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Abstract

In the near future, the Parker Solar Probe will put theories about the dynamics and nature of the transition between
the solar corona and the solar wind to stringent tests. The most popular mechanism aimed to explain the dynamics
of the nascent solar wind, including its heating and acceleration, is magnetohydrodynamic (MHD) turbulence.
Most of the previous models focused on nonlinear cascade induced by interactions of outgoing Alfvén waves and
their reflections, ignoring effects that might be related to perpendicular structuring of the solar coronal plasma,
despite overwhelming evidence for it. In this paper, for the first time, we analyze through 3D MHD numerical
simulations the dynamics of the perpendicularly structured solar corona and solar wind, from the low corona to
15Re. We find that background structuring has a strong effect on the evolution of MHD turbulence, on much
faster timescales than in the perpendicularly homogeneous case. On timescales shorter than nonlinear times, linear
effects related to phase mixing result in a 1/f perpendicular energy spectrum. As the turbulent cascade develops,
we observe a perpendicular (parallel) energy spectrum with a power-law index of −3/2 or −5/3 (−2), a steeper
perpendicular magnetic field than velocity spectrum, and a strong build-up of negative residual energy. We
conclude that the turbulence is most probably generated by the self-cascade of the driven transverse kink waves,
referred to previously as “uniturbulence,” which might represent the dominant nonlinear energy cascade channel in
the pristine solar wind.

Unified Astronomy Thesaurus concepts: Fast solar wind (1872); Interplanetary turbulence (830); Magnetohy-
drodynamical simulations (1966); Solar coronal waves (1995)

Supporting material: animations

1. Introduction

Predicted by Parker (1958) and detected in situ soon after
(Gringauz et al. 1960; Neugebauer & Snyder 1962), the solar
wind is a continuous outflow of charged particles originating
from the Sun. Our understanding of the dynamics and nature of
the solar wind has come a long way since (Tu & Marsch 1995;
Bruno & Carbone 2013; Verscharen et al. 2019), however,
there are still many unanswered questions. These concern
the source of energy for the acceleration of the solar wind, the
structure and dynamics of the near-Sun solar wind, and the
acceleration and transport mechanism of energetic particles,
among others (Fox et al. 2016).

The solar wind is generally thought to be driven by
magnetohydrodynamic (MHD) turbulence, especially the fast
wind in open-field areas. Current MHD turbulence driven solar
wind models differ, among other aspects, in their underlying
turbulence generation mechanism. It is understood that non-
linear interactions of fluctuations, leading to nonlinear cascade,
drive turbulence. However, the nature of the fluctuations and
their nonlinear interactions depend on the specific models
considered. The first phenomenological model of MHD
turbulence was that of an incompressible and homogeneous
plasma, in which the fluctuations are Alfvén waves propagating
parallel and antiparallel to some mean magnetic field. Non-
linear interactions occur when oppositely propagating Alfvén
waves collide, resulting in a nonlinear cascade, which can be
thought of as a mutual deformation of the Alfvén waves
(Iroshnikov 1964; Kraichnan 1965; Howes & Nielson 2013).
To date, most of the modeling relies on the counter-propagating
Alfvén wave phenomenology. In these models, waves
propagating outward from the Sun are thought to originate
in the lower corona, and ultimately in the convective

hydrodynamic buffeting of the photosphere. There is observa-
tional evidence that outward-propagating transverse waves are
omnipresent in the solar corona (e.g., De Pontieu et al. 2007;
Tomczyk et al. 2007). In open-field regions, sunward
propagating waves are thought to owe their existence to non-
Wentzel–Kramers–Brillouin (WKB) reflection, on the Alfvén
speed gradients along the propagation direction (Heinemann &
Olbert 1980; Hollweg & Isenberg 2007). Then, MHD
turbulence is generated by the nonlinear interaction of
outward-propagating and reflected Alfvén waves, sometimes
referred to as Alfvén wave turbulence. Analytical and
numerical solar wind models with Alfvén wave turbulence
usually rely on a reduced MHD treatment (e.g., Matthaeus et al.
1999; Dmitruk et al. 2001, 2002; van Ballegooijen et al. 2011;
Perez & Chandran 2013; Woolsey & Cranmer 2014; van
Ballegooijen & Asgari-Targhi 2016, 2017; Chandran &
Perez 2019), or on one-dimensional (1D) Alfvén wave
equations with approximate terms for reflection and turbulent
dissipation or Reynolds averaging, as encountered also in
global solar wind models (e.g., Cranmer & van Ballegooi-
jen 2005; Lionello et al. 2014; Usmanov et al. 2014, 2018; van
der Holst et al. 2014, although note the three-dimensional (3D)
incompressible MHD global solar wind model of Shiota et al.
2017), and even on fully compressible MHD (Matsumoto &
Suzuki 2012, 2014; Shoda et al. 2018, 2019), although the
compressible MHD simulations usually contain also other
nonlinear cascade channels besides the counter-propagating
wave scenario, such as wave steepening or shock formation,
among others. In some of these solar wind models, it is found
that heating of the open magnetic field regions by Alfvén wave
turbulence alone is insufficient (Verdini et al. 2010, 2019; van
Ballegooijen & Asgari-Targhi 2016, 2017), hinting that some
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additional mechanism besides the reflection-driven Alfvén
wave turbulence is missing.

Moving beyond the counter-propagating Alfvén wave
phenomenology, other models consider a richer spectrum of
fluctuations and more channels for nonlinear interactions. In the
nearly incompressible (NI) MHD formalism, the fluctuations
are divided into incompressible, non-propagating quasi two-
dimensional (2D) and propagating NI “slab” fluctuations (e.g.,
Zank & Matthaeus 1993; Zank et al. 2017), justified by the
appearance of solar wind fluctuations as a superposition of
dominant 2D and minority slab components (e.g., Matthaeus
et al. 1990; Bruno & Carbone 2013, and references therein).
The 2D and slab fluctuations are transverse to the mean
magnetic field, but either vary only across the field (i.e.,
kP=0), or along it (i.e., k⊥=0), respectively. An example of
2D fluctuations are “vortex” magnetic field solutions (Zank
et al. 2017), while Alfvén waves with k⊥=0 are an example
of incompressible slab fluctuations. In the NI MHD studies, it
has been shown that nonlinear interactions take place both in
and between the 2D and slab components. For example, the
nonlinear evolution of the incompressible 2D component is not
mediated by waves, but proceeds in an essentially 2D MHD
fashion orthogonal to the mean magnetic field. Studies based
on the NI MHD formalism show that the nonlinearity of the 2D
or quasi-2D component is the dominant nonlinear cascade
channel in the solar corona and solar wind (Adhikari et al.
2017; Zank et al. 2018; Adhikari et al. 2020). Moreover,
unidirectionally propagating Alfvén waves can interact non-
linearly with the 2D components, resulting in their cascade
toward a Kolmogorov −5/3 power spectrum (Telloni et al.
2019; Zank et al. 2020; Zhao et al. 2020).

It is probably noteworthy here to reinterpret the counter-
propagating Alfvén wave scenario in the light of the NI MHD
formalism. For nonlinear interactions to occur between
colliding Alfvén waves, their wave fronts must mutually vary
in the perpendicular directions, expressed as ´ ¹^

-
^
+k k 0

(e.g., Howes & Nielson 2013). In this sense, the interacting
Alfvén waves can be regarded as displaying both 2D and slab
components, and their interactions as already inclusive of
mixed 2D and slab nonlinear interactions.

