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ABSTRACT

Context. The relatively large-amplitude decaying regime of transverse oscillations of coronal loops has been known for two decades
and has been interpreted in terms of magnetohydrodynamic kink modes of cylindrical plasma waveguides. In this regime oscillations
decay in several cycles. Recent observational analysis has revealed so-called decay-less, small-amplitude oscillations, in which a
multi-harmonic structure has been detected. Several models have been proposed to explain these oscillations. In particular, decay-less
oscillations have been described in terms of standing kink waves driven with continuous mono-periodic motions of loop footpoints,
in terms of a simple oscillator model of forced oscillations due to harmonic external force, and as a self-oscillatory process due to the
interaction of a loop with quasi-steady flows. However, an alternative mechanism is needed to explain the simultaneous excitation of
several longitudinal harmonics of the oscillation.
Aims. We study the mechanism of random excitation of decay-less transverse oscillations of coronal loops.
Methods. With a spatially one-dimensional and time-dependent analytical model taking into account effects of the wave damping and
kink speed variation along the loop, we considered transverse loop oscillations driven by random motions of footpoints. The footpoint
motions were modelled by broad-band coloured noise.
Results. We found the excitation of loop eigenmodes and analysed their frequency ratios as well as the spatial structure of the
oscillations along the loop. The obtained results successfully reproduce the observed properties of decay-less oscillations. In particular,
excitation of eigenmodes of a loop as a resonator can explain the observed quasi-monochromatic nature of decay-less oscillations and
the generation of multiple harmonics detected recently.
Conclusions. We propose a mechanism that can interpret decay-less transverse oscillations of coronal loops in terms of kink waves
randomly driven at the loop footpoints.
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1. Introduction

Observations of the Sun in the extreme-ultraviolet spectral
band show that the solar corona is disturbed by numer-
ous wave and oscillatory plasma motions (e.g. see reviews
by Liu & Ofman 2014; Nakariakov et al. 2016a). In particu-
lar, transverse oscillations of coronal loops have been detected
and interpreted in terms of magnetohydrodynamic (MHD) kink
modes of cylindrical plasma waveguides (Aschwanden et al.
1999; Nakariakov et al. 1999; Goddard et al. 2016). Analysis of
observational data has revealed two different classes of trans-
verse oscillations of coronal loops. The first class includes
impulsively excited oscillations of relatively large amplitude that
decay rapidly in several oscillation cycles (Aschwanden et al.
1999; Nakariakov et al. 1999). The other class includes small-
amplitude oscillations that can be observed for longer time and
show no significant damping (Wang et al. 2012; Tian et al. 2012;
Nisticò et al. 2013, 2014; Anfinogentov et al. 2015). The dis-
placements of coronal loops oscillating in this decay-less regime
are usually less than the minor radius of the oscillating loop,
and their periods scale with the loop length (Anfinogentov et al.

2015), whereas the loop velocity amplitude does not show
any dependence on the loop length and period. Although the
amplitude of oscillations is found to experience some vari-
ation at longer timescales, the oscillations show a periodic
and almost harmonic nature. Recently, Duckenfield et al. (2018)
have reported on the first detection of multiple harmonics
in decay-less oscillations. Such decay-less transverse oscilla-
tions are now the focus of theoretical and observational stud-
ies because of their seismological potential and possible role in
wave plasma heating (e.g. Stepanov et al. 2012; Arregui 2015).

A number of efforts were made to explain the nature of trans-
verse oscillations in the decay-less regime. Obviously, energy
should be continuously supplied to the system to maintain oscil-
lations with no visible damping. First, a simple analytical model
of damped linear oscillator with an external continuously driv-
ing force was proposed to interpret the observed oscillations
(Nisticò et al. 2013, 2014). Mathematically, the model was rep-
resented with a non-homogeneous ordinary differential equation
of Helmholtz type. Nisticò et al. (2013) considered decay-less
oscillations in terms of forced oscillations due to a non-resonant
harmonic external force. Nisticò et al. (2014) discussed them
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as a result of a random external force in the presence of
significant damping possibly due to dissipation and resonant
absorption, explaining the observed intermittent variation of the
oscillation amplitude and phase, which was observed specifi-
cally in the case under their analysis. Nakariakov et al. (2016b)
also discussed the random nature of driving force, however, con-
cluded that resulting oscillations experienced highly intermittent
variation of the oscillation amplitude and phase.

