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ABSTRACT

Context. Kink waves are routinely observed in coronal loops. Resonant absorption is a well-accepted mechanism that extracts energy
from kink waves. Nonlinear kink waves are know to be affected by the Kelvin-Helmholtz instability. However, all previous numerical
studies consider linearly polarized kink waves.
Aims. We study the properties of circularly polarized kink waves on straight plasma cylinders, for both standing and propagating
waves, and we compare them to the properties of linearly polarized kink waves.
Methods. We used the code MPI-AMRVAC to solve the full 3D magnetohydrodynamic equations for a straight magnetic cylinder,
excited by both standing and propagating circularly polarized kink (m = 1) modes.
Results. The damping due to resonant absorption is independent of the polarization state. The morphology or appearance of the
induced resonant flow is different for the two polarizations; however, there are essentially no differences in the forward-modeled
Doppler signals. For nonlinear oscillations, the growth rate of small scales is determined by the total energy of the oscillation rather
than the perturbation amplitude. We discuss possible implications and seismological relevance.
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1. Introduction

The outer atmosphere of the Sun, the solar corona, is a highly
structured and dynamic, hot and rarefied plasma. The observed
structures are generally thought to outline magnetic field lines,
appearing as closed magnetic elements, known as coronal loops
in active regions, and as plumes in expanding open field lines.
Still, the observed fine field-aligned density filamentation of
the coronal plasma (e.g., Raymond et al. 2014; Williams et al.
2020) remains a puzzle, being linked to the detailed mecha-
nism of the coronal heating problem. Magnetohydrodynamic
(MHD) waves are omnipresent and routinely observed in these
structures, both standing and propagating (e.g., Nakariakov &
Kolotkov 2020). These waves are of great scientific interest as
they might play a role in coronal heating (e.g., Arregui 2015;
Van Doorsselaere et al. 2020b). On the other hand, proper-
ties of the observed waves, such as wave speeds, periods, and
so on, allow us to infer properties of the medium in which
they propagate, a field known as coronal seismology (e.g.,
De Moortel & Nakariakov 2012; Arregui 2018). Oscillating
displacements of coronal loops, which are interpreted as kink
waves, were the first modes used for coronal seismology and
have been intensively studied since. Kink modes are observed
as impulsively triggered large amplitude standing waves or
small amplitude decayless standing or ubiquitously propagating
waves. The strong damping of observed large amplitude stand-
ing kink waves initially constituted a puzzle, as dissipative coef-
ficients in the corona appear to be orders of magnitude smaller
than required. Resonant absorption, that is the conversion of the
global kink wave energy to localized Alfvén waves, was pro-
posed as the main mechanism to explain the damping (e.g.,

? Movies associated to Figs. 1, 2, and 5 are available at
https://www.aanda.org
?? FWO-Vlaanderen fellow.

Ruderman & Roberts 2002; Goossens et al. 2002). Recently,
evidence on the amplitude-dependent damping of standing kink
waves has emerged (Goddard & Nakariakov 2016; Nechaeva
et al. 2019; Arregui 2021). Resonant absorption, which is a
linear theory, cannot account for this amplitude dependence.
Nonlinear mechanisms, such as the Kelvin-Helmholtz instabil-
ity, or the initiation of a nonlinear azimuthal cascade have been
proposed to explain this dependence (Van Doorsselaere et al.
2021). Nevertheless, resonant absorption continues to represent
a viable mechanism to explain at least part of the observed damp-
ing. Analytical and numerical models building upon the original
cylindrical model of Zaitsev & Stepanov (1975) and Edwin &
Roberts (1983) have greatly improved our understanding of kink
oscillations in coronal loops, including numerous effects related
to loop geometry, structuring, and time-dependent backgrounds,
among others. (see, e.g., Ruderman & Erdélyi 2009; Nakariakov
et al. 2021, for reviews on the subject)

