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Abstract Solar flare emission is detected in all EM bands and variations in flux density
of solar energetic particles. Often the EM radiation generated in solar and stellar flares
shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction
of a second to several minutes. These oscillations are referred to as quasi-periodic pulsa-
tions (QPPs), to emphasise that they often contain apparent amplitude and period modu-
lation. We review the current understanding of quasi-periodic pulsations in solar and stel-
lar flares. In particular, we focus on the possible physical mechanisms, with an emphasis
on the underlying physics that generates the resultant range of periodicities. These physi-
cal mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory recon-
nection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow
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over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We
also provide a histogram of all QPP events published in the literature at this time. The oc-
currence of QPPs puts additional constraints on the interpretation and understanding of the
fundamental processes operating in flares, e.g. magnetic energy liberation and particle ac-
celeration. Therefore, a full understanding of QPPs is essential in order to work towards an
integrated model of solar and stellar flares.

Keywords QPPs · Quasi-periodic pulsations · Flares · Solar flares · Stellar flares

1 Introduction

Flares constitute one of the most impressive manifestations of solar and stellar activity. They
appear as a sudden increase of radiated flux, detectable in a broad range of wavelengths,
going from gamma rays to radio. Since the first observations of a solar flare by Carrington
(1859) and Hodgson (1859), countless detections were reported of flares on the Sun as well
as on other stars (Hertzsprung is credited of the first stellar flare detection in 1924). However,
flares have not yet revealed all their secrets.

According to the most often invoked flare model, the CSHKP (Carmichael 1964; Stur-
rock 1968; Hirayama 1974; Kopp and Pneuman 1976; Svestka and Cliver 1992)—or stan-
dard—model, flares have their origin in magnetic reconnection that takes place in a coronal
current sheet. The reconnection process accelerates particles in both the upwards and down-
ward directions to non-thermal speeds. The latter, after propagating collisionlessly along
magnetic field lines through the corona, eventually reach the denser chromosphere. There,
they dissipate part of their energy by radiating (e.g. bremsstrahlung processes that produce
hard X-rays) and by heating the ambient plasma, which results in the so-called chromo-
spheric evaporation. This evaporated plasma, while cooling, will produce thermal emission
essentially in the EUV and soft X-ray ranges. This model, although providing a detailed
phenomenological description of most of the flare characteristics, keeps the main quanti-
tative aspects elusive. In particular, the way the energy produced at the reconnection site is
transported to the chromosphere remains highly debated. Obviously, the accelerated electron
beam is a good energy propagation agent, but it is not clear whether it suffices to explain the
huge amount of energy released during the flare process. Some authors suggested that part
of the flare energy could rather be transported downward by Alfvén waves (e.g. Fletcher and
Hudson 2008) or by thermal conduction (e.g. Antiochos and Sturrock 1978; Cargill et al.
1995; Milligan et al. 2006).

The occurrence of waves and pulsations associated with flares puts additional constraints
on the interpretation and understanding of the fundamental processes operating in both solar
and stellar flares (e.g. particle acceleration, magnetic energy liberation). In this way, one can
consider waves as both an integral part of flare dynamics as well as a potential diagnostic of
the flare process. The overarching goal of solar and stellar flare modelling is thus to create
an integrated plasma model which will, ultimately, create a coherent vision of reconnection,
waves and particle acceleration processes in flares. This review paper considers one of these
three key components: the modelling of waves and pulsations in solar and stellar flares.
Specifically, we focus on quasi-periodic pulsations (QPPs)—see Sect. 1.3—but also briefly
review other important wave processes in the Appendices A and B.

Note that this paper focuses on modelling QPPs, and their possible production by waves
and pulsations, and thus is primarily a theoretical modelling review. For a comprehensive
observational overview of solar flares see, e.g. Fletcher et al. (2011). Detailed reviews of
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observational and forward modelling aspects of QPPs are summarised in Nakariakov and
Melnikov (2009); Nakariakov et al. (2010); Van Doorsselaere et al. (2016), while the the-
oretical aspect, mainly the mechanisms based on standing MHD oscillations, is covered
there too. In this paper we address the QPP mechanisms developed in recent years, such as
periodic reconnection, the magnetic tuning fork, and self-oscillatory processes, as well as
some well-known mechanisms, e.g. the equivalent LCR contour and dispersive wave trains,
which recently obtained observational support, but have not obtained sufficient attention in
previous reviews.

