012). The cutoff wavelength of the fundamental radial
harmonic has a finite value in cylinders with a straight,
untwisted magnetic field inside and outside the cylinder, and a
steep density profile (Edwin & Roberts 1983; Nakariakov et al.
2012). However, the fundamental radial harmonic can be
trapped for all values of the axial wavelength in a twisted
magnetic cylinder (e.g., Mikhalyaev 2005; Khongorova et al.
2012; Lim et al. 2018; Lopin & Nagorny 2019). A similar
effect can occur in cylinders with a sufficiently diffused radial
profile of the fast speed (e.g., Lopin & Nagorny 2014, 2015).
Higher radial harmonics always have a cutoff axial wavelength.

Cutoff values and periods of standing sausage oscillations
are also affected by field-aligned flows in the loops (Li et al.
2013, 2014). In the leaky regime, the resonant period of the
fundamental, i.e., corresponding to the lowest values of the
axial and radial mode numbers, sausage mode is determined by
the fast magnetoacoustic travel time across the cylinder, while
in the trapped regime the period is determined by the fast
magnetoacoustic travel time along the cylinder (Cally 1986;
Kopylova et al. 2002; Nakariakov et al. 2012). Resonant
periods of sausage oscillations are weakly affected by the
plasma parameter β (Inglis et al. 2009; Chen et al. 2016),
provided β is less than unity. The period depends strongly on
the contrast of the plasma densities inside and outside the
cylinder (e.g., Edwin & Roberts 1983; Kopylova et al. 2002;
Nakariakov et al. 2012), and depends only weakly on the
density profile steepness (Pascoe et al. 2007a; Chen et al. 2016)
and its specific shape (Pascoe et al. 2007b; Chen et al.
2015a, 2015b). The non-uniformity of the plasma along the
field, connected, for example, with the increase in the loop’s
cross section with height or stratification, and the loop
curvature, affect the resonant period insignificantly (Pascoe
et al. 2009; Pascoe & Nakariakov 2016). In theoretical
modeling, attention is also paid to the manifestation of sausage
oscillations in observations made with specific instruments, i.e.,
the forward modeling of observables (e.g., Gruszecki et al.
2012; Reznikova et al. 2014; Kuznetsov et al. 2015; Shi et al.
2019). This modeling is based on knowledge of the spatial
structure of the oscillatory mode of interest. Sausage modes are
considered a promising tool for the seismological diagnostics

of the plasma and the magnetic field in the flaring regions (e.g.,
Nakariakov et al. 2003; Guo et al. 2016).
The fundamental radial harmonic of the sausage mode has

the longest decay time, as higher radial harmonics are usually
leaky. Possibly for that reason, higher radial harmonics have
received very little attention. In particular, the excitation of
high transverse harmonics of plasma slabs was considered in
Terradas et al. (2005). The roots of the dispersion relations
obtained by Zajtsev & Stepanov (1975) and Edwin & Roberts
(1983) for a step-function plasma cylinder, corresponding to
higher radial harmonics, were included in the analysis by
Kopylova et al. (2007). But if the radial structure of the initial
perturbation is different from the structure of the fundamental
radial harmonic, higher radial harmonics could be readily
excited. Terradas et al. (2007) demonstrated that short-living
higher radial harmonics of a plasma cylinder with a step-
function radial profile of the density are effectively excited by
an impulsive initial perturbation with a Gaussian or oscillatory
radial structure. As in dense and thick flaring loops, the
lifetimes of high radial sausage harmonics could be sufficiently
long (e.g., Nakariakov & Melnikov 2009) that they could
contribute to the total signal detected as the QPP modulation of
the flaring signal. The aim of this study is to investigate higher
radial sausage harmonics of sausage oscillations. The plasma
configuration of this study, which is a zero-β plasma cylinder
with a radially non-uniform plasma density, penetrated by a
uniform straight magnetic field, is the same as that in
Nakariakov et al. (2012). Here, we perform a parametric study
of the sausage oscillations, varying the spatial structure of the
initial perturbation in order to excite higher radial harmonics.
The paper is organized as follows. In Section 2, we present the
model. Section 3 gives the results of sausage perturbation in
each case. Conclusions are provided in Section 4