Despite the competing ideas for the dominant nonlinear
cascade channel, a universal feature of all the previous non-
global solar wind modeling efforts is the homogeneity of the
plasma perpendicular to the mean (radial) magnetic field. This
is a strikingly obvious deficiency of the current models when
considering that there is ample evidence of structuring (e.g.,
Raymond et al. 2014; Borovsky 2016, 2020; DeForest et al.
2016; Hahn et al. 2018; Griton et al. 2020; Poirier et al. 2020;
Krupar et al. 2020), which “belie the notion of a smooth outer
corona” (DeForest et al. 2018), with variations in density up to
an order of magnitude on spatial scales of 50Mm. It is
important to point out here that by the structuring of the plasma
we mean perpendicular inhomogeneities of the background
plasma density, radial flow speed, radial magnetic field, etc.,
which lead effectively to perpendicular Alfvén speed gradients,
and not the perpendicular inhomogeneity of fluctuations or
perturbations in velocity, magnetic field, etc. In fact, perpend-
icular structuring of fluctuations, that is, k⊥≠0 is an essential
prerequisite of all nonlinear interactions that cascade energy
perpendicularly, including that of counter-propagating Alfvén
wave interactions, as noted above. Therefore, all of the solar
wind models cited above rely on the perpendicular structuring

of the fluctuations. However, the structuring of the background
plasma is not included self-consistently in these works. Instead,
it is represented by a characteristic perpendicular length scale
or correlation length of the fluctuations, which is the case even
in global solar wind models with an inhomogeneous back-
ground. Even though plasma structuring is not included in
existing non-global solar wind models initially, it is worth
noting that in some compressible MHD models structuring
develops from the ensuing turbulent dynamics (Shoda &
Yokoyama 2018; Shoda et al. 2019).
It is already clear from the discussion above that the

nonlinear interaction of counter-propagating Alfvén waves is
not the only channel for turbulence generation in MHD.
However, if furthermore transverse background inhomogene-
ities are included, the spectrum of wave solutions admitted by
the MHD equations (Goossens et al. 2011, 2019) and their
nonlinear interactions becomes much richer, already in the
incompressible case (Marsch & Tu 1989; Zhou et al. 1990;
Magyar et al. 2019b). NI MHD equations with inhomogeneous
background have also been derived (Hunana & Zank 2010;
Zank et al. 2017). If one considers the fully compressible MHD
equations, the spectrum is even richer (Marsch & Mangeney
1987; Banerjee & Galtier 2013; Banerjee et al. 2016; Andrés
et al. 2018). Magyar et al. (2019b) showed that inhomogene-
ities perpendicular to the magnetic field admit transverse wave
solutions with different properties when compared to those of
pure Alfvén waves, with important nonlinear implications.
Some of these transverse waves, referred to mostly as kink1

waves are propagating on structures along the magnetic field
(e.g., on a magnetic flux tube of higher density than the
surrounding plasma), manifest as propagating transverse
displacements of these structures, and can self-deform or self-
cascade nonlinearly, without the need for counter-propagating
waves or other fluctuations being present. To see why this is
the case, Magyar et al. (2019b) employed the Elsässer
formulation of the MHD equations.
Elsässer variables (Elsässer 1950) are usually employed in solar

wind studies to separate the outward-propagating waves (denoted
by z+) and the reflected or inward propagating waves (denoted by
z−). The separation is exact for even fully nonlinear, unidir-
ectionally propagating waves in homogeneous and incompressible
plasma, i.e., Alfvén waves, and it even holds for radially
inhomogeneous (along a purely radial magnetic field) but
otherwise homogeneous plasma without nonlinear interactions
(Hollweg & Isenberg 2007; Magyar et al. 2019b). However,
beyond pure Alfvén wave dynamics, it is often overlooked that
transverse inhomogeneities, compressibility, and the nonlinear
interaction of waves renders the separation of fluctuations into
inward and outward-propagating waves inexact. For example,
inhomogeneity and compressibility allows for waves (e.g., fast,
slow MHD waves, surface Alfvén waves, kink waves, etc.) that
are mostly described by both Elsässer variables as they propagate
(Magyar et al. 2019a, 2019b). In fact, waves other than pure
Alfvén waves generally perturb both Elsässer variables as they
propagate. While kink waves, both propagating and standing, are
routinely observed in the corona (e.g., Nakariakov et al. 1999;
Tomczyk et al. 2007; Anfinogentov et al. 2015; Wang 2016;

1 In some works of other authors, and in some of our previous works (Magyar
et al. 2017, 2019a, 2019b), these waves are referred to as Alfvénic instead,
following Goossens et al. (2009), to reflect the fact that they are driven mostly
by magnetic tension, as pure Alfvén waves. In this work, we prefer to use the
term “kink” in order to better emphasize the differences between these waves
and pure Alfvén waves.
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Nechaeva et al. 2019), evidence of surface Alfvén waves in the
solar wind is as of yet inconclusive (e.g., Horbury et al. 2001;
Vasquez et al. 2001; Paschmann et al. 2013). Besides waves that
are not pure Alfvén waves, structures (inhomogeneities) advected
by the solar wind also perturb both Elsässer variables (Tu &
Marsch 1990, 1995; Zank et al. 2012; Adhikari et al. 2015). The
nonlinear interaction of Alfvén waves can generate purely
magnetic fluctuations, 2D modes (kP=0) or condensates which
as well perturb both Elsässer variables (Boldyrev & Perez 2009;
Howes & Nielson 2013). Indeed, the nature of the inward z−

Elsässer variable is often not clear (Wang et al. 2018). Previous
studies on Alfvén wave dynamics in radially inhomogeneous
models often mention the existence of an “anomalous” z−

component that is co-propagating with z+ (Velli et al. 1989;
Verdini et al. 2009; Perez & Chandran 2013). The issue of
anomalous waves is solved by Hollweg & Isenberg (2007), who
showed that, while the continuously generated, reflected z−

components might show up as co-propagating in a harmonic
analysis, their impulse response analysis shows that these reflected
Alfvén waves still follow sunward characteristics, i.e., that there
are no truly co-propagating Elsässer variables in these studies.
Nevertheless, the coherence of the Elsässer variables resulting
from this linear coupling of Alfvén waves seems to influence their
spectrum (Verdini et al. 2009).

The key observation coming from the Elsässer formulation
of the incompressible MHD equations is that nonlinear
advective terms responsible for the nonlinear interactions of,
among others, counter-propagating Alfvén waves, require both
Elsässer fields to be nonzero. As discussed above, for waves in
a homogeneous incompressible plasma, the two Elsässer
variables represent Alfvén waves propagating parallel and
antiparallel to the mean magnetic field, so the nonlinear
condition implies the presence of interacting, oppositely
propagating Alfvén waves. However, in the case of, for
example, kink waves, the same nonlinear condition is already
satisfied by a unidirectionally propagating wave, as kink waves
are described by co-propagating Elsässer fields (see Equation
(21) in Magyar et al. 2019b). Note that surface Alfvén and kink
wave solutions are already admitted in incompressible MHD
with magnetic field and background flow inhomogeneities, but
with a homogeneous background density. Under these condi-
tions, the essential nonlinear term responsible for the nonlinear
cascade is still the nonlinear advective term requiring both
Elsässer fields to be nonzero. However, allowing for back-
ground density inhomogeneities and compressibility introduces
more nonlinear terms of different forms (see citations in the
discussion above), which do not necessarily require both
Elsässer variables to be nonzero, and which might each
contribute in part to the generation of turbulence.

