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ABSTRACT
Rapidly propagating fast magnetoacoustic wave trains guided by field-aligned plasma non-uniformities are confidently observed
in the Sun’s corona. Observations at large heights suggest that fast wave trains can travel long distances from the excitation
locations. We study characteristic time signatures of fully developed, dispersive fast magnetoacoustic wave trains in field-aligned
zero-β plasma slabs in the linear regime. Fast wave trains are excited by a spatially localized impulsive driver and propagate along
the waveguide as prescribed by the waveguide-caused dispersion. In slabs with steeper transverse density profiles, developed
wave trains are shown to consist of three distinct phases: a long-period quasi-periodic phase with the oscillation period shortening
with time, a multiperiodic (peloton) phase in which distinctly different periods co-exist, and a short-lived periodic Airy phase.
The appearance of these phases is attributed to a non-monotonic dependence of the fast wave group speed on the parallel
wavenumber due to the waveguide dispersion, and is shown to be different for axisymmetric (sausage) and non-axisymmetric
(kink) modes. In wavelet analysis, this corresponds to the transition from the previously known tadpole shape to a new boomerang
shape of the wave train spectrum, with two well-pronounced arms at shorter and longer periods. We describe a specific previously
published radio observation of a coronal fast wave train, highly suggestive of a change of the wavelet spectrum from a tadpole to
a boomerang, broadly consistent with our modelling. The applicability of these boomerang-shaped fast wave trains for probing
the transverse structuring of the waveguiding coronal plasma is discussed.
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1 IN T RO D U C T I O N

The highly filamented nature of the plasma of the solar corona
plays a crucial role in magnetohydrodynamic (MHD) wave processes
ubiquitously observed in the corona with spaceborne and ground-
based instruments in multiple bands (e.g. Roberts 2000). Various
coronal plasma structures filamented along a guiding magnetic field
act as effective waveguides for MHD waves, whose dynamics is
thereby very much sensitive to the parameters of the host structure.
This close connection between the observed behaviour of MHD
waves with local coronal plasma conditions creates a solid ground for
the plasma diagnostics by the method of coronal MHD seismology.
The method is based on the interplay of a theoretical modelling
and observations of coronal MHD waves (see e.g. De Moortel &
Nakariakov 2012; Nakariakov et al. 2016; Wang 2016; Nakariakov
& Kolotkov 2020 for comprehensive reviews).

Among the phenomena associated with essentially compres-
sive fast magnetoacoustic waves guided by coronal plasma non-
uniformities are rapidly propagating quasi-periodic wave trains,
observed in various electromagnetic bands, from Extreme Ultraviolet
(EUV) and visible light to metric radio waves (see the most recent
review by Li et al. 2020, partly addressing this issue). The first direct
observation of fast wave trains in the corona was made during a total
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solar eclipse (see e.g. Williams et al. 2001; Katsiyannis et al. 2003),
while the periodic variations of the polarized brightness, discovered
by Ofman et al. (1997), could also be associated with fast waves. The
launch of the Solar Dynamics Observatory (SDO) with the instrument
Atmospheric Imaging Assembly (AIA/SDO) onboard allowed for the
direct observation of fast wave trains in EUV, in the form of rapidly
propagating quasi-periodic EUV intensity disturbances localized in
space and time in the lower corona (Liu et al. 2011), followed by
a number of other EUV detections (e.g. Liu et al. 2012; Shen &
Liu 2012; Shen et al. 2013; Yuan et al. 2013; Nisticò, Pascoe &
Nakariakov 2014; Zhang et al. 2015; Ofman & Liu 2018; Shen et al.
2018). In the observational papers, this phenomenon is often referred
to as ‘quasi-periodic fast-propagating’ waves, or QFP waves. Despite
the lack of comprehensive statistics of EUV observations of fast
wave trains, the majority of observational works report rather similar
properties, i.e. the apparent propagation speed from several hundred
to a few thousand km s−1 (about the expected local Alfvén speed),
oscillation periods between one and a few minutes, and amplitudes
up to several percent.

In the solar radio bursts associated with the plasma emission
mechanism, fast wave trains are indirectly observed through the
modulation of the local plasma density leading to the appearance of
quasi-periodic patterns and fine structuring in the dynamic spectrum
of the burst. The high temporal resolution of radio observations
allowed for revealing fast wave trains with second (e.g. Karlický,
Mészárosová & Jelı́nek 2013; Kolotkov, Nakariakov & Kontar 2018)
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and even subsecond (e.g. Mészárosová, Karlický & Rybák 2011; Yu
& Chen 2019) time-scales, both near the base of the corona and
up to 0.7 solar radii above the surface. Although, the wave trains
with longer characteristic periods of a few minutes coinciding with
EUV observations are also confidently seen in the radio band (e.g.
Mészárosová et al. 2009; Goddard et al. 2016; Kumar, Nakariakov
& Cho 2017). In particular, Karlický et al. (2013) demonstrated that
the local plasma density variations caused by a compressive wave
train with the amplitude of a few per cent, propagation speed about
several hundred km s−1, and period of a few seconds can explain the
observed radio spectra with quasi-periodic fiber bursts. Likewise,
using a similar semi-empirical model and the Bayesian and Markov
chain Monte Carlo approach, Kolotkov et al. (2018) found a fast
wave train modulating the dynamic spectrum of a type III radio burst
to propagate at about 657 km s−1, with an oscillation period about
3 s, and amplitude <1 per cent.