Another property of kink waves is their polarization. Most
of the existing works focus on the linearly polarized kink
wave, even though in analytical studies a circular polarization
is assumed, as the mathematical treatment is more convenient
in this case. One could argue that this is sufficient, since in
the linear regime any state of polarization can be constructed
from either linear or circularly polarized waves. However, some
properties of the circularly polarized kink waves are not obvi-
ous, such as their resonant absorption. Additionally, the non-
linear evolution of circularly polarized kink waves might be
different from their linearly polarized counterpart. In observa-
tions, standing kink waves are mostly categorized as “verti-
cally” or “horizontally” polarized, meaning linear polarization
with the displacement in or out of the plane of the oscillating
loop, respectively. Nevertheless, using three-dimensional (3D)
reconstructions from the STEREO EUVI/A and B spacecraft,
Aschwanden (2009) found that the loop oscillation classified as
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a linearly polarized horizontal oscillation by Wang et al. (2008)
using two-dimensional (2D) imaging, was in fact a circularly
polarized oscillation. Moreover, Wang et al. (2008) found that
out of the 14 loop oscillations studied, more than half of the
cases were not classifiable as either horizontally or vertically
polarized, which might be due to more complicated motions, for
example, elliptical or circular polarization. Therefore, a signifi-
cant proportion of observed kink oscillating loops could be ellip-
tically or circularly polarized. Circularly polarized, propagating
kink waves were also observed in chromospheric magnetic ele-
ments (Stangalini et al. 2017). Theoretically, a circular polariza-
tion of kink waves is expected to evolve in loops with twisted
magnetic fields, even if the initial perturbation is linearly polar-
ized (Ruderman & Terradas 2015). Although not transverse but
a slow-type wave, it is worth mentioning that Jess et al. (2017)
observed a circularly polarized m = 1 mode showing a spiral pat-
tern in a sunspot.

In this paper, we study the circularly polarized kink oscil-
lations, both standing and propagating, of a straight magnetic
cylinder, for both linear and nonlinear perturbation amplitudes.
The paper is organized as follows. In Sect. 2, we present the
numerical method and describe the numerical models. In Sect. 3,
we present the results, along with some discussion. Finally, in
Sect. 4, we summarize the results and present some possibilities
for future work.

2. Numerical method and model

We ran ideal 3D MHD simulations with MPI-AMRVAC1 (Porth
et al. 2014; Xia et al. 2018). The second-order tvd solver was
used with the woodward slope limiter, unless otherwise speci-
fied. The numerical setup at equilibrium consists of a straight
cylindrical flux tube embedded in a uniform atmosphere. The
background magnetic field B0 = 10 G is straight and uniform
throughout the domain, and along the z-axis. The flux tube is
defined by its three times higher density ρi, than that of the
background, ρ0 ≈ 2.3 · 10−12 kg m−3. The inhomogeneous layer
between the inside and outside of the flux tube is defined as a
sinusoidal variation in density, with different widths l. Then, the
density in the whole domain is defined as follows:

ρ(r) =


ρi, r < a − l/2,
ρi − (ρi − ρ0)sin

(
π
2l (r − (a − l/2))

)
, a + l/2 ≤ r ≥ a − l/2.

ρ0, r > a + l/2
(1)

Gravity and nonideal effects, such as optically thin radiative
losses and thermal conduction, are not included in this model.
On top of the background equilibrium, we imposed veloc-
ity and magnetic field perturbations of the kink wave sol-
ution (e.g., Zaitsev & Stepanov 1975; Edwin & Roberts 1983;
Van Doorsselaere et al. 2020a) to study the circularly polarized
standing kink wave. In Cartesian coordinates, the solution reads
as follows:

vx = − 1
√

(2)
A 2L
πB0

vx(r)sin
(
π
L z

)
,

bx = A 2L
πB0

bx(r)cos
(
π
L z

)
,
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√

(2)
A 2L
πB0

vy(r)sin
(
π
L z

)
,

by = A 2L
πB0

by(r)cos
(
π
L z

)
,

vz = 0,
bz = 1

B0
Abz(r)sin

(
π
L z

)
,

(2)