The Parker Solar Probe (PSP) offers unprecedented exper-
imental insight into our understanding of the pristine solar
wind. Therefore, constructing adequate models, which will be
compared to PSP observations, is crucial and very timely. This
study aims to fill in the considerable gap in our understanding
of wave propagation and dynamics in the intrinsically
inhomogeneous solar corona and nascent solar wind. We focus
on the dynamics rather than the acceleration and heating of the
solar corona and wind in this paper. The paper is structured as
follows: in Section 2, the numerical method and model are
presented, in Section 3, we present the results of the
simulations, along with discussions, and in Section 4 we
conclude with our findings.

2. Numerical Model and Method

We ran full 3D, compressible, and ideal MHD simulations
using MPI-AMRVAC (Porth et al. 2014; Xia et al. 2018), using
the three-step, third-order HLLD solver with vanLeer second-
order slope limiter. The solenoidality of the magnetic field is
maintained by using the constrained transport method. A slightly
modified spherical geometry is implemented, in which for a
numerical domain centered at θ=π/2 the θ and f angular
directions are symmetrized by removing the ( )qsin dependence
of df, as employed in, for example, Shoda et al. (2019). This
enables the use of periodic boundary conditions in both the θ and
f directions. The numerical domain extends from 1.01–15Re,
and 0.1πrad in the angular directions. Therefore, the radial
bottom boundary corresponds to the low corona (≈7Mm from
the photosphere). Gravity is included using the inverse-square
law from the solar surface. As we intend to simulate an open-
field region of the solar corona and solar wind, the initial
magnetic field is purely radial, with a flux density of 2 G at the
bottom boundary. The super-radial expansion of the magnetic
field close to the solar surface is neglected (e.g., Kopp &
Holzer 1976). A solar wind solution is prescribed initially by
interpolating tabulated, parametrized 1D wind solutions onto the
3D grid. The 1D solutions are obtained by running 1D
simulations from 1.01–15Re for a range of temperatures at
the bottom radial boundary, from 1–2.25MK, while keeping the
bottom density constant (ρ=3.24×10−14kgm−3). The
resulting solar wind solutions, i.e., the values and radial
dependence of density, radial velocity, etc., are in good
agreement with those found in other studies (e.g., Cranmer &
van Ballegooijen 2005; Chandran & Perez 2019). For the
inhomogeneous 3D solar wind, we impose a temperature map at
the bottom radial boundary, and then populate the simulation
domain using the 1D solutions. The temperature map is obtained
by adding random Gaussian perturbations to a constant
temperature background,

( )

( )

[( ) ( ) ]
 åq f= = + q q f f s

=

- - + -T r R T A1.01 , , exp ,

1

b
i

N

i0
1

i i i
2 2 2

where T0=1MK is the background temperature, N=200 is
the number of Gaussian density enhancements added,
θi,fi,Ai,σi are the random (from uniform distributions) θ,f
position, amplitude, and width, respectively, of the ith
enhancement. The limits of the uniform distributions are the
box size [0.45πrad,0.55πrad] for θi and fi, [0,0.25MK] for
Ai, and [0,0.012πrad] for σi. The periodicity of the
temperature map is assured by wrapping the domain around
and therefore allowing the enhancements to pass through the
“boundaries.” Although the density is uniform at the bottom,
the inhomogeneous temperature map leads to an inhomoge-
neous solar wind solution higher up in the simulation domain,
resulting in both density and flow speed gradients transverse to
the radial direction. These random inhomogeneities aim to
represent the observed highly structured nature of the solar
corona and low solar wind, as described in the Introduction.
See Figure 1 for snapshots of the initial condition.
Additionally, we run a homogeneous setup with a uniform

temperature map Tb=1.5T0, in order to perform a number of
comparisons between the homogeneous and inhomogeneous
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cases. In the simulation domain, a space-dependent continuously
operating heating function is used (adapted from the solar
wind test problem included in MPI-AMRVAC), of the form

( ) ( ) ( ( ) ( ) )
( (( ) ) )

( )


q f r q f q f q f= -
´ - -

H r H r T T r

r R H

, , , , max , , , , 0

exp 1.01 ,
2

b

sc

0

2

where H0=1.4erg cm−3, ()max returns the item with the
highest value, and Hsc=4.5Re is the heating scale height.
Employing thermal conduction from the fixed-temperature
radial boundary instead of the heating function in Equation (1)
results in similar wind solutions, but at a higher computational
cost. As the heating and the acceleration of the solar wind is not
the main focus of this paper, we opted for the heating function
to reduce computational costs. The resulting 3D inhomoge-
neous wind is not exactly in total pressure equilibrium in the
angular directions, and once the simulations starts slight
adjustments happen until an equilibrium is reached. The flows
resulting from this equilibration are negligible compared to the
velocity perturbations induced by the driver, therefore we do
not let the system relax before starting the wave driver.

The wave driver acts continuously at the bottom boundary,
mimicking the omnipresent propagating transverse waves
observed to exist in coronal open-field regions (Tomczyk
et al. 2007; Morton et al. 2015). The wave driver adds a time
and space-varying solenoidal and purely angular velocity field
at selected modes, following an Ornstein–Uhlenbeck process,
which is a well-defined stochastic process with a finite
autocorrelation time, adapted from Federrath et al. (2010).

We set the autocorrelation time (τd≈350s), as well as the rms
velocity (vRMS≈15km s−1) close to their mean values for the
imaged waves in polar coronal plumes (Morton et al. 2015).
The driver stirs all transverse waves with wave front wave
numbers up to 8π/Lbox, where Lbox=220Mm is the arc
length of the numerical domain at the bottom radial boundary.
This corresponds to characteristic perpendicular scales of
≈9–35Mm, where the upper limit is around the supergranular
scale (Rincon & Rieutord 2018). All modes have equal energy
(flat spectrum). This is justified by the presence of a “bump” in
the energy spectrum of the observed transverse waves at the
position of the mean wave period (Morton et al. 2015). The
wave number of the stirred modes represents the transverse
correlation length or perpendicular scales of the wave energy
distribution. The choice of the maximal wave number is
somewhat arbitrary, as the transverse correlation length of
Alfvénic waves is not known in the lower corona. For a
realization of the wave driver at the bottom boundary, see
Figure 2.
Besides the boundary condition for the velocity field,

represented by the driver, at the bottom radial boundary the
density and pressure are fixed, while the radial momentum is
continuous. The continuity of the radial momentum regulates
the mass loss through the solar wind. The magnetic field is
extrapolated in the boundary in a divergence-free manner. At
the top radial boundary, all conservative variables are set to
continuous, i.e., zero-gradient extrapolation. Numerical tests
show no significant reflection on this boundary, aided also by
the supersonic and super-Alfvénic wind at this radius. As
previously hinted, the angular boundaries are periodic.

Figure 1. Snapshots of the initial condition, showing the density (ρ) and radial velocity (vr) in a slice along f=π/2 (left), and in a spherical slice at r=12Re.
(right).
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The numerical domain consists of 1024×2562 cells
distributed uniformly throughout the quasi-spherical grid.
Based on convergence studies, the number of cells along the
radial direction are sufficient to not cause significant numerical
damping of the outward-propagating waves.

3. Results and Discussion

As specified in the previous section, we perform an
inhomogeneous simulation, and additionally a homogeneous
simulation for comparison between the two cases. The only
difference between these simulations is the temperature map at
the bottom Tb in Equation (1). Unless specified otherwise, the
following description refers to the inhomogeneous run. The
simulation is run for ≈10 hr, while the perpendicularly
averaged Alfvén transit time through the simulation domain in
the radial direction is tA≈2.5 hr. Note that the transit time is
different on different field lines. The stochastic driver is
continuously acting at the bottom radial boundary. Pure Alfvén
waves are restricted to Alfvén speed isosurfaces in the
inhomogeneous setup considered. As these are not specifically
driven by the random driver, most of the driven wave power is
residing in propagating transverse displacements of the
inhomogeneous structures, i.e., kink waves. In Figures 3 and
4, snapshots of selected variables in radial and spherical slices
are presented, respectively.