By the observed dynamic properties (i.e. the propagation speed
and apparent direction along the local magnetic field, oscillation
period, and amplitude) these rapidly propagating quasi-periodic wave
trains were associated with fast magnetoacoustic waves guided by
certain coronal plasma non-uniformities, such as loops, plumes,
current sheets, and magnetic funnels. The quasi-periodic nature of
these fast magnetoacoustic wave trains can be attributed either to a
periodic driver situated at the coronal base (see e.g. Ofman et al.
2011; Ofman & Liu 2018), or to a self-consistent development
from, for example, a flare-caused impulsive perturbation by the
waveguide dispersion (see Roberts, Edwin & Benz 1983, 1984;
Murawski & Roberts 1994; Nakariakov & Roberts 1995; Nakariakov
et al. 2004). In a driven scenario, the origin of a periodic driver,
in turn, requires the interpretation, while the waveguide-caused
dispersive effects on fast waves are naturally present. Indeed, fast
magnetoacoustic waves guided by plasma waveguides are known
to be dispersive, whereas the wave dispersion properties vary with
the parameters of the waveguide [see e.g. a series of recent works
by Lopin & Nagorny (2015, 2017, 2019) for a comprehensive
theoretical treatment of the effects of transverse density profile,
magnetic twist, and gravitational stratification of the host plasma
structures on the fast wave dispersion]. The effective formation of
dispersively evolving fast wave trains from an aperiodic impulsive
driver was modelled by Pascoe, Nakariakov & Kupriyanova (2013b,
2014) for magnetic overdense and underdense funnels; Mészárosová
et al. (2014) for dense slabs and current sheets; Oliver, Ruderman
& Terradas (2015) and Shestov, Nakariakov & Kuzin (2015) for
cylindrical waveguides. We need to stress that specific shapes of the
transverse density profile of coronal MHD waveguides, for example,
a coronal loop, polar plume, jet, streamer, etc., are not known, but are
subject to intensive investigation (see e.g. Aschwanden & Nightin-
gale 2005; Brooks et al. 2013; Arregui, Soler & Asensio Ramos
2015; Goddard et al. 2017; Pascoe et al. 2017a, 2018; Goddard,
Antolin & Pascoe 2018 for coronal loops). In particular, Pascoe,
Goddard & Nakariakov (2017b) demonstrated that the accumulation
of nonlinear effects in the dynamics of the fast wave trains trapped
in coronal plasma slabs is highly inhibited by strong waveguide
dispersion, so that even for the relative perturbation amplitudes of
several tens of percent the nonlinear steepening of the wave does
not occur. The latter result clearly justifies the applicability of the
linear MHD theory to modelling fast wave trains in coronal plasma
structures.

Due to the intrinsically non-stationary nature of the dispersively
evolving fast wave trains, the wavelet transform was shown to be most
suitable for the analysis of their time history. Thus, Nakariakov et al.
(2004) demonstrated that such wave trains have a ‘tadpole’-shaped

wavelet power spectra that was extensively used as a characteristic
signature for detecting them in observations. Moreover, based on
the dependence of the fast wave group speed on the wavenumber
along the waveguide axis, Roberts et al. (1983, 1984) suggested a
well developed wave train in a waveguide with sufficiently steep
boundaries to have three distinct phases of its time profile, with
different behaviours of the instantaneous oscillation period with time.
In a series of more recent works by Yu et al. (2016, 2017) and Li et al.
(2018), the effect of the waveguide transverse density structuring on
the formation and evolution of impulsively excited fast wave trains
was investigated, with a particular emphasis on the manifestation of
those phases in the obtained time profiles. However, no significant
deviations from the ‘tadpole’-shaped wavelet power spectrum were
found.