1 http://amrvac.org/

where

vx(r) =


ki x2(J0(kir)−J2(kir))

r2 +
2y′2 J1(kir)

r3
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−
xy′(2K1(ker)+ker(K0(ker)+K2(ker)))

2r3K1(kea) , r > a,

bx(r) =

 xy′(2J1(kir)−kir(J0(kir)−J2(kir)))
2r3 J1(kia) , r ≤ a,

xy′(2K1(ker)+ker(K0(ker)+K2(ker)))
2r3K1(kea) , r > a,

by(r) =

−
2x2 J1(kir)

r3 +
kiy′2(J0(kir)−J2(kir))

r2

2J1(kia) , r ≤ a,
key′2(K0(ker)+K2(ker))

r2 −
2x2K1(ker)

r3

2K1(kea) , r > a,

bz(r) =

 x
r

J1(kir)
J1(kia) , r ≤ a,
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(3)

with r =
√

x2 + y′2 and a = 1 Mm is the radius of the tube. We
note that y′ = 0 denotes the center of the displaced flux tube
along x = 0 and not the center of the flux tube in equilibrium.
The initial displacement of the flux tube is required as a tube
undergoing a circularly polarized kink wave does not cross the
equilibrium position. Furthermore, A is the amplitude of the per-
turbation in units of pressure. Here, we use units in which the
magnetic permeability µ = 1. The displacement is given by

y′ = y − A
2L2

aπ2B2
0

sin
(
π

L
z
)
. (4)

We note that while the displacement is in the y-direction, the ini-
tial velocity perturbation inside the flux tube is in the negative x-
direction. The coefficients ki = ke ≈ 0.0112 are the fundamental
radial wave numbers. Furthermore, Ji is the Bessel function of
first kind and Ki is the modified Bessel function of second kind;
L = 200 Mm is the length of the flux tube from foot point to foot
point; A is the amplitude of the initial perturbation, in units of
pressure; and vz was neglected due to a sufficiently low plasma
beta, β ≈ 0.2 (Yuan & Van Doorsselaere 2016; Van Doorsselaere
et al. 2020a).

For the study of the circularly polarized standing kink wave,
the symmetrical properties of the standing mode were exploited
in order to halve the computational costs. In this sense, the spa-
tial extents are [−3.5a, 3.5a]2 × [0, L/2], where L/2 denotes the
position of the antinode of the fundamental kink. The same spa-
tial extent was used also for studying propagating waves. The
boundary conditions were set “open” or continuous, zero diver-
gence laterally, while the foot points were fixed by forcing the
velocity components to be antisymmetric at the lower z-axis
boundary. At the top z-axis boundary, the fundamental mode
was mirrored by setting vz, bx, by antisymmetric, and the other
variables symmetric. Simulations were run for both the standing
and propagating mode. For propagating waves, at the bottom z-
axis boundary, we employed a driver of circularly polarized kink
waves, by setting the following:

vx(t) = A sin
(

2π
P

t
)
, vy(t) = A cos

(
2π
P

t
)
, (5)

where P ≈ 86 s is the wave period. We note that for propagating
waves, the driven wave period is shorter than the fundamental
standing mode period in order for the kink wave to evolve sig-
nificantly by the time it reaches the top z-axis boundary. To sim-
ulate propagating waves, the top z-axis boundary was set to be
continuous or having zero divergence.
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Fig. 1. Kinetic energy and velocity vectors in the cross-
sectional slice at the midpoint of the flux tube for the cir-
cularly polarized standing kink mode after approximately
two fundamental kink mode periods of evolution. Axis
units are 10 Mm. Kinetic energy is in code units. The size
of the velocity vectors is proportional to their magnitude.
An animation of this figure is available online.

Fig. 2. Same as in Fig. 1, but for a linearly polarized
standing kink mode. An animation of this figure is
available online.