2. Model and Governing Equations

We consider sausage oscillations of a straight, axisymmetric,
and longitudinally uniform magnetic flux tube of a circular
cross section, filled in with a dense plasma, and surrounded by
a plasma with a lower density, i.e., a plasma cylinder. Such a
plasma configuration is penetrated by a straight uniform
magnetic field B0, directed along the axis of the flux tube.
The symmetry of the model suggests the use of the cylindrical
coordinates r, f, z, with the z-axis coinciding with the cylinder
axis. Both the external and internal plasmas are taken to be of
zero-β. The plasma density ρ0 varies in the radial direction
only. The equilibrium is reached by the lack of gradients of the
total pressure and the magnetic tension force. The radial profile
of the density has a maximum at the axis of the cylinder, at
r=0, and decreases smoothly in the radial direction. Thus, the
Alfvén speed, ( ) ( )m r=V r B rA 0 0 0 , increases in the radial
direction (see Figure 1 left). Specifically, the radial profile of
the Alfvén speed is given by the expression

⎜ ⎟
⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )d= - -

a

a
V V

r

a
1 exp , 1A Ae

where the parameters δ, α, and a are the depth, steepness and
characteristic width of the profile, respectively. The parameter
a could be considered as the effective radius of the modeled
plasma cylinder. At the axis of the cylinder, the Alfvén speed is

( )d= -V V 1Ai Ae . The Alfvén speed increases with the radial
distance r, gradually approaching the value VAe. We are not
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aware of an existing analytical solution for an eigenvalue
problem with this profile. In the following, we restrict ourselves
to the consideration of profiles with a fixed steepness, α=6.

The plasma and magnetic field perturbations are described
by the MHD equations for an ideal cold (i.e., zero-β) plasma,

· ( ) ( )r
r

¶
¶

= - v
t

, 2

( ) ( )r
m

=  ´ ´
v

B B
d

dt

1
, 3

0

( ) ( )¶
¶

=  ´ ´
B

v B
t

, 4

where ρ is the plasma density, ( )= fv v v v, ,r z is the plasma
velocity, ( )= fB B B B, ,r z is the magnetic field, and μ0 is the
vacuum permeability.

In the following we restrict our attention to the perturbations
characterized by alternate radial plasma flows, which are
independent of the azimuthal angle f, i.e., to sausage
oscillations. As the equilibrium is uniform in the z-direction,
we can take perturbations of all physical quantities to be
proportional to ( )k zcos z , i.e., making a Fourier transform in the
z-direction. The parameter kz is an axial wavenumber, i.e., the
wavenumber along the axis of the cylinder. The choice for a
specific value of kz leads to the consideration of the
corresponding single axial harmonic. In addition, we assume
the perturbations to be linear, neglecting nonlinear terms. Then,
Equations (2)–(4) reduce to the linearized fast magnetoacoustic
wave equation for a fixed axial harmonic of the sausage
perturbations of the plasma cylinder,
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(see Nakariakov et al. 2012; Chen et al. 2015a, 2015b).
Equation (5) is a cylindrical Klein–Gordon equation with a
non-uniform speed.

Following the formalism described in Terradas et al. (2005),
Nakariakov et al. (2012), and Hornsey et al. (2014), we study
both trapped and leaky sausage oscillations as solutions to an
initial-value problem. The boundary conditions in the radial
direction are ( ) ( )= = = =v r t v r a t0, 40 , 0r r . The boundary
conditions are applied sufficiently far from the cylinder to
allow for several cycles of sausage oscillations before the leaky
perturbations reflected from the outer boundary return back to
the cylinder and affect the oscillation. The variation of the axial
wavenumber kz allows us to excite sausage oscillations in both

trapped and leaky regimes. The initial condition is given by the
expression

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )= = = -av r t v A r

r

a
, 0 exp , 6r r0 0

where A0 is the amplitude, and the power index α controls the
localization of the power in the cylinder. This form is
independent of azimuthal angle f and the radial velocity at
the axis of the cylinder is zero, which correspond to sausage
symmetry. Such an initial perturbation was found to be
sufficiently different from radial eigenfunctions of profile (1),
which allows us to excite simultaneously multiple radial
harmonics. Thus, the discussed case is different from the case
analyzed in Nakariakov et al. (2012), with preferential
excitation of the fundamental radial harmonic. Varying
V VAe Ai, we examine the dependence of the excited radial
harmonics on the Alfvén speed contrast ratio (see Figure 1,
left). The fixed value of kz ensures that all excited harmonics
are fundamental in the axial direction. Following Nakariakov
et al. (2012) and Hornsey et al. (2014), we solve the initial-
value problem constituted by Equation (5), supplemented by
the initial and boundary conditions numerically, using the
function pdsolve of the computing environment Maple 2018.2.