In this work, we use recent observations of fast magnetoacoustic
wave trains well above the low corona (e.g. Goddard et al. 2016;
Kolotkov et al. 2018) as a motivation to study characteristic sig-
natures of fully developed fast magnetoacoustic wave trains, i.e.
measured sufficiently far from the site of the initial impulsive energy
release. We, for the first time, explicitly demonstrate the appearance
of three distinct phases of fully developed axisymmetric (sausage)
and non-axisymmetric (kink) fast wave trains that appear in the
waveguides with sufficiently steep transverse density profiles and
prescribed by a non-monotonic dependence of the fast wave group
speed on the parallel wavenumber (Sections 2–5). The modelling is
performed for a dense plasma slab. In Morlet wavelet power spectra,
the formation of those distinct phases corresponds to a transition
from ‘tadpole’-shaped to ‘boomerang’-shaped spectral features. The
boomerang spectral structures have two well-pronounced arms in the
shorter-period and longer-period parts of the spectrum that could be
considered as a new characteristic signature of dispersively evolving
fast wave trains to look for in observations (Section 4). We discuss
an observational example identified among the previously published
detections of fast wave trains that demonstrates a clear change of the
wavelet spectrum shape from a ‘tadpole’ to a ‘boomerang’ as the
wave train propagates through the corona, in full agreement with the
results of our modelling (Section 6). We outline a roadmap towards
the use of these observations and modelling for the purposes of
coronal seismology, in particular, for simultaneous probing of the
density contrast and steepness of the transverse density profile of the
host plasma structures. The discussion of the results and conclusions
are given in Section 7.

2 WAV EGUI DE DI SPERSI ON PROPERTI ES O F
FA ST SAUSAG E AND KINK WAVES

The dynamics of linear fast magnetoacoustic waves guided by a
zero-β plasma slab stretched along the z-axis coinciding with the
direction of the magnetic field B0 is described by the following
partial differential equation (see e.g. Hornsey, Nakariakov & Fludra
2014):

C−2
A (x)

∂2vx

∂t2
− ∂2vx

∂x2
+ k2

z vx = 0. (1)

Here, vx is the perturbation of the transverse (across the slab) plasma
velocity, kz is the wavenumber along the z axis, and CA(x) is a
transverse profile of the Alfvén speed determined by the variation of
the plasma density across the slab ρ0(x), as CA(x) = B0/

√
4πρ0(x).

Equation (1) assumes the plasma to be ideal and uniform along the
field and in the y direction. Neither the equilibrium, nor perturbations,
depend on y. The transverse profile of the plasma density is given by
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Figure 1. Dependence of the group speed of fast sausage (left) and fast kink (right) magnetoacoustic waves guided by a transverse non-uniformity of plasma
density described by equation (2) with varying steepness parameter p and the Alfvén speed ratio CAe/CAi = 3. The red diamonds in both panels show the exact
analytic solution for p = 1 taken from Cooper, Nakariakov & Williams (2003). The sausage cut-off wavenumbers kE

c (for a smooth Epstein profile of density
with p = 1) and kS

c (for a step-function density profile with p � 1) are given by equations (4) and (5).

the generalized symmetric Epstein function,

ρ0(x) = (ρi − ρe) sech2
([ x

w

]p)
+ ρe (2)

(see e.g. Nakariakov & Roberts 1995; Nakariakov et al. 2004; Pascoe
et al. 2017b). In equation (2), ρ i is the internal plasma density at x =
0, ρe is the external plasma density at x → ∞, w is the characteristic
width of the waveguide, and the parameter p determines the steepness
of the density profile that varies from p = 1 for the Epstein profile
to p > 1 for steeper profiles, tending to a step function considered in
Roberts et al. (1984) for p � 1.

In addition to the Fourier transform in the z direction already
applied to equation (1) and characterized by the wavenumber kz, the
Fourier transform in time gives the wave cyclic frequency ω and
allows for separating the variables as vx(x, z, t) = U(x)exp [i(ωt
− kzz)]. Thus, equation (1) reduces to the following ordinary
differential equation for U(x):

d2U (x)

dx2
+

[
ω2

C2
A(x)

− k2
z

]
U (x) = 0. (3)

In this work, we study dispersive properties of the lowest transverse
harmonics of fast magnetoacoustic waves in waveguides with a vary-
ing steepness (2) by the shooting method, i.e. solving equation (3)
numerically for a fixed value of kz and searching for a value of ω that
satisfies the boundary conditions U(x → ±∞) → 0, by reformulating
the boundary problem to an initial value problem. As the initial
conditions, we use U(0) = 0 and U ′

x(0) �= 0 for axisymmetric
(sausage) perturbations, and U(0) �= 0 and U ′

x(0) = 0 for non-
axisymmetric (kink) perturbations. From the obtained numerical
dependencies between ω and kz we calculate the wave group speed
Vgr = dω/dkz, which is shown in Fig. 1 for varying values of the
waveguide steepness parameter p, with the ratio of the external CAe =
B0/

√
4πρe to internal CAi = B0/

√
4πρi Alfvén speeds CAe/CAi set

to 3 (ρ i/ρe = 9). Similar density contrasts have been considered by,
e.g. Tian et al. (2016), Kohutova & Verwichte (2018), and Pascoe,

Hood & Van Doorsselaere (2019). This numerical approach was
implemented in the computing environment MAPLE 2020. Numerical
results were validated by comparison with the exact analytic solution
of equation (3) existing for a particular case with p = 1 (Nakariakov
& Roberts 1996; Cooper et al. 2003), as shown by Fig. 1.