The numerical domain consists of 2562 ×64 cells of uniform
resolution, with fewer cells along the z-direction, along which
the solution is expected to be smooth. We conducted a series
of convergence studies with both lower and higher resolution,
and qualitative differences can be observed for high-amplitude
runs which show nonlinear small-scale generation, as expected.
Stemming from the piecewise nature of the kink solution in
Eq. (3) combined with the discretized numerical grid, a nonzero
magnetic field divergence was generated at the flux tube bound-
ary as an initial condition. Therefore, in order to eliminate the
initial divergence and to maintain it at low levels, we employed
the multigrid method of Teunissen & Keppens (2019), which
uses a projection scheme to remove the divergence part of the
magnetic field.

3. Results and discussion

The simulations evolve for ≈70 min, or ≈4.5 oscillation peri-
ods in the case of standing waves. We ran simulations for both
standing and propagating waves, which are both circularly and
linearly polarized, and also low (linear) and high (nonlinear)
amplitude versions. Therefore, comparisons of damping times,
oscillations periods, transverse-wave induced Kelvin-Helmholtz
(TWIKH) growth rates, among others, can be made between
the circularly and linearly polarized setups. First we present the

results of low amplitude standing wave simulations. We set the
amplitude to A = 3.17 µPa, which results in a maximal displace-
ment of the loop of roughly 0.025a. Kink oscillations of coronal
loops can be considered to evolve in the linear regime when the
ratio of maximal displacement to the loop radius is much less
than unity (Ruderman & Goossens 2014), which is satisfied in
this case. The evolution of the circularly polarized standing kink
wave is presented2 in Fig. 1.

In order to emphasize the dynamics in the inhomogeneous
layer (where resonant absorption is taking place) for the simu-
lation in Fig. 1, a thick inhomogeneous layer (l = a) combined
with a diffusive, hll solver was employed. The flow of energy
from the core region of the tube to the inhomogeneous layer,
also called resonant absorption, is clearly visible in Fig. 1. For
comparison, a simulation of the well-known case of linear polar-
ization with the same parameters is shown in Fig. 2.

In these figures, resonant absorption can be identified as the
kinetic energy growth in the inhomogeneous layer, around the
resonant position, where the kink speed equals the local Alfvén
speed. At the same time, the kinetic energy in the core region,
which is associated with the kink wave, is decreasing. Reso-
nant absorption is thus a mechanism to transfer energy from
the global, large-scale transverse kink oscillation of the flux tube

2 In the online animated version.

A73, page 3 of 8

https://www.aanda.org/10.1051/0004-6361/202141945/olm
https://www.aanda.org/10.1051/0004-6361/202141945/olm


A&A 659, A73 (2022)

Fig. 3. Time-distance plots of Doppler signal integrated through a slit along the y-axis at the midpoint of the flux tube, with the LOS the positive
x-axis. Left: linearly polarized kink. Right: circularly polarized kink. Doppler shift is in code units. Length and time units are ≈30 km and 42 s,
respectively.

to local azimuthal flows around it. The differences in evolution
between the two cases are obvious: while in the linearly polar-
ized case the usual m = 1 torsional Alfvén wave pattern is emerg-
ing, in the circularly polarized case the resonance leads to spiral
patterns. The development of such a spiral appearance is a con-
sequence of phase mixing in the inhomogeneous layer (Soler &
Terradas 2015), as different parts of the kink wave propagate at
different speeds within the inhomogeneous layer. Perturbations
toward the outer edge of the flux tube overtake the inner edge
ones, which in a circularly polarized case results in an increas-
ingly wound up spiral over time. This is in analogy with the lin-
early polarized case, where over time it leads to a wavy velocity
perturbation pattern around the resonant layer (e.g., Poedts et al.
1990; Soler & Terradas 2015). Although the dynamics of reso-
nant absorption look different, we find that the resonant damp-
ing of the kink wave proceeds at the same rate, irrespective
of the polarization, which just confirms the expectation from
analytics. We verified this result for three different inhomo-
geneous layer thicknesses. As in previous studies (Magyar &
Van Doorsselaere 2016), we find that for low amplitudes, the-
oretical damping rates due to resonant absorption (Ruderman
& Roberts 2002; Goossens et al. 2002) constrain the measured
damping well. The measured oscillation period of ≈16.2 min is
within 5 percent of the analytically predicted one, and indepen-
dent of the polarization state, as expected.