Some immediate observations can be drawn from these
snapshots. The evolution appears to be smooth radially when
viewed through the density and radial velocity, while
perpendicularly it is more fragmented. The velocity amplitude
of the driven waves increases with radial distance, which is
approximately in agreement with the WKB-like v⊥∝〈ρ−1/4〉
dependence (Moran 2001). Note that the WKB approximation
does not take into account many effects that change the
amplitude of the outward-propagating waves, such as reflec-
tion, wave damping, mode conversion, nonlinear effects, and
so on. Instead, it represents an upper bound of the amplitude.
Nevertheless, while at the bottom radial boundary rms wave
amplitudes are ≈0.015MA, where MA is the Alfvén Mach
number, by 15Re the wave amplitudes are up to ≈0.5MA

and supersonic. Therefore, the driven waves are expected to
undergo a strongly nonlinear evolution. Moreover, the
nonlinearity of kink waves is not set directly by MA. Instead,
kink waves are fully nonlinear already for displacements of the

same order as the radius of the supporting inhomogeneous
structure, e.g., flux tube (Ruderman & Goossens 2014). In this
sense, in slender flux tubes, kink waves behave nonlinearly
already for velocity amplitudes of ≈0.02MA. The Elsässer
variable º +

mr^
+

^
^z v b appears to be dominant. Note that ^

+z
would correspond to the anti-sunward propagating Alfvén
wave in a perpendicularly homogeneous plasma. However, as
explained in the Introduction, waves in an inhomogeneous
plasma such as kink waves, manifest as co-propagating
Elsässer fields. That is, the Elsässer variables no longer
separate exactly between sunward or anti-sunward propagating
waves. Nevertheless, as kink waves are still highly Alfvénic
transverse waves, their anti-sunward propagation direction
clearly renders ^

+z their dominant Elsässer component. The ^
+z

component appears patchy radially, in accordance with the
finite autocorrelation time of the velocity driver at the bottom.
Note as well the oblique wave fronts, especially noticeable in
Figure 3 at r≈14Re and rθ≈−1Re. Angular gradients are
noticeable across the same location, in both in density and
radial velocity. While this phenomena is reminiscent of linear
phase mixing (Heyvaerts & Priest 1983), in this case the wave
perturbation direction can also be along the Alfvén speed
gradient, which leads to similar wave front bending (Ghosh
et al. 1998), while the nonlinear evolution leads to the self-
cascade of waves, or uniturbulence (Magyar et al. 2019b).
A striking feature in Figure 3 is the appearance of
º -

mr^
-

^
^z v b , displaying radially elongated structures, in

contrast with ^
+z . Note that ^

-z has multiple sources in the
current setup. It can represent the minority component of the
anti-sunward propagating kink waves, reflected Alfvén and
kink waves, evolving non-propagating structures, a build-up of
residual energy, directly injected by the driver, and so on.
Numerical tests show that the stochastic driver is mainly
responsible for the direct injection of the strong kP=0
component. Additionally, it can represent the generation of a
kP=0 condensate in residual energy (Boldyrev & Perez 2009),
which is consistent with the net magnetic energy build-up in
the simulation (Wang et al. 2011). Nonlinear interactions can
lead to a build-up of magnetic energy (Howes & Nielson 2013).
The kP=0 component of ^

-z has a similar appearance in both
the inhomogeneous and homogeneous simulations. There is a
pronounced anticorrelation between the background density
and the power in ^

-z fluctuations, also noticeable by comparing
the different snapshots in Figure 3. Test runs show that the
exact form of the wave driver (e.g., amplitude, number of wave
front modes stirred, wave period) influences the appearance of
the kP=0 power. In the inhomogeneous simulation the space-
averaged Elsässer ratio is ( ) ( )º á ñ á ñ »^

-
^
+z zr 0.047E

2 2 at
t=4tA. For comparison, in the homogeneous run with the
same wave driver, rE≈0.016. Furthermore, we carried out a
homogeneous test run with a sinusoidal Alfvén wave driver, of
the same form as in the Appendix (i.e., k⊥=0,z−=0). In
this test run, ^

-z is created only by reflection on radial gradients,
and as k⊥=0, nonlinear interactions cannot take place
between the driven outgoing and reflected Alfvén waves (see
Howes & Nielson 2013). This test run allows us to quantify
the power in ^

-z generated by reflection alone, and in this case
rE≈7.3×10−6. Therefore, reflection contributes very weakly
to the observed power in ^

-z . Note, however, that in both
homogeneous and inhomogeneous simulations with nonlinear
interactions present, rE is increasing in time, and while it

Figure 2. Spherical slice showing a single realization of the perpendicular
velocity vector field at the bottom radial boundary. Note the solenoidicity of the
driving velocity.
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possibly saturates, this does not appear to happen within the
simulated time. The increased Elsässer ratio in the inhomoge-
neous setup compared to the homogeneous setup is possibly
caused by the presence of kink waves, for the reasons discussed
above. In solar wind measurements with PSP, rE at 0.17 au
appears to be consistent with a purely reflection-generated
model (Chen et al. 2020), in contrast with our findings that ^

-z
is only weakly generated by reflection. Note that the linear non-
WKB reflection rate increases with wavelength, and the
estimate of rE in the observational study is based on a long-
wavelength model (Chandran & Hollweg 2009). Furthermore,
density perturbations generated by the parametric decay
instability (PDI; Galeev & Oraevskii 1963; Goldstein 1978)
can greatly enhance wave reflection (Shoda & Yokoyama 2018;
Shoda et al. 2019). In our simulations, PDI does not play a
significant role, mostly because of the lower rms velocity of the
driver than in previous simulations. We have investigated the
strength of the ensuing turbulence. Turbulence is said to be
“strong” if the ratioζ of nonlinear (e.g., z−·∇z+) to linear
(VA·∇z+) advection is of the order unity, and “weak” if the
ratio is much smaller than unity (e.g., Goldreich &
Sridhar 1995). We find that while linear advection dominates
when averaged spatially (ζ≈0.06), there are numerous
fragmented regions with ζ�1, concentrated in intense
hotspots, occupying ≈4% of the numerical box volume. In
Figure 4, deformations and small-scale “ripple” generation are
clearly visible both in density and radial velocity. Note the
more fragmented appearance of ^

+z , compared to ^
-z . The same

is observed in the homogeneous setup. This is not in agreement
with previous numerical results, in which the minority Elsässer
component, corresponding to ^

-z , appears to be the more

fragmented variable (e.g., Magyar et al. 2017; Shoda et al.
2019). It is possible that this discrepancy can be attributed to
the power kP=0 in ^

-z induced by the stochastic driver, while
in the previous simulations driven with sinusoidal waves this is
not observed. In Figure 5, the perpendicular and parallel spectra
of the perpendicular components of various variables are
shown, as they appear at the end of the simulation time.
Note that here “perpendicular” and “parallel” are with

respect to the initial radial magnetic field, and do not account
for the local perturbations to the field. Thus, care should be
taken when directly interpreting these spectra as a measure of
anisotropy, as in the strict sense this must be measured along
the perturbed magnetic field (see, e.g., Chen et al. 2011).
Nevertheless, in our simulations the radial direction remains a
good approximation of the local mean magnetic field direction.
First we investigate the perpendicular spectra. As stated
previously, z− shows much less small-scale structure, and
presents an inertial range slope of around −8/3. The slope of
^
+z is well approximated by −3/2, but also consistent with
−5/3, due to the limited resolution. Note the strong build-up
of negative residual energy ( = -^ ^E v bR

2 2, where b is in units
of speed, i.e., mr=b B ) at low wave numbers, while at
higher wave numbers the magnetic and kinetic energy spectra
converge. The magnetic field spectrum appears to be steeper
than the velocity spectrum. A steeper magnetic power spectrum
is also observed in homogeneous numerical simulations (e.g.,
Boldyrev et al. 2011), and in situ in the solar wind (e.g., Chen
et al. 2013), but not at 0.17 au, where both the magnetic field
and velocity spectra scale as −3/2 (Chen et al. 2020). The
parallel spectral indices for both velocity and magnetic field
perturbations are steeper, around −2, which are in agreement

Figure 3. Snapshots of density (ρ), radial velocity (vr), and the perpendicular Elsässer variables ∣ ∣^
+z and ∣ ∣^

-z , respectively (from left to right), in a slice at f=π/2, 2tA
after the start of the simulation. It runs from t=0–4tA and has a real time duration of 6 s.