A more sophisticated non-linear model was proposed by
Nakariakov et al. (2016b), in which the authors interpreted
decay-less transverse oscillations as a self-oscillatory process
due to the interaction of loops with quasi-steady flows at the loop
footpoints. The mathematical formalism included a non-linear
non-homogeneous term, so the governing equation was reduced
to the Rayleigh oscillator equation with a constant flow speed as
a parameter. Its solution corresponding to the limit cycle solu-
tion could explain the sustained nature of observed oscillations,
similarly to oscillations of a violin string forced with a bow.

However, the low-dimensional approach based on the oscil-
lator or self-oscillator models have several important short-
comings. In an oscillating loop the source of energy is likely
to be spatially non-uniform, and, mostly likely, acts at the
loop footpoints. This fact cannot be adequately described by
a low-dimensional model which accounts for the time depen-
dence only. In particular, an important missing effect is the
simultaneous excitation of several longitudinal harmonics of the
oscillation.

Along with analytical investigations, a number of numer-
ical efforts have been made to analyse the nature of trans-
verse oscillations in terms of standing kink waves driven
continuously at the loop footpoints, using three-dimensinal MHD
simulations (e.g. Karampelas et al. 2017, 2019a; Howson et al.
2017; Guo et al. 2019, see also Ofman & Davila 1996). More
attention in those studies was paid to the development of the
Kelvin-Helmholtz instability (KHI) and coronal plasma heating.
Afanasyev et al. (2019) studied the response of a coronal loop to
continuous mono-periodic drivers of different frequencies and
found its resonant behaviour. Karampelas et al. (2019b) obtained
that the amplitude of decay-less oscillations weakly depends on
the driver strength. Antolin et al. (2016) studied the connection
between decay-less oscillations and line-of-sight effects due to
the formation of KHI vortices.

In this Letter we demonstrate a mechanism for the random
driving of decay-less oscillations at the loop footpoints within a
spatially one-dimensional and time-dependent analytical model,
which allows us to interpret decay-less loop oscillations in a way
that is consistent with recent observational findings.

2. Model

We consider transverse coronal loop oscillations of small
amplitude as standing kink waves in a magnetic cylin-
der. Dymova & Ruderman (2005) showed that linear non-
axisymmetric wave dynamics in a loop filled in with a low-β
plasma can be described in the long-wavelength limit with a
one-dimensional wave equation. A similar approach based on
the ordinary differential (Helmholtz) equation of oscillations
was used by Verth et al. (2007) and Erdélyi & Verth (2007) who
studied frequency shifts and amplitude variations in the oscillation
eigenmodes due to the non-uniformity along the field. Following
those studies, we modelled decay-less oscillations as transverse
oscillationsofanelasticstring.Thebackgroundmagneticfieldwas
assumedtobeconstantandstrongenough,so that the low-βplasma
condition is fulfilled. On the other hand, we took into account the

plasma stratification due to the gravity varying with height owing
to the loopcurvature.Thus,weconsider thegoverningequationfor
transversedisplacementsof the string,u, as a functionofdistance x
along the string in the following form:

∂2u
∂t2 + α

∂u
∂t

= C2
k (x)

∂2u
∂x2 , (1)

where the wave damping characterised by a constant coefficient
α is introduced. The nature of the damping is resonant absorp-
tion of kink waves in radially non-uniform plasma cylinders
(Ruderman & Roberts 2002; Goossens et al. 2002) and possibly
effects of the KHI development (e.g. Heyvaerts & Priest 1983;
Terradas et al. 2008; Karampelas et al. 2017). We have chosen
α = 0.5 (in normalised units) based on the results of our numer-
ical analysis (Afanasyev et al. 2019), using the ratio ∆ f / f as a
criterion. The varying kink speed, Ck (x), is determined by den-
sity decrease with height as

Ck (x) = C0 exp
( L
2πH

sin
(
πx
L

))
, (2)

where C0 is the value of the kink speed at the loop footpoints,
L ≈ 200 Mm is the length of the loop, and H ≈ 40 Mm is the den-
sity scale height determined by a plasma temperature of 0.8 MK.