In order to determine whether circularly polarized kink
waves are distinguishable from linearly polarized ones through
Doppler shift measurements, we forward modeled the simula-
tions, obtaining the emission from the data cubes corresponding
to the AIA 171Å channel, shown in Fig. 3.

It can be observed that despite resonant absorption appearing
differently for a circularly polarized kink wave than for a linearly
polarized one, this is not detectable in the Doppler signal. The
only tell-tale sign of the circular polarization, albeit small due
to the small displacement amplitude, is the alternating vertical
displacement of the Doppler signals, which is absent in the lin-
early polarized case. We note, however, that while the Doppler
signal is independent of the line-of-sight (LOS) for the circu-
larly polarized kink, it varies for the linearly polarized one. Some
additional discussion on the detectability of circularly polarized
kink waves is presented in the next section.

The case of propagating circularly polarized kink waves in
the linear regime naturally shares many similarities to the stand-
ing wave, which can be interpreted as the superposition of two
counter-propagating waves. In Fig. 4 the cross-sectional kink
wave dynamics for a flux tube with l = 0.25a is shown.

It is worth noting that in the propagating wave setup, the
velocity perturbation that drives the kink wave at the bottom
boundary of the numerical domain does not depend on posi-
tion. That is, the whole boundary is driven. Therefore, while the
driver excites propagating kink waves in the flux tube, in the
homogeneous medium surrounding the flux tube there are also
excited, propagating circularly polarized Alfvén waves. These
waves propagate then in superposition through the numerical
domain. The kink wave solution falls off exponentially outside
the flux tube, leaving the Alfvén waves appearing dominant suf-
ficiently far away from it. These can be seen as the velocity per-
turbations in the homogeneous region outside of the flux tube in
Fig. 4 (readers can compare this to Fig. 1 for an estimation of
the exponential scale length of the perturbation outside the flux
tube). In a similar fashion as the standing wave, we compared the
Doppler signals of propagating, linearly and circularly polarized
kink waves. The result is very similar to the one in Fig. 3, albeit
the time axis gets replaced by the z-axis, meaning that the diffi-
culty in detecting kink wave polarization from Doppler signals
is still valid for propagating waves.

In the following, the nonlinear evolution of the circularly
polarized kink wave is investigated. The amplitude was set to
A = 60.34 µPa, which led to a displacement of ≈0.6a, a value
within the nonlinear regime. The inhomogeneous layer was set
to be defined by only the diffusivity of the numerical solver, thus
initially setting l = 0. This ensured that nonlinear processes at
the edge of the flux tube developed rapidly (see, e.g., Terradas
et al. 2018). In Fig. 5, the nonlinear dynamics are shown in the
kink antinode cross section.

As it is well known from simulations on the nonlinear evo-
lution of the linearly polarized kink (e.g., Terradas et al. 2008;
Antolin et al. 2014; Magyar et al. 2015, and many others), at
the edge of the flux tube TWIKH-rolls develop. These roll-ups
appear less symmetric than in a linearly polarized situation, with
the asymmetry inducing deviations from circular polarization.
This is illustrated in Fig. 6, where the trajectory of the flux tube
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Fig. 4. Kinetic energy and velocity
vectors in the cross-sectional slice at
z = 50 Mm for the propagating circu-
larly polarized kink wave. Axis units are
10 Mm. Kinetic energy is in code units.
The size of the velocity vectors is pro-
portional to their magnitude.

Fig. 5. Density and velocity vectors
in the cross-sectional slice at the mid-
point of the flux tube for the nonlinear
setup after approximately two fundamen-
tal kink mode periods of evolution. Axis
units are 10 Mm. Density is in code units.
The size of the velocity vectors is propor-
tional to their magnitude. An animation
of this figure is available online.

midpoint is traced for the whole duration of the nonlinear simu-
lation.