The left-hand panel of Fig. 1 shows the dependence of the group
speed Vgr of guided fast sausage waves on the parallel wavenumber
kz for different values of the steepness parameter p. The fast sausage
group speed is known to have a cut-off wavenumber kc discriminating
between the trapped (kz > kc) and leaky (kz < kc) regimes of
the wave dynamics (see e.g. Vasheghani Farahani et al. 2014 for
a comprehensive analysis of the wave leakage in the vicinity of kc).
In our model, a specific value of the cut-off wavenumber kc depends
on the density ratio (CAe/CAi) and steepness (p) of the waveguide,
and varies between

kE
c = 1

w

√
2C2

Ai

C2
Ae − C2

Ai

, for p = 1 (smooth profile), (4)

kS
c = π

2w

√
C2

Ai

C2
Ae − C2

Ai

, for p � 1 (step-function), (5)

see Nakariakov et al. (2004). The group speed of trapped fast sausage
waves is seen to be a monotonic function of kz for a smooth density
profile with p = 1, and has a well-pronounced minimum V min

gr for
steeper profiles with p > 1 (see e.g. Nakariakov & Roberts 1995).
The presence of this dip in the group speed implies that among the
ensemble of guided harmonics with different kz, excited by an initial
broad-band axisymmetric perturbation, will be a relatively narrow (in
the kz-space) interval of harmonics propagating at the highest group
speeds CAi < Vgr < CAe. These harmonics form a quasi-periodic
phase of the whole wave train, and this phase arrives to the observing
position first. The wavelengths of these harmonics are the longest
among all trapped harmonics. The harmonics travelling at lower
speeds V min

gr < Vgr < CAi will belong to a rather broad interval of kz.
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Figure 2. Time profiles (top) and the corresponding Morlet wavelet power spectra (bottom) of fast sausage wave trains determined by equation (6) for CAe/CAi

= 3 and measured at x0 = 0.5w and at different parallel distances z0 in either smooth (p = 1, left) or steep (p = 8, right) plasma waveguides (2). The thin solid
black lines in the wavelet spectra show the 1 per cent level of the maximum oscillation power of the corresponding wave train. The colour bars show the wavelet
power normalized to its maximum for each individual wave train. The hatched regions in the bottom panels show the wavelet’s cone of influence.

Within this interval, the group speed varies non-monotonically with
kz, so that there will be pairs of harmonics that have the same group
speed but distinctly different parallel wavelengths. These harmonics
form a multiperiodic phase of the wave train at some distance from
the site of the initial perturbation. The shortest excited harmonic will
belong to this phase, provided the driver is sufficiently broad-band. At
the lowest speed V min

gr , there will be a single harmonic trailing behind
all other guided harmonics that can be considered as a periodic phase
of the wave train.

For kink waves (right-hand panel of Fig. 1), a non-monotonic
dependence of the group speed on the parallel wavenumber kz is also
present for steep density profiles with p > 1. Hence, the formation of
those quasi-periodic, multiperiodic, and periodic phases of fast non-
axisymmetric wave trains can be expected too. However, in the same
waveguide, the dip in the kink group speed is seen to be shallower
than that for sausage waves. Moreover, the kink waves are trapped for
all kz, which makes the interval of harmonics involved in the quasi-
periodic phase broader in the kz-space. A combination of these two
effects suggests that in a fully developed fast kink magnetoacoustic
wave train, the quasi-periodic phase with the oscillation period
gradually decreasing with time will be pronounced stronger than
the multiperiodic phase during which the oscillations with distinctly
different periods anhistory of a wave traind wavelengths are expected
to co-exist.

A similar scenario whereby the initial broad-band fast magne-
toacoustic perturbation evolves in steep plasma waveguides was
discussed and described qualitatively by Roberts et al. (1983, 1984).
In our work, we present the first quantitative demonstration of the
formation of a fast wave train consisting of these three distinct phases.
Characteristic time signatures of those different phases of the fast
wave train could be visualized by wavelet analysis, for which we
use the IDL software package developed by Torrence & Compo
(1998).