3. Results

The variation of the radial velocity in time after the
excitation is obtained by taking the signal Vr(t) at chosen
radial positions, namely, at r=1.0a, and in some cases at 0.5a.
Taking the signals at different radial distances is necessary to
avoid analyzing the signal at a radial node of one of the radial
harmonics. We employ the Fourier and Morlet wavelet
transforms in the form introduced by Torrence & Compo
(1998) for analyzing the signals.

3.1. Trapped and Leaky Regimes

The generated signals for sausage oscillations clearly show
both leaky and trapped regimes; see Figures 2–4. Here, and
throughout the paper this time is shown in units of a/VAe. By
order of magnitude, this time unit is about a second for a typical
flaring loop with a≈3Mm and VAe≈4Mm s−1 (see, e.g.,
Nakariakov et al. 2003).
For an axial wavenumber kza=1.3, the signal measured

inside the cylinder exponentially decays (see Figure 2, top
panel), corresponding to the leaky regime. For an axial

Figure 1. Left: examples of the radial profiles of the Alfvén speed in a plasma cylinder with different radial profiles of the plasma density. The solid curve corresponds
to =V V 2Ae Ai , the dashed curve to VAe/VAi=3, and the dotted–dashed curve to VAe/VAi=10. The Alfvén speed is normalized to its value at infinity, and the radial
distance is normalized to the effective radius of the cylinder a. Right: the radial structure of the initial perturbation, vr0. The solid curve corresponds to α=1, the
dashed curve corresponds to α=0.75, and the dotted–dashed curve corresponds to α=0.5.
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Figure 2. Leaky (top panel, with kza = 1.3) and trapped (bottom panel, with kza = 2) regimes of the sausage oscillation of a plasma cylinder with =V V 2Ae Ai . The
left column shows a radial velocity perturbation signal at r=0.5a and its Morlet wavelet spectrum. The solid contour shows the 95% significance level. The middle
column shows the global wavelet power spectrum of the signal. The dashed line shows the 95% significance level. The right column shows the Fourier power
spectrum of the signal. The Fourier power is normalized to the highest value.

Figure 3. Same as Figure 2, but for =V V 3Ae Ai , and =k a 0.01z (top) and kza=1.5 (bottom).
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wavenumber kza=2, the oscillation does not decay. It
indicates that in those experiments the cutoff value of the
axial wavenumber for the fundamental mode, which separates
the leaky and trapped regimes, is between 1.3 and 2.
Fundamental sausage oscillations with bigger values of kza
are trapped. Using the expression for the normalized cutoff
axial wavenumber in a plasma cylinder with a step-function
profile,

⎛
⎝⎜

⎞
⎠⎟ ( )» -
-

k a
V

V
2.40 1 7z

cutoff Ae
2

Ai
2

1 2

(Edwin & Roberts 1983), we get »k a 1.39z
cutoff for

=V V 2Ae Ai . This value is consistent with our finding.
In both regimes, both global wavelet and Fourier power

spectra show the dominance of the fundamental harmonic.
However, in the initial phase of the oscillation, there is a certain
departure from a purely harmonic signal. It indicates that higher
radial harmonics are also excited, but they leak out of the
cylinder at a rate comparable with the oscillation period of the
fundamental mode. The power of the high radial harmonics is
too weak to be noticeable in the spectra.

Figure 5 (left panel) shows the dependence of quality factors
of fundamental sausage harmonics in the leaky regime on the
axial wavenumber. The quality factor is determined as the ratio
of the oscillation damping time to the oscillation period. In all
considered cases, the quality factor is greater than several units.
For long wavelengths, i.e., for kza → 0, the quality factor
becomes weakly dependent on the axial wavenumber. When kz
approaches the cutoff value, the quality factors goes to infinity,

as in the model there are no other wave damping mechanisms
apart from the wave leakage.