(An animation of this figure is available.)
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with some theoretical models, e.g., critical balance (e.g.,
Goldreich & Sridhar 1995; Beresnyak 2012), numerical results
(e.g., Beresnyak 2015; Meyrand et al. 2019), and observational
evidence in the solar wind (e.g., Horbury et al. 2008; Wicks
et al. 2010; Chen 2016). On the other hand, NI MHD theory
predicts a −5/3 parallel scaling (Zank et al. 2017, 2020),
which also appears to be consistent with solar wind

observations, including by Wind (Telloni et al. 2019) and
PSP (Zhao et al. 2020). In Figure 6, the evolution of the ^

+z
spectra along the radial coordinate and in time is shown.
The left panel shows the spectra around the time the first

wave front leaves the simulation domain, while the right panel
shows the spectra at the end of the simulation time. Note the
gradual increase in the power at higher wave numbers and

Figure 4. Same as in Figure 3, but for a spherical slice at r=12Re. Compare to Figure 1 to estimate the deformation caused by the driven waves. The animated
version of this figure runs from t=0–4tA and has a real time duration of 6 s.

(An animation of this figure is available.)

Figure 5. Power spectra of the perpendicular components of the main variables of interest for the inhomogeneous run. Left panel: perpendicular spectra averaged over
multiple spherical slices in the spatial domain from 13–15Re. Right panel: parallel spectra averaged over multiple radial lines along the whole radial domain. Dashed
lines show power laws with the corresponding indices on the legend. Spectra at t≈4tA.

Figure 6. Perpendicular power spectra of ^
+z , averaged over multiple slices in the vicinity of the radius indicated on the legend, for the inhomogeneous setup. Also

indicated are power laws with corresponding indices in the legend. Left: at t≈tA. Right: at t≈4tA.
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flattening of the spectrum of ^
+z with increasing radial distance,

toward the stable slope value of −1, attained around 8Re. In
contrast, at the end of the simulation time the spectra appear to
be more similar at different radial distances, and converging
toward a slope of −3/2 or −5/3. The spectra at ≈2.4Re
appear to be much steeper than at greater radial distances, and it
does not show evolution in time. This might be related to the
peak value of the Alfvén speed, where the radial gradient of the
Alfvén speed becomes zero, occurring at the same radial
distance. For insight into the origin of the difference between
the two panels, we looked at the different dynamical timescales
that are operating in the simulation. For comparing the different
timescales, we assumed that all waves have the same
frequency, i.e., parallel length scale, valid for both z±. Note
that these length scales appear to be different in the solar wind
for z± (Adhikari et al. 2015), which can have an impact on the
nonlinear times (see, Zank et al. 2012). Linear phase mixing, in
the sense described earlier, operates on a timescale

t ~ k̂ V1 APM
eq (Shoda & Yokoyama 2018), where k̂eq is the

specific perpendicular scale of the background inhomogeneity.
The nonlinear time of the self-deformation of kink waves, or
uniturbulence, was calculated recently for kink waves propa-
gating on a cylindrical flux tube with discontinuous boundary,
τUT∼R/V(ζ+1)/|ζ−1| (Van Doorsselaere et al. 2020),
where R is the tube radius, V is the kink wave velocity
amplitude, and ζ is the density ratio. By approximating

( )» ^
-R keq 1 and » +V z 2k for the highly Alfvénic kink wave,

this formula can constitute an estimate of the nonlinear self-
cascade time, ( )( ) ∣ ∣)t d z z~ + -^

+k z1 1 1UT
eq . Note that

this time is the “in-flight” nonlinear time, i.e., in a Lagrangian
frame moving with the self-deforming perturbation. In the
radially finite and open simulation, however, the focus is on the
Eulerian nonlinear time, i.e., at specific radial distances from
the solar surface. To understand the difference between the
two, consider the following thought experiment: a single,
nonlinear kink wave-packet propagating upwards through the
corona and solar wind is gradually deforming the inhomoge-
neous structure supporting it (e.g., a higher-density cylindrical
flux tube). However, subsequently launched wave packets
propagate through an increasingly deformed inhomogeneous
flux tube, which modifies the eigenfunctions of the propagating
waves, which in turn by self-deformation lead to further
deformation of the flux tube, and so on. This image is further
complicated by the advection of the deformed flux tube by the

solar wind. Therefore, it is difficult to come up with an Eulerian
nonlinear time. On the other hand, the classical weak Alfvén
wave turbulence of counter-propagating waves operates on a
timescale modified by the Alfvén effect, which increases the
nonlinear time to 

t d~
^k v k zkAWT A
2 2, where kP is the parallel

wave number, k⊥ is the inverse fluctuation length scale, and
d zk is the amplitude of the fluctuations at scale ^

-k 1. Note that
this nonlinear time is shortened by the faster timescales of
linear phase mixing and uniturbulence, leading to effectively
higher k⊥. However, as seen in the simulations, most of the
power in z− is in the form of elongated, kP≈0 structures.
Therefore, once these structures form, which appears to be
immediately following the first wave front, the nonlinear time
associated with them should not be τAWT but shorter as
nonlinear interactions become more coherent, t d~

^
k z1 kAN .

It is easy to see that the strong interplay between the different
mechanisms and their associated timescales renders their
separation and/or finding a common nonlinear time nearly
impossible. Nevertheless, we can compare the resulting spectra
from the homogeneous and inhomogeneous setups, which both
display the fast formation of kP≈0 power in z−, as they are
driven by the same stochastic driver. In Figure 7 the
perpendicular spectra from the homogeneous setup is shown.
It is clear that in the homogeneous setup, the total simulation

time of t≈4tA is not sufficient to establish a fully developed
turbulent cascade. Therefore, the large-scale perpendicular
inhomogeneities appear to speed up the development of a
turbulent cascade. In the inhomogeneous simulation, the fastest
timescale appears to be that of linear phase mixing, and is thus
responsible for the initial power spectra (left panel of Figure 6).
This shows that for weakly cascading waves linear phase
mixing alone can result in a spectral power slope of −1. As the
simulation progresses, the nonlinear cascade influences the
power spectra, resulting in a slope of −3/2 or −5/3 (right
panel of Figure 6). Note also that compared to the initial power
spectra, there is a weaker variation of the slope with radial
distance. There is also no difference in spectra between sub- or
super-Alfvénic solar wind regions. Note, however that the
critical Alfvén surface is highly distorted because of the
inhomogeneity, with the lowest dips situated at ≈11Re, and
the majority of the cross-sectional area super-Alfvénic by ≈
15Re. Interestingly, the ^

-z spectrum does not show the same
variation with radial distance and temporal evolution, always
having a spectral slope of ≈−5/2, dominated by the kP=0
build-up. This is reflected in the different second-order
structure function shapes presented in Figure 8.
These plots demonstrate that there is more variation in the

perpendicular direction than along the radial direction. In
calculating the structure function, we assumed that the
turbulence is isotropic in the perpendicular directions.
In Figure 9, variables relevant to the nonlinear cascade are

shown in a spherical cross section. The bursty appearance of
nonlinear advection, concentrated in intense hotspots, is in
agreement with the findings above that strong nonlinearity
occupies a small percentage of the total volume. The most
important observation is the correlation between perpendicular
Alfvén speed gradients (∇⊥vA), the radial current jr, and the
nonlinear advection terms ( zNL, defined in Figure 9). We use the
“correlate” function of the NumPy2 Python package between the
flattened (decomposed into 1D arrays) 3D subsets of the data

Figure 7. Power spectra of the perpendicular component of the main variables
of interest in the homogeneous setup, averaged over multiple slices from
13–15Re, at t≈4tA.