3 D EVELOPMENT O F FAST SAU SAGE WAVE
TRAI NS I N WAVEGUI DES WI TH DI FFERE NT
STEEPNESS

Treating a wave train as a linear ensemble of multiple propagating
harmonic waves with ω and kz prescribed by the waveguide disper-
sion (Fig. 1), a solution to wave equation (1) can be written as

vx(x0, z0, t) =
kmax∑

kz=kc

U (x0, ki)Ai cos(ωit − kiz0 + φi). (6)

Here, x0 and z0 correspond to an observing position inside the
waveguide, U(x0, ki) is determined from a solution of equation (3)
with ω obtained from the dispersion relation for each value of kz,
and Ai and φi are the amplitudes and initial phases of the individual
harmonics ki taken from the Fourier transform of a Gaussian pulse of
an arbitrarily small amplitude, with the root-mean-square width of
0.25w and centred at z = 2w, with which solution (6) is essentially
broad-band and is localized in the z-domain at t = 0. The highest
parallel harmonic kmax is determined by the full length of the z

domain, which was set to 200w in this work. The harmonics with
kz < kc are not included in solution (6), as in the waveguides with
the density contrast ρ i/ρe lower than 10 they are known to damp
by leakage in shorter than one cycle of the oscillation (see e.g.
equation 5 in Li et al. 2020, and references therein). In this work,
we determine kc for various steepness parameters p numerically,
as a parallel wavenumber kz at which the wave group speed Vgr

approaches the external Alfvén speed CAe (see Fig. 1).
Fig. 2 demonstrates the time history of a wave train determined

by equation (6) and measured at three different distances z0 from the
site of the initial perturbation in a smooth waveguide with the density
steepness parameter p = 1 and in a steep waveguide with p = 8. In a
smooth waveguide with p = 1 (left-hand panels of Fig. 2), the wave
group speed is a monotonic function of the parallel wavenumber kz
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Figure 3. The same as shown in Fig. 2, but for varying density steepness parameter p and z0 = 100w.

as shown by Fig. 1, so that each parallel harmonic kz excited by the
initial perturbation propagates at its own speed. This scenario was
previously shown to result in the formation of a quasi-periodic wave
train with a gradually evolving oscillation period, which is seen as a
‘tadpole’ structure with a narrower-band tail and broader-band head
in the Morlet wavelet power spectrum (Nakariakov et al. 2004). In
the same waveguide, placing the observing position z0 further away
from the site of the initial perturbation makes the wave train less
compact in space and time, but it still retains a tadpole shape in the
wavelet spectrum.

The evolution of an initial broad-band perturbation in a steep
waveguide (right-hand panels of Fig. 2) is seen to be strongly affected
by the presence of the dip in the wave group speed (Fig. 1). At z0 =
20w, the wave trains in smooth and steep waveguides are not much
different from each other, both in the time domain and in the wavelet
spectrum. However, later stages of the wave train evolution at, for
example, z0 = 50w and z0 = 110w, clearly show the formation
of distinct phases of the wave train with different time signatures
described qualitatively in Section 2, and the development of a
characteristic ‘boomerang’ structure with two well-pronounced arms
in the wavelet spectrum of the wave train. A gradual transition from
a tadpole-shaped to a boomerang-shaped wave train with increase in
the waveguide steepness parameter p from 1 to 5 is shown by Fig. 3,
where all the wave trains are captured at the same observing position
z0 = 100w.

4 QUA SI-PER IODIC, MULTIPERIODIC
(PELOTO N ) , A N D PERIODIC PHASES OF A
FULLY D EVELOPED FAST SAU SAGE WAVE
T R A I N

In this section, we give a closer look at a fully developed wave train
in a steep waveguide and discuss the distinct phases of its time profile
in more detail. Fig. 4 shows the wave train formed as prescribed by
equation (6) in a waveguide with the steepness parameter p = 8 and
measured sufficiently far from the site of the initial perturbation, at
z0 = 150w.

In accordance with the dispersion relation of fast sausage waves
in steep waveguides discussed in Section 2 and shown by Fig. 1, a
relatively narrow interval of harmonics kz propagating at the group
speed monotonically decreasing from CAe to CAi forms a leading (i.e.

Figure 4. Time profile (top) and Morlet wavelet power spectrum (bottom)
of a fully developed fast sausage wave train in a steep plasma waveguide (2)
with p = 8, obtained from equation (6) for CAe/CAi = 3, x0 = 0.5w, and z0

= 150w. The distinct phases of the wave train are I – leading quasi-periodic
phase; II – multiperiodic peloton phase; III – periodic Airy phase.

approaching the observing position z0 in shorter time) phase I of the
wave train, lasting from z0/CAe to z0/CAi in the time domain. Due
to a small but finite number of harmonics involved in this phase I, it
could be referred to as quasi-periodic (not strictly periodic). In the
example shown by Fig. 4, this quasi-periodic phase I is seen as almost
monochromatic oscillation both in the time domain and in the wavelet
spectrum, because of the effect of the sausage cut-off wavenumber
kc that makes the number of harmonics propagating at CAi < Vgr

< CAe small. The quasi-periodic nature of this phase becomes more
apparent for fast kink wave trains, which is demonstrated in Section 5.
This phase is characterized by the longest wavelengths in the wave
train.
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Figure 5. The same as shown in Fig. 2, but for fast kink wave trains.