3.2. Higher Radial Harmonics of Sausage Perturbations

Figure 6 demonstrates the effect of the radial structure of the
driver given by Equation (6) shown in Figure 1 on the sausage
oscillation. In all the cases, the signal shows some departure
from the harmonic shape, which is manifested by the additional
spectral peaks. The fundamental, second, and third harmonics
have periods of about 16, 8, and 4 for all drivers. In the time
domain, the change of the driver does not cause a significant
modification of the signal shape. In the amplitude spectrum,
this change is more pronounced. In particular, for the driver
with α=0.5, the second harmonic is not effectively excited.
Figure 7 shows a multi-harmonic oscillatory signal excited

by a broadband initial perturbation, and the three lowest radial
harmonics of the signal. The harmonics were identified as
distinct peaks in the power spectrum of the signal, and then
filtered out by applying a Gaussian filter of the width about the
width of the corresponding harmonic. The harmonics have
consequently decreasing oscillation periods and amplitudes.
The lifetimes of the second and third harmonics allow them to
be present in the signal for up to three oscillation cycles of the
fundamental harmonic. It is interesting that the quality factor of
the third harmonic is apparently higher than that of the
second one.
The middle and right panels of Figure 5 demonstrate that the

quality factors of higher radial harmonics of the sausage mode
in the leaky regime are higher than several units too. The

Figure 4. Highly anharmonic sausage oscillation with kza=0.01, excited in a plasma cylinder with VAe/VAi=10. The panels and notations are the same as in
Figure 2.

Figure 5. Quality factors of different radial harmonics of sausage oscillations in the leaky regime for different normalized axial wavenumbers. The left, middle, and
right panels show the fundamental, second, and third harmonics, respectively. The red triangles correspond to =V V 10Ae Ai , blue circles correspond to =V V 5Ae Ai ,
and black diamonds correspond to =V V 2Ae Ai . The vertical dashed lines show the corresponding cutoff values.
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dependence of the quality factor of higher radial harmonics on
the axial wavenumber is similar to the fundamental harmonic:
the dependence decreases with decreasing axial wavenumber.
This means that even when the axial wavenumber is much
lower than the cutoff value, the damping time is still greater
than the oscillation period. Also, as expected, in cylinders with
higher density contrasts, the quality factors of leaky radial
harmonics are higher. Cutoff values of the axial wavenumber
grow with increasing the radial harmonic number, which is
consistent with the well-known result obtained by Edwin &
Roberts (1983) for a step-function plasma cylinder. The
dependences shown in Figure 5 are similar to those shown in
Figure 2 of Kopylova et al. (2007), obtained for a step-function
cylinder.

The appearance of higher radial harmonics together with the
fundamental harmonic, manifested by the departure of the
signal shape from the harmonic in the initial stage of the
oscillation, becomes more pronounced with increasing density
contrast in the cylinder, i.e., the ratioV VAe Ai; see Figure 3. For
a higher contrast, the leakage becomes less efficient, and the
leaky modes can be detected in the cylinder at longer times.
This result is consistent with the theoretical estimation of the
quality factor of sausage oscillations, defined as the ratio of the

damping time τsaus and the oscillation period Psaus,

( )t
µ

P

V

V
, 8saus

saus

Ae
2

Ai
2

obtained in the long-wavelength limit for a plasma cylinder
with a step-function density profile (Zajtsev & Stepanov 1975;
Meerson et al. 1978); see also Lopin & Nagorny (2014). In the
leaky regime, Figure 3 resembles Figure 3 of Terradas et al.
(2007). For a higher contrast ratio VAe/ VAi, even long-
wavelength sausage oscillations can be highly anharmonic; see
Figure 4.
Figure 8 shows the dependence of the oscillation periods of

different radial harmonics on the axial wavenumber. In the
leaky regime, for the axial wavenumbers smaller than the cutoff
values, the oscillation periods are practically independent of the
axial wavelength, which is consistent with the estimation made
by Kopylova et al. (2007) in the long-wavelength limit for a
step-function plasma cylinder. In the trapped regime, the
fundamental harmonic period becomes dependent on the axial
wavelength, as has been demonstrated in Nakariakov et al.
(2003, 2012). However, the oscillation periods of the second
and third radial harmonics remain practically independent of

Figure 6. Effect of the initial driver on the shape (left column) and amplitude spectrum (right column) of the sausage oscillation signal with kza=0.1 in a plasma
cylinder with =V V 10Ae Ai . The top row corresponds to α=1, the middle row corresponds to α=0.75, and the bottom corresponds to α=0.5. Both signals and
spectra are normalized to the maximum values.
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the wavelength even when the wavelength is shorter than the
radius of the cylinder. Again, this result is similar to the result
obtained for a step-function cylinder by Kopylova et al. (2007).
Oscillation periods do not experience any noticeable change
when the leaky regime changes to the trapped regime.