2 https://numpy.org/
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from r=12–15Re. In this sense, we find the overall cross-
correlation between two variables A and B in the whole 3D
subset, and we denote this operation as AåB. The calculated
cross-correlations are the following: ∇vAå|jr|≈0.23; vA

»+z 0.17;NL  »-v z 0.23;NLA ∣ ∣ »+j z 0.47;r NL ∣ ∣ jr
»-z 0.15;NL for comparison, the Alfvén correlation is, e.g.,

vfåbf≈0.9. Surprisingly, in the homogeneous setup, similar
values are found for the cross-correlations, albeit from a much

Figure 8. 2D second-order structure function ( ( ) ( ( ) ( )= á - + ñ  r rS z z z l2
2 , averaged over spatial dimensions) of z+ (left panel) and z− (right panel), around

r=14Re, at the end of the simulation. Units are code units.

Figure 9. Snapshots of Doppler-shifted Alfvén speed perpendicular gradient (top left panel), radial electrical current (top right panel), and the perpendicular nonlinear
advection terms for z± (bottom), in spherical slices at r=12Re, at t≈4tA. Units are code units.
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lower amplitude relative to perpendicular Alfvén speed
perturbations. Note that perpendicular Alfvén speed inhomo-
geneities are induced nonlinearly in the homogeneous setup.
These might originate from ponderomotive forces, and from the
various nonlinear interactions of the driven waves (Shoda &
Yokoyama 2018). Therefore, it is not clear whether these
correlations are specific to inhomogeneous conditions or to
compressible homogeneous turbulence in general. There is an
especially strong correlation between the nonlinear advection
of z+ and jr. Taking into account the correlation with Alfvén
speed gradients as well, it is likely that resonant absorption, i.e.,
linear resonant coupling of kink and Alfvén waves, is taking
place in these regions (e.g., Chen & Hasegawa 1974;
Ionson 1978; Terradas et al. 2008). Component magnetic
reconnection sites are also possible in the resulting thin current
sheets (e.g., Lapenta & Knoll 2003). It is not clear how all these
effects impact the nonlinear cascade of kink waves. It is
important to point out here that the nonlinear advective terms
plotted in Figure 9 are not the only nonlinear terms that might
contribute to the turbulent dynamics, as noted in the
Introduction. Inhomogeneities and compressibility allow for
multiple additional nonlinear terms (e.g., Marsch & Mange-
ney 1987; Zhou & Matthaeus 1989; Magyar et al. 2019b). We
have investigated the appearance of one additional nonlinear
term, present due to density inhomogeneities (see Magyar et al.
2019b, and the Appendix), which is on the same order of
magnitude as the nonlinear advective terms. Nevertheless, we
have opted to show only the nonlinear advective terms in
Figure 9, as these are the terms usually associated with
turbulence generation.

Though not the main focus of this study, there is no
significant solar wind heating and acceleration added by the
onset of turbulence in our model. This is probably the result of
the rms amplitude of the wave driver at the bottom radial
boundary. While previous models often employ a driver with
rms velocities given by the observed nonthermal line broad-
ening, here we opted for rms velocities of swaying coronal
plumes, inferred from direct imaging (Morton et al. 2015). The
amplitude of the former (≈40km s−1, e.g., Doyle et al. 1998;
Banerjee et al. 2009; Bemporad & Abbo 2012) is almost three
times the rms amplitude of the latter (≈15km s−1, Morton
et al. 2015). However, there is no consensus on the physical
nature of the nonthermal line broadening other than it
represents unresolved motions (e.g., Pontin et al. 2020).
Moreover, even though some solar wind simulations are able
to maintain a hot corona and an accelerated solar wind, the
dissipation coefficients in these models are orders of magnitude
higher than in reality. Still, one may argue that once turbulence
develops, the start of the dissipation range (in k-space) is not
relevant.

4. Conclusions

We have conducted the first, full 3D compressible MHD
simulation on the dynamics of kink waves from the base of the
perpendicularly inhomogeneous corona up to 15Re. The
large-scale plasma structuring in our model is aimed to correct
for the considerable gap between the state-of-the-art homo-
geneous models and the observed reality of a highly structured
outer solar atmosphere. In the near future, the PSP will deliver
unprecedented in situ measurements of the outer solar corona

and pristine solar wind. Therefore, it is high time that solar
wind models incorporate the important effects of structuring.
Waves launched by a stochastic driver at the bottom radial

boundary propagate anti-sunward and suffer both linear and
nonlinear changes. Plasma structuring across the radial
magnetic field is responsible for some of these. As pure Alfvén
waves can only exist on Alfvén speed isosurfaces, which are
not selectively driven, most of the wave power is in kink waves
i.e., transverse waves that owe their existence to the structuring
and are predominantly driven by magnetic tension. Kink waves
manifest as propagating transverse displacements of the
structures they exist on.
Linear phase mixing, both perpendicular to the perturbation

direction (Heyvaerts & Priest 1983) and along perturbation
components (Parker 1991; Ghosh et al. 1998), is the first
mechanism responsible for the population of energy at small
scales, after the start of the driving. This is also observed in the
homogeneous compressible MHD turbulence simulations of
Shoda & Yokoyama (2018). In addition, the dependence of the
propagation speed on the amplitude may lead to nonlinear phase
mixing of any pure Alfvén waves propagating at neighboring
magnetic surfaces (Shestov et al. 2017). Resonant absorption,
the linear resonant coupling of kink modes and Alfvén waves
and their subsequent phase mixing is also contributing to the
redistribution of energy (Soler & Terradas 2015; Ebrahimi et al.
2020). The phase-mixed waves show a power-law spectrum
scaling of −1, at scales smaller than the driven scale. A scaling
of −1 is also observed in the fast solar wind, for frequencies
below ≈10−3Hz at 1 au, with the breaking value shifting to
lower frequencies with radial distance (Bruno & Carbone 2013).
This so-called 1/f range is considered the driving scale for the
turbulent cascade, although its origin is not well understood and
still under debate (Verdini et al. 2012; Chandran 2018; Matteini
et al. 2018). Our results might preliminarily indicate that the 1/f
range could also be the result of phase-mixed, long-wavelength
waves with a slow nonlinear evolution, their gradual nonlinear
cascade with radial distance indicated by the aforementioned
shifting of the breaking value. However, more research is needed
to determine whether this is the case.
Waves propagating on structured plasma, such as kink waves,