We normalise the equation quantities to the loop length L
and time T = L/C0, which is the wave transit time in the
case of a constant kink speed C0. Initially, the loop is at rest.
The boundary conditions include random drivers at both foot-
points, mimicking random footpoint buffeting of coronal loops.
The input driver signals are so-called coloured noise, so the
power spectral density S of the random footpoint displacements
has a power-law fall-off, S ∝ f −δ, where f is the frequency,
δ > 1. For instance, we assume a spectral index δ = 1.66
so that more energy is contained in the low-frequency range.
Random motions driving the photospheric footpoints of mag-
netic tubes were also used in models of the Alfvén turbulence
(van Ballegooijen et al. 2011; Asgari-Targhi & van Ballegooijen
2012; Asgari-Targhi et al. 2013). On the other hand, the use of
such turbulent power-law spectra is supported by observations
of the dynamics of magnetic bright points (e.g. Abramenko et al.
2011; Chitta et al. 2012), which might be regarded as the motion
of loop footpoints, as well as by observations of sunspot oscil-
lations (Kolotkov et al. 2016). The noise signals were gener-
ated using Python package colorednoise 1.1.0, implementing the
algorithm by Timmer & Koenig (1995) to generate Gaussian dis-
tributed noise with a power-law spectrum. Figure 1 shows the
input noise signal at the left footpoint and its power spectrum.

We solve Eqs. (1) and (2) numerically, using central differ-
ences of second order accuracy in time and space for derivatives.
We calculate the loop dynamics up to 100 T .

3. Results and discussion

The loop experiences random displacements of its axis, respond-
ing to the excitation of the footpoints with coloured noise. To
analyse the structure of the displacements, we perform Fourier
analysis. We apply the fast Fourier transform only with respect
to the temporal part of the two-dimensional output signal u (x, t).
Thus, for each value of the spatial coordinate x, we have a one-
dimensional Fourier spectrum. Such an approach allows us to
identify directly the spatial structure of the harmonics detected.

Figure 2 demonstrates the x− f diagram (left panel) in the
case of the non-stratified plasma (H → ∞) with a constant kink
speed C0. The diagram shows that random loop oscillations have
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Fig. 1. Left loop footpoint displacement (left panel) and its Fourier spectrum (right panel). The orange line shows the spectral power-law fall-off
with index δ = 1.66.
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Fig. 2. Power spectral density (left) and power spectral density integrated over x (right) of displacements of a coronal loop perturbed at its
footpoints with a power-law random noise. The case of the non-stratified plasma with a constant kink speed is shown.
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Fig. 3. Same as in Fig. 2. The case of the stratified plasma with a kink speed varying along the loop is shown.

the explicit harmonic structure in time and the spatial structure
corresponding to standing wave modes as observed in the decay-
less regime. The maxima of the power spectral density (PSD)
are located at positions of the standing wave antinodes of trans-
verse displacements. The enhanced values of the PSD near zero
frequency appear to be due to the power-law spectral fall-off
of the input signals. The obtained pattern shows the excitation
of eigenmodes of the loop as a resonator, extending the results
of Afanasyev et al. (2019). The right panel of Fig. 2 shows the
PSD integrated over the spatial coordinate x, demonstrating the
frequency structure only. Once again, we stress the similarity

with Fig. 2 of Afanasyev et al. (2019). Also, the simulations per-
formed for different values of the damping coefficient α show
that damping determines the width and height of the spectral
peaks as expected from the general theory of oscillations.

Figure 3 shows the same type of diagram in the case of a
varying kink speed Ck (x) described by Eq. (2). Positions of the
maxima of the PSD are shifted, therefore the ratios of the frequen-
cies of harmonics are no longer equal to integer numbers. The
shift is due to the gravitational stratification of the plasma and
in particular because of the higher kink speed at the loop apex
(see also Andries et al. 2005a). The ratio of the frequencies of the
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Fig. 4. Displacement of the apex of a coronal loop perturbed with a
power-law random noise at the loop footpoints.

second and first harmonics is about 1.7, as seen in Fig. 3. Recently,
Duckenfield et al. (2018) detected the frequency ratio for decay-
less transverse oscillations of a coronal loop to be 1.4. It would be
of some interest to develop a seismological technique allowing
us to extract useful information on the loop (in particular, plasma
temperature inside the loop) by using detected values of the har-
monic ratio. Although a more sophisticated and rigorous model
would be required for that (see e.g. Andries et al. 2005b).