The largest number of fast sausage harmonics kz travelling
at V min

gr < Vgr < CAi constitute another phase of the wave train,
indicated as phase II in Fig. 4. It lasts from z0/CAi to z0/V

min
gr

in time and is characterized by the distinctly different parallel
harmonics co-existing both spatially and temporally, which is caused
by a non-monotonic dependence of the wave group speed on the
parallel wavenumber kz (see Fig. 1). In other words, in this interval
of kz there are pairs of longer-wavelength and shorter-wavelength
waves excited by the same impulsive driver and propagating at
the same group speed ranging from CAi to V min

gr . As such, this
phase II can be referred to as a multiperiodic or peloton phase
of the wave train, borrowing the terminology used for the main
group of riders in road cycling. In the wavelet power spectrum
of the wave train, this peloton phase is manifested as two distinct
boomerang arms situated at the shorter-period and longer-period
parts of the spectrum that represent those pairs of the parallel
harmonics co-existing in this phase of the wave train at each instant
of time.

The final short-lived phase of the wave train, phase III, is com-
prised of a single harmonic passing through the observing point z0 at
the lowest group speed V min

gr . As there is only one harmonic present
in this phase, it can be referred to as a periodic phase. By analogy
with water wave theory, Roberts et al. (1983, 1984) suggested to
call this part of the wave train as the Airy phase. In the wavelet
spectrum, it corresponds to the elbow of the boomerang, connecting
its shorter-period and longer-period arms.

5 EFFEC T OF A D IPPED G RO UP SPEED ON
FA S T K I N K WAV E T R A I N S

Solution (6) can be used for modelling fast kink wave trains too,
by applying a non-axisymmetric initial condition for equation (3),
U(0) �= 0 and U ′

x(0) = 0, and setting the minimum value of kz in
equation (6) to zero, as fast kink waves are known to be trapped for
all kz (see Fig. 1). All other parameters of the model are kept the
same for a clear comparison with the sausage regime.

The development of fast kink wave trains in a smooth (p = 1)
and steep (p = 8) plasma waveguide (2) and their characteristic
time signatures in the Morlet wavelet power spectrum are shown
in Fig. 5. Similarly to sausage wave trains, kink wave trains are
seen to change from a tadpole shape to a boomerang shape with
the increase in the waveguide steepness parameter p, with the quasi-
periodic, multiperiodic peloton, and periodic Airy phases clearly
present. However, in contrast to the wave trains of a sausage
symmetry, the quasi-periodic phase of kink wave trains is seen to
be better pronounced with a clear drift of the oscillation period
from longer to shorter values with time. This is connected with the
absence of the cut-off effect for fast kink waves that allows the fast-
propagating long-wavelength harmonics excited by the initial broad-
band perturbation to remain inside the waveguide and contribute to
the wave train formation. On the other hand, the dip in the group speed
of fast kink waves is found to be shallower than that of fast sausage
waves in the same waveguide (Fig. 1). This makes the peloton phase
of a fast kink wave train less developed and pronounced in the time
domain and in the wavelet power spectrum. This explicit difference
in the development of fast sausage and kink wave trains in the same
waveguide can be used for distinguishing between those modes in
observations.

6 O BSERVATI ONA L I LLUSTRATI ON AND
P RO S P E C T S FO R C O RO NA L SE I S M O L O G Y

The high temporal resolution traditionally available in the radio band
seems to be most suitable for the detection of these boomerang-
shaped fast magnetoacoustic wave trains in observations. In par-
ticular, signatures of quasi-periodic fast propagating wave trains in
solar radio bursts were detected by Mészárosová et al. (2009) with
the characteristic oscillation period about 71 s; Mészárosová et al.
(2011) with multiple periods about 0.5 s, 2 s, and 81 s; Goddard
et al. (2016) with a period about 1.8 min; and Kumar et al. (2017)
with periods ranging from 70 s to 140 s. More recently, Nakariakov
et al. (2018) observed quasi-periodic pulsations in a solar microflare
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with periods about 1.4 s in the radio emission intensity and 0.7 s in
the polarization signal that were interpreted in terms of fast sausage
oscillations of the flaring loop. Kolotkov et al. (2018) associated a 3-s
quasi-periodic striation observed in the dynamic spectrum of a type
III radio burst with the modulation of the local plasma density by a
propagating fast wave train. Likewise, Yu & Chen (2019) interpreted
a subsecond-period oscillatory dynamics of a radio source in a two-
ribbon solar flare by fast propagating magnetoacoustic wave packets
in post-reconnection magnetic loops.