have unique properties compared to pure Alfvén waves, which
are important for their nonlinear evolution. Unlike pure Alfvén
waves, these waves perturb both Elsässer variables as they
propagate. This leads to a coherent self-cascade of the waves.
Although this phenomenon was observed in previous, simpler
numerical simulations (Magyar et al. 2017, 2019b), due to the
increased complexity of the present model it is difficult to identify
directly the self-cascade. Therefore, in the Appendix, we present
the results of simplified simulations, with a single, cylindrical
“plume” inhomogeneity. In these simulations the evolution of
kink waves can be followed more clearly, providing further
evidence to uphold our conclusions as presented here.
We have compared the results of the inhomogeneous

simulation to a homogeneous, but otherwise identical simula-
tion with a similar stochastic driver. In both setups, the
stochastic driver induces a strong kP≈0 power in the minority
Elsässer variable z−, with a steep (although short, due to
resolution limitations) inertial range spectra. The presence of
kink waves in the inhomogeneous setup leads to an ≈3 times
higher Elsässer ratio than in the homogeneous setup. In a test
homogeneous simulation driven with k⊥=0 “slab” Alfvén
waves, which do not satisfy the condition for nonlinear
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interactions, the power in z− represents only the reflected
Alfvén waves along radial Alfvén speed gradients, and is
orders of magnitude smaller than in the homogeneous setup
with stochastic driver. Therefore, there is only a negligible
power of z− generated by reflection. However, nonlinear
interactions lead to a build-up of negative residual energy, and
this leads to a steady increase of the Elsässer ratio over time.
The appearance of z− differs greatly from that of z+, and is in
agreement with the in situ measured much longer correlation
time for z− compared to the one for z+ (e.g., Chen et al. 2020).
However, the steep spectrum of z− is not in agreement with
observations. Despite the largely similar appearance of z− in
the homogeneous and inhomogeneous setups, the energy
spectra in the inhomogeneous setup evolves toward the well-
known −3/2 or −5/3 slope after around 2tA, while in the
homogeneous setup we find a slope of ≈−3 after 4tA. This
indicates that nonlinear interactions in the homogeneous setup
are considerably weaker, and that the simulated time is not
enough to set up a well-developed turbulent cascade. We
conclude from this observation that nonlinear interactions of
the outgoing waves with the kP≈0 component of z− are not
the cause of the developing turbulence in the inhomogeneous
setup. This is a hint that the nonlinear self-cascade of kink
waves, or “uniturbulence,” might play a leading role in setting
up the turbulent cascade. In previous solar wind models, the
perpendicular structuring of the solar corona and low solar
wind are not self-consistently included as inhomogeneities in
the background plasma, as described in the Introduction.
Instead, a “transverse correlation length” is usually considered
for the fluctuations, which is aimed to account for the
structuring. This approach is actually identical to our homo-
geneous simulation, such that the stochastic driver has a
specific correlation length transverse to the magnetic field, but
otherwise the plasma is perpendicularly homogeneous. In this
paper we show that considering only a transverse correlation
length of fluctuations is insufficient in accounting for the
effects of transverse background inhomogeneities. These need
to be included self-consistently, as they allow for the existence
of different types of waves, such as kink waves, which have a
strong effect on the resulting turbulent evolution.

Many of the nonlinear effects that have a considerable
impact on the dynamics of kink waves depend on the amplitude
of the driven waves at the bottom radial boundary. In our
simulation, the driving amplitude is adjusted to the imaged
mean velocity amplitude of swaying plumes, and it is 2–3 times
smaller than the one inferred from nonthermal line broadening.
Generally, nonlinear times are inversely proportional to the
velocity amplitude of the waves, therefore, simulations with
higher driving amplitudes might result in a different picture.
The parametric decay instability, which is negligible in our
simulation, might become dominant for higher amplitudes,
leading to strong, localized density enhancements and
enhanced wave reflection (Shoda et al. 2019).

Although it appears clear that the self-cascade of kink waves,
or uniturbulence, operates on faster timescales than Alfvén wave
turbulence, it is worth discussing here the possible broader
implications of this. Most importantly, how is the different
cascade phenomenology impacting the fully developed turbu-
lence in the statistical sense. Are there specific signatures of
uniturbulence that are essentially different from those of Alfvén
wave turbulence? That is, signatures that could be detected by
single-point measurements in the solar wind. The spectral

properties of the developed turbulence in the inhomogeneous
model, as they appear here, are essentially not different from
those in previous numerical results based on Alfvén wave
turbulence, except for the spectra of the minority Elsässer
variable, influenced by the driver. As mentioned previously, a
possible fingerprint of the self-cascade is lacking, in the statistical
sense. Thus, finding parameters that are unique to this nonlinear
cascading channel would be imperative in order to establish its
presence in the solar wind, which we leave as a subject of future
studies. The correlation of perpendicular Alfvén speed gradients,
radial current, and the nonlinear advective terms is noteworthy,
however, the same is observed in the homogeneous simulation,
where perpendicular inhomogeneities arise ponderomotively or
from other nonlinear sources.
The impact of uniturbulence on the heating rate and solar

wind acceleration is an important follow-up study. The wave
energy contained in the observed plume swaying appears to be
insufficient to raise the average temperature and the wind
outflow speed above their base value in the current setup.
Therefore, the flow energy available in the nonthermal line
broadening might represent the additional energy source
required to accelerate the fast wind to the measured values.

N.M. was supported by a Newton International Fellowship
of the Royal Society. V.M.N. was supported by STFC grant
ST/T000252/1.

Appendix
Single-plume Simulations

Here we present the results of numerical simulations with
simplified setups, opting for a single inhomogeneous tubular
structure, which we refer to as a plume.
The inhomogeneous simulation presented in the main part of

this paper is populated by randomly positioned and shaped
structures, and driven by a stochastic wave driver. This is
necessary for a realistic representation and for statistically
meaningful analysis. However, the complexity of this simula-
tion hinders the easy identification of the many, both linear and
nonlinear processes that contribute to the turbulent picture, and
that also act concomitantly. Therefore, in order to clearly reveal
these processes and for additional proof of the claims in this
paper, such as the dominance of uniturbulence in the
inhomogeneous setup, in this Appendix we present the results
of simulations containing a single background inhomogeneity.
This inhomogeneity consists of a cylindrical higher-density
plume, which results from considering a temperature map in
Equation (2) of the form:

⎧⎨⎩( ) ( ) q f= =
>


T r R
T R

T R
1.01 , ,

1.3 , 18 Mm,
, 18 Mm,

A1b
0

0

where ( ) ( ) q p f p= - + - =R R1.01 2 2 18 Mm2 2

delimits the outer circular edge of the plume centered around
θ=f=π/2. Although Equation (A1) is a piecewise function,
due to nonzero numerical diffusion the plume boundary is
slightly smoothed as the simulation starts. We run two
simulations using two different wave drivers at the bottom
boundary: a simulation with the stochastic driver described in
Section 2 with identical parameters, and a simulation with a
simple, linearly polarized sinusoidal driver without spatial
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dependence, i.e., k⊥=0:

⎜ ⎟⎛
⎝

⎞
⎠( ) ( )

p
= =fv r R t A

T
t1.01 , sin

2
, A2

where A=30km s−1 is the wave amplitude and T=500s is
the wave period. These single-plume simulations, apart from
the aforementioned differences in the temperature map and the
sinusoidal driver, are similar to the ones presented in Section 3,
except that their upper radial boundary is at r=8Re, because
of computational resource limitations. The simulations are run
for 2tA, where tA is the Alfvén transit time in the radial
direction, outside of the plume. In increasing complexity order,
we first present the results of the sinusoidal linearly polarized
driver. In Figures 10 and 11, we present snapshots of the
moment the first driven wave front reaches up to ≈6Re.