We note that, initially, the trajectory is close to circular,
albeit damping, leading to an inward spiral. Once TWIKH rolls
develop, the kink oscillation transitions into elliptical polar-
ization, with a more pronounced oscillation along the x-axis.
Although both numerical (e.g., Terradas et al. 2018, see also
above) and analytical (e.g., Barbulescu et al. 2019) works inves-
tigated the growth rate of the TWIKH rolls, these studies con-
sidered the linearly polarized case in which the shear flow is

sinusoidal and it occurs at the same position with respect to the
flux tube. In the case of a circularly polarized kink wave, at least
in the idealized linear regime with a discontinuous boundary,
the perturbation amplitude is constant, and it undergoes rota-
tion with respect to the flux tube. Thus, from a Lagrangian per-
spective (i.e., following the motion of the flux tube during the
oscillation), at a particular position along the flux tube bound-
ary, the shear still undergoes a sinusoidal evolution. However,
the difference compared to the linearly polarized case is that the
shear is present all around the boundary within an oscillation
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Fig. 6. Path line plot obtained by inte-
grating the velocity map over the dura-
tion of the simulation in the tube cross
section, showing the displacement of
the flux tube midpoint over time. The
color corresponds to the snapshot num-
ber, thus showing an advance in time,
with “0” being the initial condition and
“50” denoting the final snapshot. Axis
units are 10 Mm.

period. This has implications on the growth rate of higher angu-
lar harmonics, specific to the development of TWIKH rolls.
Moreover, the integrated energy over an oscillation period is two
times higher for the same amplitude for a circularly polarized
kink wave compared to a linearly polarized oscillation. There-
fore, in order to test the effect of circular polarization on the
growth of TWIKH rolls, the growth rate is compared to simula-
tions with linear polarization of both the same amplitude and

√
2

times the amplitude. In Fig. 7, the power in high angular harmon-
ics is shown for the linearly and circularly polarized simulations.
The method of obtaining the power spectra of the tube perturba-
tion is the following. Starting from the cross-sectional density
plot in the kink antinode, a polar transformation was applied to
the image. In the polar image of the cross section, an undisturbed
loop appeared as a straight line at the constant radial distance
r = a, while a kink wave of linear amplitude appeared as a sinu-
soidal curve fitting exactly one wavelength in the angular direc-
tion from 0 to 2π. Then, using smoothing and pattern identifica-
tion methods, built in Mathematica3, the curve delimiting the
tube boundary (r as a function of θ) was obtained, to which we
applied the Fourier transform (see Fig. 8).

Smoothing removed the step-like appearance of the tube
boundary due to the limited numerical resolution, and it helped
in the detection of the boundary. We note that the bound-
ary extraction was complicated by the smooth variation of the
density and the generation of TWIKH rolls, which result in
local density minima, and are recognized as small closed-curve
patches. As the extracted boundary position as a function of
the angle could not be multivalued at places where roll-ups
appeared, the point with the largest radius value was chosen.
This results in discontinuities appearing at these positions in
the extracted curve, altering the relative contribution of highly

3 https://www.wolfram.com/mathematica/

developed roll-ups to the power spectra. Nevertheless, this tech-
nique still allows for the qualitative comparison of the growth
rate of small scales for the two polarizations. For Fig. 7, we sep-
arated the higher amplitude harmonics into a lower (m ≈ 3−5)
and upper range (m ≈ 6−15), which are summed up in these
ranges, respectively. This is justified by the appearance of com-
paratively larger eddies in the circularly polarized case initially.
The Fourier coefficients are defined as follows (Terradas et al.
2018):

G(m) =
1
N

N−1∑
n=0

g(n) exp−i 2π
N nm, (6)

where N is the discrete total number of data points (n = 0, ...,
N−1) extracted along the loop boundary, and g(n) is the extracted
boundary curve (r as a function of θ). We define θn = 2πn/N for
convenience. Then, the contribution of each mode m to the total
signal is given by the inverse Fourier transform,

g(θn) =

N−1∑
m=0

G(m) expimθn . (7)