3.3. Oscillation-period Ratios

In oscillating coronal loops, the axial wavenumber kz of
standing sausage oscillations is discrete, and is prescribed by
the loop length. One can introduce an axial (or parallel) mode
number, n, which could be the number of parallel half-
wavelengths along the loop. Thus, the fundamental parallel
harmonic corresponds to n=1, and has the axial wavenumber
kz=πn/L where L is the loop length. Similarly, the radial
harmonic number R can be introduced as the number of zeros
in the radial velocity vr dependence on r in the interval r=[0,

a], with n=1 corresponding to the fundamental radial
harmonic in which vr has a single zero at the axis of the
cylinder. The third “quantum” number, the azimuthal number
m in all sausage harmonics, is the same, m=0. Oscillation
periods corresponding to different azimuthal, parallel, and
radial harmonics could be labeled as PmnR, with P0nR

describing sausage harmonics. In general, ratios of the
oscillation periods corresponding to different harmonics are
not integers (or multiplicative reciprocal). The departure of
different axial harmonic period ratios P111/nP1n1 from unity,
e.g., caused by the axial non-uniformity of the oscillating loop,
has been intensively studied as an important seismological
observable. For the sausage mode, the values of P011/nP0n1

and P011/nP01n have received less attention (e.g., Li et al.
2013), though they may also have a seismological potential.
Figure 9 shows the oscillation-period ratios of the lowest

axial and radial sausage harmonics. In the calculation of
P011/nP0n1 the oscillation periods where taken at different
values of kza, namely at n kza, while P011/nP01n was
determined at the same kza. The ratios P011/nP0n1 show a
significant departure from unity, up to a factor of 2. The ratio
P011/nP0n1 is less than one, and approaches this value with
increasing axial wavenumber. This effect should be attributed
to the pronounced wave dispersion typical for the sausage
mode in the vicinity of the cutoff axial wavenumber (see the
discussion in Inglis & Nakariakov 2009). The behavior of the
ratios P011/nP01n is different, as they are found to be around
unity, and decrease with increasing axial wavenumber.

4. Conclusions

We analyzed impulsively excited sausage oscillations of a
plasma cylinder, paying specific attention to different radial
harmonics. The analysis was performed with a numerical
solution of the initial-value problem for a partial differential
equation of the Klein–Gordon type, describing linear magne-
toacoustic oscillations with a fixed axial wavelength and an
azimuthal mode number in a plasma cylinder with a smooth

Figure 7. Top left:multi-harmonic sausage oscillation with kza=0.1 in a plasma cylinder with VAe/VAi=5 measured at r=a, and its harmonic composition: the
fundamental (top right), second (bottom right), and third (bottom left) radial harmonics.

Figure 8. Dependence of sausage oscillation periods on the axial wavenumber
in the three lowest radial harmonics of a plasma cylinder with VAe/VAi=10.
The fundamental radial harmonic is indicated by black diamonds; the second
and third radial harmonics are represented by the blue circles and red triangles,
respectively. The vertical dashed lines indicate the corresponding cutoff
wavenumbers.
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radial profile of Alfvén speed. Both trapped and leaky regimes
of the oscillations were considered. Our findings are consistent
with the results obtained for a step-function cylinder by
asymptotic estimations (Zajtsev & Stepanov 1975; Meerson
et al. 1978) and numerical determination of the complex roots
of the transcendental algebraic equation describing dispersion
relations (Kopylova et al. 2007).

Higher radial harmonics are found to be effectively excited
by an initial pulse. The main result is that even in the long-
wavelength limit, i.e., for the axial wavenumbers much smaller
than the cutoff values, damping times of higher radial sausage
harmonics could be significantly greater than the oscillation
periods. This effect occurs even in plasma cylinders with low
contrasts between the external and internal Alfvén speeds, e.g.,
about 2. The quality factors increase with increasing Alfvén
speed (or density) contrast ratio inside and outside the cylinder.
This means that if excited, sausage oscillations corresponding
to higher radial harmonics could last in a coronal loop long
enough to be detected. The periods of radial harmonics with the
same kz are independent of the specific radial shape of the
initial perturbation. The specific partition of the energy between
different radial harmonics depends on the driver. This effect is
obvious, as it could be seen as a Fourier decomposition of the
driver by natural radial harmonic functions. Oscillation periods
of different radial harmonics are sufficiently different, i.e., by a
factor of two or more. Hence, different radial harmonics are
clearly distinguishable in observational data, provided the time
resolution is several times shorter than the oscillation periods.
We may estimate the required resolution. The oscillation period
of fundamental sausage oscillations is about the transverse
Alfvén travel time, i.e., about a/VAi. For a flaring loop with a
minor radius of about 5Mm and internal Alfvén speed of about
0.5Mm s−1, the transverse Alfvén travel time is about 10s
(see, e.g., Van Doorsselaere et al. 2016).