We can already observe several effects. First, note that the
driver excites a kinking of the single plume, which is identified
as a propagating kink wave, apparent in both the density and
radial velocity maps in Figure 10. Analyzing the appearance of
∣ ∣^
+z in Figure 10, it appears that the driver excites a kink wave

in the plume, which is surrounded by propagating Alfvén
modes in the homogeneous region external to the plume. Note
that the phase speed of the kink wave is smaller than that of the
surrounding Alfvén waves (e.g., Edwin & Roberts 1983), the
first observed deformation being at ≈5Re by the time the
Alfvén waves reach ≈6Re. The growth of the perturbation
amplitude with increasing radial distance is in agreement with
the WKB-like ρ(r)−1/4 trend (Moran 2001). Linear phase
mixing in the perturbation direction (i.e., along q̂), also results
from the difference in phase speeds, as seen in the
progressively stronger decorrelation of the kink and Alfvén
waves with increasing radial distance. While the surrounding

Figure 10. Snapshots of density (ρ), radial velocity (vr), and the perpendicular Elsässer variables ∣ ∣^
+z and ∣ ∣^

-z , respectively (from left to right), in a slice at f=π/2,
0.75tA after the start of the simulation, in the sinusoidally driven plume simulation.

Figure 11. Snapshots of density (ρ), the perpendicular Elsässer variables ∣ ∣^
+z and ∣ ∣^

-z , and of the nonlinear advection of ^
+z , respectively (from left to right), in a

spherical slice at r=4Re, 0.75tA after the start of the simulation, in the sinunsoidally driven plume simulation. Note that the three rightmost plots are of zoom-in
regions of the first plot, as outlined by the white rectangle.
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k⊥=0 Alfvén waves show minimal ∣ ∣^
-z perturbation, mostly

due to linear coupling through reflection (e.g., Heinemann &
Olbert 1980), the kink waves display a strong co-propagating
∣ ∣^
-z component, as discussed previously, mostly situated

around the edge of the plume. Other important things to notice
are signatures of strong nonlinearity. Note the ponderomotively
induced radial velocity perturbations (e.g., Verwichte et al.
1999), both of the kink and the Alfvén wave. Although hardly
noticeable in Figure 10, the Alfvén waves also steepen
nonlinearly. Also note the strong deformation of the initially
circular cross-sectional plume, a definite sign of nonlinearity.
This is noticeable as the elongation of the plume along q̂ in
both Figures 10 and 11. Signs of nonlinearity are also the
growing and alternating asymmetry in the perturbation profile
of the kink mode along q̂, apparent in ∣ ∣^

+z of Figure 10.
Focusing now on Figure 11, resonant absorption, a linear
process, is clearly present in ∣ ∣^

+z , appearing as two thin and

strong perturbations across the edges of deformed plume (e.g.,
Magyar & Van Doorsselaere 2016). The advective nonlinear
term, which is also shown in Figure 11, mostly acts around the
edges of the plume. Comparing the plots for ∣ ∣^

+z and nonlinear
advection, we can appreciate the intricate connection between
linear processes such as resonant absorption and nonlinear
deformations. Advancing the simulation further, we again show
snapshots in Figures 12 and 13, at t≈1.5tA
In these figures we can appreciate a growing nonlinear

behavior and creation of small scales. In Figure 12, while the
appearance of the surrounding pure Alfvén waves is not
undergoing changes, ∣ ∣^

+z and ∣ ∣^
-z at the location of the plume

appear increasingly shredded and present a more intricate
structure as the simulation progresses. All the observations
made to the earlier snapshots can still be recognized, however,
there are some important additions. The plume undergoes
stronger deformations, obvious in the density plot in Figure 13,
showing ripple-like structures. Note that while previously ∣ ∣^

-z

Figure 12. Snapshots of density (ρ), radial velocity (vr), and the perpendicular Elsässer variables ∣ ∣^
+z and ∣ ∣^

-z , respectively (from left to right), in a slice at f=π/2,
1.5tA after the start of the simulation, in the sinusoidally driven plume simulation.

Figure 13. Snapshots of density (ρ), the perpendicular Elsässer variables ∣ ∣^
+z and ∣ ∣^

-z , and of the nonlinear advection of ^
+z , respectively (from left to right), in a

spherical slice at r=4Re, 1.5tA after the start of the simulation, in the sinunsoidally driven plume simulation.
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and the nonlinear advection were strongly localized around the
edge of the plume, they increasingly become more space
filling, at least inside the plume.

The single-plume simulation with the k⊥=0 sinusoidal
driver shows clearly that ∣ ∣^

-z is greatly enhanced by the
presence of kink waves, and that most of the nonlinear
advection is associated with it. However, although using a
simple driver helped to easily identify the different mechanisms
at work, the nonlinear cascade (by the counter-propagating
wave scenario) of the surrounding Alfvén waves was
eliminated. This is because k⊥=0 or slab Alfvén waves
cannot nonlinearly interact with their reflections. In Section 3,
we have shown that the self-cascade of kink waves is
proceeding on faster timescales than the nonlinear advection
of pure Alfvén waves and their reflections, based on
dimensional analysis and also indirectly by comparing the
evolution in the inhomogeneous and homogeneous setups. In
order to verify these claims, we present the results of a single-
plume simulation, using the same stochastic driver as in

Section 2. The dynamics after t≈tA are shown in several
snapshots in Figures 14 and 15.
Although a kink wave is induced in the plume, it is harder to

notice it in Figure 14 than previously as the driver is not
linearly polarized and sinusoidal. Nevertheless, we can still
observe a strong deformation of the plume, deviating greatly
from the initial cylindrical cross section, as seen in Figure 15.
Note that, as in the previous simulation with the sinusoidal
driver, the kink mode of the plume is not preferentially driven.
Ponderomotive perturbations in the radial velocity can still be
noticed in Figure 14. The appearance of ∣ ∣^

+z and ∣ ∣^
-z in

Figure 14 are reminiscent of the evolution of Figure 3 in
Section 3. For example, the strong kP≈0 power in ∣ ∣^

-z , mostly
induced by the driver, dominates its appearance. Nevertheless,
it can still be noticed that there are more small-scale dynamics
near the edge of the plume. This is clearer in Figure 15, and
especially in the perpendicular components of the velocity
perturbation, while in the ∣ ∣^

+z plot it is much harder to spot. In
Figure 16, some nonlinearly relevant quantities are shown.

Figure 14. Snapshots of density (ρ), radial velocity (vr), and the perpendicular Elsässer variables ∣ ∣^
+z and ∣ ∣^

-z , respectively (from left to right), in a slice at f=π/2,
1tA after the start of the simulation, in the stochastically driven plume simulation.

Figure 15. Snapshots of density (ρ), perpendicular velocity components (vθ and vf), and the perpendicular Elsässer variable ∣ ∣^
+z , respectively (from left to right), in a

spherical slice at r=4Re, 1.5tA after the start of the simulation, in the stochastically driven plume simulation.
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As hinted at in Section 3 with cross-correlation analysis,
there appears to be a strong correlation between Alfvén speed
gradients, radial electric currents, and nonlinear terms. While
the regions surrounding the plume are not free of currents or
nonlinear advection, these quantities are the strongest and more
fine structured around the plume. In the bottom-right panel of
Figure 16 we show another nonlinear term, enabled by density
variations, as discussed previously (Magyar et al. 2019b).
These plots support the indirect evidence by comparison of
inhomogeneous and homogeneous simulations, presented in
Section 3, that the self-cascade of kink waves, or uniturbulence
dominates the generation of turbulence.
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