An example relevant to this discussion is found in fig. 4 of
Mészárosová et al. (2011) that demonstrates wavelet spectra of a fast
wave train observed in the decimetric radio emission with fiber bursts
by the Ondrejov radio spectrograph after a C-class flare. This wave
train was detected at 973–1025 MHz and manifested a frequency
drift 	f/	t = 8.7 MHz s−1 towards lower frequencies. Assuming
the plasma emission mechanism for this observation and taking a
hydrostatic density model of the solar atmosphere with the scale
height 
 = 50 Mm (temperature about 1 MK), this frequency drift
can be interpreted as an upward propagation of a wave train at the
speed about 870 km s−1, estimated as (2
/f)(	f/	t) for f = 1000
MHz (see e.g. Aschwanden 2002). Interestingly, the shape of the
wavelet spectrum of this wave train observed at higher frequencies
1025 MHz and 1020 MHz (lower heights, see the bottom panels in
fig. 4 of Mészárosová et al. 2011) looks similar to the characteristic
shape of a tadpole wavelet structure with a narrower-band tail around
81-s oscillation period and a broader-band head. However, as the
wave train propagates upwards (towards lower frequencies 997 MHz
and 973 MHz, see the top panels in fig. 4 of Mészárosová et al. 2011),
the characteristic shape of its wavelet spectrum clearly changes from
a tadpole to a boomerang, with a well-pronounced development of the
boomerang arm in the shorter-period part of the spectrum, around 30–
40 s (we mention the binary logarithmic scale of the y-axes in fig. 4
of Mészárosová et al. 2011). The described observational properties
are fully consistent with the theoretical scenario shown in Fig. 2.
Specifically, it shows the evolution of the wave train shape as it prop-
agates along the waveguide, in full agreement with the theoretical
result obtained in this work for a waveguide with a steep transverse
density profile. We note that the perturbations of the plasma velocity
vx shown in Fig. 2 can be readily recalculated into the perturbations
of the local plasma density using equation (7) of Cooper et al. (2003).
This allows us to consider fig. 4 of Mészárosová et al. (2011) as a
possible observational evidence of the transition from tadpole-shaped
to boomerang-shaped fast magnetoacoustic wave trains.

From a seismological perspective, a combination of such an
observation highly suggestive of a boomerang-shaped wave train
with the theoretical model developed in this work offers a unique
possibility for probing simultaneously the plasma waveguide depth
(Alfvén speed ratio CAe/CAi) and steepness (parameter p). Indeed,
according to the model, a quasi-periodic phase of the wave train
continues from z0/CAe to z0/CAi (see Fig. 4) that allows one to
estimate the Alfvén speed ratio CAe/CAi from the observed duration
of this phase. Likewise, the duration of a peloton phase of the wave
train is prescribed to last from z0/CAi to z0/V

min
gr . Having the Alfvén

speed ratio CAe/CAi estimated at the previous step, its value can
be used for solving equation (3) parametrically for the steepness
parameter p that allows the dip in the fast wave group speed (i.e. ratio
between CAi and V min

gr ; see Fig. 1) to be consistent with the observed
duration of the peloton phase. As we mentioned earlier in Section 5,
the discrimination between the sausage and kink symmetries of the
perturbation can be made through the bandwidth of the quasi-periodic
phase. The elaboration and practical application of this seismological
concept will be a subject of a dedicated follow up work.

7 D I SCUSSI ON AND C ONCLUSI ONS

In this work, we modelled the development of linear dispersively
evolving fast magnetoacoustic wave trains in plasma slabs with
varying steepness of the transverse density profile. We showed that
due to a non-monotonic dependence of the fast wave group speed on
the parallel wavenumber in steep waveguides, the initial impulsive
perturbation develops into a fast propagating quasi-periodic wave
train with three distinct phases: a quasi-periodic phase, a multi-
periodic peloton phase, and a periodic Airy phase. This evolution
scenario is fully consistent with the wave train signature predicted
qualitatively (i.e. without calculations or simulations) by Roberts
et al. (1983, 1984). These phases form a boomerang structure in
the wavelet power spectrum, with two well-pronounced arms in the
longer-period and shorter-period parts of the spectrum that could be
considered as a characteristic signature of these wave trains in time-
resolved observations. This is in contrast to the wave trains in smooth
waveguides that have no distinct phases in their time history and were
previously shown to display tadpoles in the wavelet spectrum. The
duration of these phases and how prominent they are in the whole time
profile of the wave train depends on the parameters of the waveguide
and the wave perturbation symmetry. In particular, for axisymmetric
(sausage) perturbations of the waveguide, the multiperiodic peloton
phase was found to be better developed, while the quasi-periodic
phase was seen as an almost monochromatic oscillation. For non-
axisymmetric (kink) perturbations, the wave trains have a better
pronounced quasi-periodic phase with clear decrease in the oscil-
lation period with time, while the multiperiodic peloton phase is also
present but rather short-lived and thus less visible.