The ratios of oscillation periods of higher radial and axial
harmonics, P011/nP01n and P011/nP0n1, are found to be
different. For example, in a cylinder with =V V 10Ae Ai , for
the fundamental harmonic axial wavenumbers from kza=0.01
to kza=1, we found P011/2P021≈0.5-0.6 and

P011/2P012=1.1–1.0. This range of axial wavenumbers
corresponds to ratios of the loop length to diameter from 150
to 1.5, covers well the range of coronal loops observed in quiet-
Sun and flaring active regions. The pronounced difference in
P011/nP0n1 and P011/nP01n allows for the discrimination of
higher axial and radial harmonics in observations. The ratio
P011/nP01n≈1 could also be due to nonlinear cascade, but this
effect requires further study.
Detecting higher harmonics requires an oscillation-period

resolution a few times shorter than this value, say, 3s. As for a
confident detection of a transient oscillation such as a QPP, one
needs to have at least 5–6 measurements per oscillation cycle,
and the required time resolution is about 0.5s. Such a time
resolution is readily achieved in the radio band. In the spatial
domain, it is necessary to distinguish between the QPPs of
emission from different segments of the oscillating loop, which
requires an antenna beam size smaller than 10″–20″. In
addition, the instruments must have a high sensitivity that
allows detection of QPPs of weak amplitudes in the signal. This
could be achieved at the Nobeyama Radioheliograph (e.g.,
Nakajima et al. 1994) and the Expanded Owens Valley Solar
Array (e.g., Gary et al. 2018), and will be achievable at the
upcoming Square Kilometre Array (e.g., Nakariakov et al.
2015).
Thus, higher radial spatial harmonics could be responsible

for the appearance of statistically significant multiple spectral
peaks in the analyzed signal, e.g., in QPPs of solar and stellar
flare lightcurves, and the associated anharmonic shape of the
oscillatory signal. In the time domain, higher radial harmonics
could appear as anharmonic oscillatory patterns, which are
often detected in QPP observations (e.g., Nakariakov et al.
2003, 2019; Van Doorsselaere et al. 2011), and, in particular,
quasi-harmonic oscillations with subpeaks (e.g., Tajima et al.
1987). A similar effect could be caused by higher axial
harmonics, i.e., harmonics with the same radial structure as the
fundamental mode, but with an axial wavelength two times
shorter. In both scenarios, shorter period components disappear
gradually in the instantaneous or wavelet spectra of QPPs, i.e.,
with time the QPP signal becomes more harmonic. However,

Figure 9. Ratios of oscillation periods of the fundamental radial harmonics to second and third radial and axial harmonics of the sausage mode on the axial
wavenumber of the fundamental harmonics. The oscillation periods are labeled PmnR, where the indices m, n, and R correspond to the azimuthal, axial, and radial
harmonic numbers. In all the panels, the Alfvén speed contrast ratio is VAe/VAi=10.
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the P011/nP01n ratios are about unity, while P011/nP0n1<1. In
the case of a nonlinear cascade, the shorter period signals
should be gradually built up. The identification of whether the
shorter period spectral components are associated with higher
axial or radial harmonics is important for revealing the axial
structure of the driver (not addressed in this study). For
example, the oscillation-period ratios observed by Inglis &
Nakariakov (2009), of about 0.75, indicate when the signal is
likely a superposition of different axial harmonics of the
oscillating loop, which is consistent with the interpretation
proposed by the authors. On the other hand, the periods of 26
and 13s detected by Kumar et al. (2017) are consistent with the
coexistence of different radial harmonics. The periods of 1.43
and 0.83s detected by Yu et al. (2013) seem to also favor the
interpretation that there are different radial harmonics. How-
ever, a more rigorous analysis of each specific case requires
accounting for all available information, which is out of the
scope of this study.
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