The obtained spectra appear rapidly varying and noisy. In
addition to the inherently noisy nature of the discrete Fourier
transform (e.g., Vaughan 2005), the extraction process of the
boundary curve is thought to account for some of this variabil-
ity. Therefore, care should be taken when interpreting the spec-
tral evolution presented in Fig. 7. However, it is clear that in the
linearly polarized case, with the same amplitude as in the cir-
cularly polarized case, higher harmonics develop considerably
slower; whereas for the linearly polarized case, with

√
2 times

the amplitude, the spectral evolution is qualitatively similar to
that for the circularly polarized case.
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Fig. 7. Summed contribution of higher angular harmonics, summing over the Fourier components in a lower range, i.e.,
∑5

m=3 |G(m)|2 (left) and
higher range

∑15
m=6 |G(m)|2 (right), as a function of time, in units of ≈85.9 s (duration between snapshots).

Fig. 8. Steps for obtaining the boundary curve. Left: Polar transform of the density plot shown in Fig. 5, smoothed using the routine MedianFilter
in Mathematica. Center: flux tube boundary identified from the polar transformed plot, using the routine MorphologicalPerimeter in
Mathematica. Right: data points extracted from the flux tube boundary plot. Radius units are 10 Mm.

Not shown in Fig. 7, but visible4 in Fig. 5, is the cou-
pling to the m = 2 fluting mode, as in the linearly polar-
ized case (e.g., Magyar & Van Doorsselaere 2016), being
especially prominent during the first oscillation period, manifest-
ing as an area-conserving elliptical deformation of the circular
cross section of the tube. A nonlinear propagating wave simula-
tion was also carried out. In this case, the expected deformation
and transition to turbulence of the unidirectionally propagating
kink wave was observed (Magyar et al. 2017, 2019). The differ-
ences between the circularly polarized and the linearly polarized
simulation are essentially the same as for the standing wave, in
the sense that kink wave energy is a better indicator of a nonlin-
ear growth rate than the velocity amplitude of the wave.

4. Conclusions

We have studied the circularly polarized kink wave in a cylindri-
cal flux tube through numerical simulations. Both standing and
propagating modes were studied for perturbation amplitudes,
both in the linear and nonlinear regime. The most striking dif-
ference between the circularly and linearly polarized cases is the
appearance of the wave perturbation once resonant absorption
and phase mixing start to act. While in the linearly polarized case
the resonant flow at the edge of the tube is in the direction of the
transverse kink perturbation, in the circularly polarized case it
is spiral-like and can be perpendicular to the kink perturbation.
Although resonant absorption shows morphological differences
for linear and circular polarization, no impact on the damping
time or oscillation period was found, which is in agreement with

4 In the online animated version.

analytical results. In the case of propagating waves, the same
conclusions can be drawn on the differences between the circu-
larly and linearly polarized kink waves, with a variation in time
replaced by a variation over propagation distance for continu-
ously driven waves.

In the nonlinear regime, for displacements comparable to the
tube radius, a tube undergoing circularly polarized kink oscilla-
tions deforms and develops small scales or TWIKH rolls faster
than a linearly polarized kink wave with the same amplitude. We
find that the growth rate for nonlinear small-scale generation is
governed by the energy of the oscillation, rather than the per-
turbation amplitude. Therefore, a growth rate comparable to the
one in the circularly polarized kink was achieved with a linearly
polarized kink wave with