We have also identified a specific previously published example of
a solar coronal fast wave train observed in the radio band that strongly
suggests a transition from a tadpole-shaped to a boomerang-shaped
wavelet power spectrum, broadly consistent with our modelling.
The availability of such a possible observational confirmation and a
theoretically prescribed sensitivity of the distinct phases of the wave
train to the parameters of the waveguide open up clear perspectives
for using these fast wave trains as a new seismological tool in future.
In particular, the ratio of the Alfvén speeds inside and outside the
waveguide, and steepness of its transverse density profile could be
probed simultaneously using high-sensitivity and high-resolution
observations of the quasi-periodic and peloton phases of fast wave
trains, obtained with the existing (e.g. AIA/SDO, LOFAR) and
upcoming (e.g. SKA, METIS/SO, ASPIICS/Proba-3) instruments.

In addition to the parameters of the waveguide and symmetry of the
perturbation with respect to the waveguide axis, another important
parameter in the fast wave train dynamics is the width of the initial
impulsive driver in the z-domain, which determines the distribution
of the initial energy across the parallel harmonics, i.e. a broad-band
nature of the perturbation. In this work, this parameter was set to be
sufficiently narrow (see Section 3) to provide the initial perturbation
to be essentially broad-band and thus to allow for the effective
excitation of the parallel harmonics for which the fast wave group
speed behaves non-monotonically. For example, Nakariakov, Pascoe
& Arber (2005) demonstrated that less localized initial perturbations
lead to the formation of almost monochromatic fast wave trains, with
a poorly pronounced variation of the oscillation period with time. A
similar conclusion was drawn in a more recent work by Yu et al.
(2017), who found that a spatial extent of the initial impulsive driver
has to be comparable to the waveguide width for the effective forma-
tion of quasi-periodic fast wave trains. Likewise, Goddard, Nakari-
akov & Pascoe (2019) demonstrated that the efficiency of generation
of fast wave trains strongly decreases with increasing temporal
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duration of the impulsive driver. Hence, we expect that the drivers less
localized in space and time would lead to a less efficient formation
of essentially broad-band boomerang-shaped fast wave trains.

A frequency-dependent damping of fast magnetoacoustic waves
may also potentially affect the development of the boomerang-shaped
wave trains intrinsically comprised of an ensemble of shorter and
longer-period harmonics. More specifically, the damping mechanism
for sausage oscillations is predominantly associated with the leakage
of waves with the wavenumbers below the cut-off value kc (see
e.g. Kopylova et al. 2007). For the majority of realistic physical
conditions used for modelling of fast sausage waves in coronal
plasma waveguides, the cut-off wavenumber kc appears in the long-
wavelength part of the spectrum, outside the interval of kz forming
the peloton phase (see Li et al. 2020, and references therein). Hence,
we expect the fast sausage wave leakage to have no significant
effect on the formation of the peloton phase. On the other hand, the
longer-period quasi-periodic phase of a sausage wave train is strongly
affected by this leakage that makes it apparently narrow-band as we
discussed in Section 4. Likewise, the impulsively excited propagating
fast kink waves are known to damp in cylindrical waveguides with a
smooth density profile due to the phenomenon of resonant absorption,
with the damping time/length proportional to the oscillation period
(see e.g. Goossens, Erdélyi & Ruderman 2011; Hood et al. 2013;
Pascoe et al. 2013a). This may lead to the suppression of shorter
scales in the peloton phase of a fast kink wave train. However, as we
demonstrated in Section 5, the fast kink wave trains are dominated
by the longer-period quasi-periodic phase for which the effect of
resonant absorption is weaker. None the less, the question of a
relative efficiency of the processes of frequency-dependent damping
and formation of boomerang-shaped fast wave trains remains open
and requires a dedicated parametric study.

Another potentially interesting direction for the development of
this work is to extend it upon the waveguides with other transverse
density profiles. For example, Yu et al. (2016) demonstrated that
fast wave group speed can have multiple extrema for sufficiently
wide linear transition layers sandwiched between internal (with a
uniform density ρ i) and external (with a uniform density ρe) regions.
Clearly, the existence of multiple dips in the fast wave group speed
would make the time evolution of the initial impulsive perturbation
even more complicated than described in this work, potentially with
more distinct phases and more sophisticated wavelet structures of
the wave train. Similarly to the results of this work, revealing these
characteristic signatures could be used as a seismological indicator
of the transverse structuring of a hosting plasma waveguide.
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