Figure 4 shows the displacements of the loop axis at the
loop apex. It is remarkable that in our model, under the ran-
dom excitation of its footpoints the loop shows oscillations
of harmonic nature with slowly varying amplitude over sev-
eral oscillation cycles, as seen in observations of the loop
dynamics in the extreme-ultraviolet band (e.g. see Fig. 1 in
Nakariakov et al. 2016b, see also Liu & Ofman 2014). The oscil-
lations obtained in our simulations contain a noise component
leading to a small-scale intermittent pattern, however, this com-
ponent might be unresolved with Atmospheric Imaging Assem-
bly on the Solar Dynamics Observatory (SDO/AIA) owing to
line-of-sight effects and resolution limitations. Indeed, the dis-
placement amplitudes of decay-less oscillations are comparable
with the resolution of the instrument (see e.g. Nakariakov et al.
2016b; Anfinogentov & Nakariakov 2016).

The proposed model successfully reproduces the observed
properties of decay-less oscillations. The periods of excited har-
monics are determined by the length of the loop and kink speed,
which are in agreement with detected scaling of periods of
decay-less oscillations with loop lengths. On the other hand,
the velocity amplitude of oscillations is entirely determined by
the random noise at the loop footpoints (for the given plasma
stratification and damping), therefore no scaling of oscillation
amplitudes with loop lengths should be detected in this case.
However, the scaling laws of observable parameters with the effi-
ciency of the damping mechanism and the power of the driver
in our model still need to be established in follow-up stud-
ies. The excitation of eigenmodes of a loop as a resonator can
explain the observed quasi-monochromatic nature of decay-less
oscillations. The presence of damping in the solar corona, most
probably from the resonant absorption of transverse waves, is
compensated by the energy supply at the loop footpoints, thereby
balancing and providing a sustained oscillation regime. In partic-
ular, the model explains the appearance of multiple harmonics,
which was elusive in the previously proposed models. Taking
into account the variation of the kink speed along the loop due to
gravity stratification allows us to obtain a ratio of harmonic fre-
quencies different from integer numbers, which is also in good
agreement with recent observations.

4. Summary and concluding remarks

In this Letter we have proposed a mechanism that interprets
decay-less transverse oscillations of coronal loops in terms

of kink MHD waves randomly driven at the loop footpoints.
The mathematical formalism used is based on a spatially one-
dimensional and time-dependent analytical model including the
wave equation with two-boundary excitation with a coloured
random noise. Unlike the previous models, we introduced the
spatial dimension to take into account the fact that the energy
supporting the decay-less regime of loop oscillations is only sup-
plied at the loop footpoints. Another important feature of our
model is random excitation of loop oscillations at the footpoints,
which seems to be the most realistic in the solar atmosphere.
In contrast with the self-oscillation model (Nakariakov et al.
2016b), which considers the energy supply by the plasma flows
with characteristic timescales much longer than the oscillation
period (e.g. associated with supergranulation), in the present
model the energy supply is provided by footpoint motions with
the characteristic time scales comparable to the oscillation peri-
ods (e.g. associated with granulation). The results obtained
explain such observed properties of decay-less oscillations as
a quasi-monochromaticity, period-length scaling, sustainability,
and in particular excitation of multiple harmonics, and specific
values of ratios of the harmonic frequencies.

Our simple model inevitably has a number of shortcomings.
The governing equation (Eq. (1)) does not adequately describe
the oscillation damping caused by the plasma non-uniformity
across the field, i.e. resonant absorption. Thus, the damping is
introduced in a way excluding its frequency dependence. We
expect that more sophisticated analytical derivations would be
able to allow the low-frequency eigenmodes to dominate even
more significantly, which could lead to a more pronounced har-
monic spatial structure of the loop oscillations. However, in
follow-up work we will focus on three-dimensional numerical
MHD simulations of decay-less loop oscillations. Thus, the main
purpose of the analytical model presented in this Letter is to
show the principal results valuable for the physical understand-
ing of the problem.
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