√
2 times the former’s amplitude. This

is also valid for nonlinear propagating kink waves.
An important point is the observability of the polariza-

tion state of kink waves in the corona. We find that despite
the previously described differences between the appearance of
resonant flows, there is no difference in the Doppler signal. The
only tell-tale signature of circular polarization in the studied
case is the displacement of alternating Doppler signals. How-
ever, we note that in the linear case, no displacement would be
observed if only the LOS is parallel to the polarization direction.
The Doppler signal is independent of LOS direction in the cir-
cularly polarized case. In the linearly polarized case, while the
Doppler signal qualitatively remains the same for different LOS
directions, the amplitude varies roughly with the cosine of the
angle between LOS and polarization direction (see, e.g., Yuan &
Van Doorsselaere 2016). In the near future, simultaneous obser-
vations of coronal loop oscillations by the Extreme Ultraviolet
Imager on board the Solar Orbiter mission, and from SDO/AIA,
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could provide the opportunity to perform stereoscopic analy-
sis with unprecedented resolution. With suitable vantage points
(i.e., spacecraft separation angles ≤90◦), the complete 3D struc-
ture of the loop may be deduced without the limiting assump-
tion of semi-circularity. Then with sufficiently long-lived data,
the polarization of the transverse oscillation with respect to the
(modeled) plane of the loop may be calculated through com-
parison of the projected and apparent displacement in the two
fields of view. The ubiquity of decayless kink oscillations in the
solar corona implies that there will be at least some targets for
stereoscopic analysis. Curiously, all known detections of decay-
less oscillations have been polarized in the horizontal direction,
as with the large amplitude regime (Anfinogentov et al. 2015).
Whether this is in fact an observational bias that is caused by the
studies’ single field of view has important implications for the
driver, and (apparent lack of) damping mechanisms of decayless
oscillations. We note that even if all kink oscillations are initially
horizontally polarized, the expansion or contraction of the host-
ing coronal loop (a common occurrence, e.g., Russell et al. 2015)
may still provide the opportunity to observe transverse oscilla-
tions which are elliptically polarized. We suggest that observa-
tions looking for slowly expanding and contracting coronal loops
exhibiting transverse kink oscillations, which were observed by
both Solar Orbiter and SDO, may be used to substantiate the
results presented here.

The caveats of this study are the simplifications used in mod-
eling coronal loops. We neglect the curvature of the loops, opt-
ing for a straight flux tube. Nevertheless, Van Doorsselaere et al.
(2004) demonstrated that loop curvature has a minimal effect
on the kink eigenmodes and the differences between horizon-
tal and vertical polarization are negligible, although Ruderman
(2009) pointed out that this is only valid when the loop expan-
sion (varying cross section along the loop) is neglected, as in the
present study. We also note that Guo et al. (2020) have shown
that any ellipticity of the loop cross section affects both the
eigenfrequencies and the damping rates by resonant absorption
for different polarizations. Gravity is also neglected, leading to
a homogeneous density and Alfvén speed profile along the loop.
The density scale height in the corona is around 50 Mm for a
1 MK plasma, leading to large variations in Alfvén speed within
long loops. While the ratios of periods of different standing kink
wave harmonics are affected by stratification (e.g., Andries et al.
2005), we do not expect a polarization-dependent effect. We
have only studied two very specific polarization states, linear and
circular. It seems improbable that various coronal mechanisms
excite these specific polarization states of the kink oscillation
exactly, with most oscillations probably in an elliptical polariza-
tion state. However, as elliptical polarization can be positioned
between the two extremes of linear and circular polarization, our
conclusions on the differences or similarities between these two
states should still hold for the elliptical polarization state.

In the following, we discuss the potential applicability of
this study. The polarization state of observed kink oscillations
of coronal loops is often not determined, with a few excep-
tions noted in the Introduction. However, the polarization state
could offer us important seismological information on the driv-
ing mechanism of kink oscillations, especially in the context of
small amplitude decayless oscillations (e.g., Nisticò et al. 2013;
Anfinogentov et al. 2015), which are thought to be continuously
reinforced standing kink oscillations. In this sense, a statistical
analysis on the polarization state of these oscillations could con-
strain some properties of the loop footpoint driver, such as vari-
ability, the amount of vorticity, and time correlation. In particu-
lar, some explanations of a decayless kink oscillation arising as

a self-oscillatory process (Nakariakov et al. 2016) entail the flow
inducing the oscillation is quasi-stationary, which would lead to
linearly polarized oscillations.
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