1.1 Oscillations, Self-Oscillations, Waves and Pulsations

Let us start with some terminology and definitions. According to the common knowledge,
an oscillation is any motion, effect or change of state that varies periodically between two
values, i.e. there is a repetitive nature. However, clearly, this definition does not include a
number of constraints, such as the finite duration of the oscillatory pattern, possible ampli-
tude modulation, e.g., the decay, and frequency drifts. In the Fourier spectral domain, an
oscillation is usually associated with a statistically significant peak, or a group of peaks in
the case of an anharmonic pattern. But, again, this approach does not take into account the
oscillation life time and the modulations. Thus, it is difficult to produce a mathematically
rigorous definition of an oscillation in real data. In flaring signals, this difficulty is magnified
by the intrinsic localisation of the quasi-oscillatory patterns in a certain time interval that is
determined not only by the properties of the oscillation itself, but also by the duration of
the emission in the flare. For example, in the gyrosynchrotron emission an oscillatory pat-
tern is seen only during the operation of this mechanism, i.e. when there are non-thermal
electrons in the oscillating plasma. Thus, we usually intuitively consider a quasi-periodic
pulsation (QPP) to be a quasi-repetitive pattern in the signal, which has at least three or four
iterations—the QPP cycles.

It is easier to define an oscillation in theoretical modelling. From this point of view, an
oscillation is a quasi-periodic variation of certain physical parameters in the vicinity of a
certain equilibrium. For example, it is the (quasi)-periodic dynamics of a load of the pen-
dulum, or, in the case of solar flares, a (quasi)-periodic variation of the plasma density with
respect to the equilibrium in a flaring loop. It should be pointed out that the equilibrium it-
self may vary during the oscillation, for example the equilibrium value of the density in the
loop may change because of the ongoing chromospheric evaporation, or gradual variation of
the loop length or width. Parameters of an oscillation, such as the amplitude and phase, are
determined by the initial excitation. In general, in an oscillation there is a (quasi)-periodic
transformation of the kinetic, potential, magnetic and thermal energy into each other. There
is also the continuous sinking of the oscillation energy to the internal energy, and possibly
radiation of the energy outward the oscillating system. Thus, an oscillation can be consid-
ered as a (quasi)-periodic competition between an effective restoring force and inertia. The
oscillation period is determined by the properties of the oscillating system, an oscillator. In a
certain time interval, oscillations may be driven by an external time-dependent force, resup-
plying the oscillation with energy. In this case the response of an oscillator to the external
force consists of a combination of the natural oscillation and the driven oscillation. When the
frequencies of the natural and driven oscillations are close to each other, the phenomenon of
resonance occurs.

An important class of oscillatory motions in dissipative and active1 media are self-
sustained oscillations, also called self-oscillations, auto-oscillations or oscillatory dissipa-

1The medium could be considered as active if certain perturbations provoke the medium to release energy.
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tive structures. Self-oscillations occur in essentially non-conservative systems because of
the competition between the energy supply and losses. In particular, in electronics self-
oscillations are associated with the process of the conversion of the direct current in the
alternate current of a certain frequency. Self-oscillatory motions are common in a number of
dynamical systems, and the well-known examples are various musical instruments, radio-
frequency generators, the heart, the clock (see Jenkins 2013, for a comprehensive review).
Usually, the self-oscillation period depends on the amplitude. Despite the presence of dissi-
pative and/or radiative losses, a self-oscillation may be decayless, because of the continuous
extraction of the energy from the medium. This behaviour should not be confused with the
driven oscillations mentioned above, as in the case of self-oscillations this energy supply
comes from an essentially non-periodic source, e.g. the DC battery in a watch, or the steady
wind causing the periodic shedding of aerodynamic vortices. In solar flares, a steady in-
flow of the magnetic flux towards the reconnection site could result in repetitive magnetic
reconnection (“magnetic dripping”, Nakariakov et al. 2010) that should be considered as a
self-oscillatory process.

In contrast with regular oscillations, properties of self-oscillations, such as the period,
shape of the signal, and amplitude are uniquely determined by the parameters of the system
they are supported by, and are independent of the initial conditions. It makes them an ex-
cellent tool for seismological probing of the media and physical processes operating there.
Hence, the search for and identification of self-oscillatory processes in solar and stellar im-
pulsive energy releases is an interesting research avenue.

A wave is a perturbation that propagates through space and time, which is usually ac-
companied by energy transference. Despite the common knowledge that a wave should be
“wavy”, it is not necessary for the wave signal to be periodic. The main property of a wave is
its propagation that is characterised by its phase and group speeds. More rigorously, a wave
is a signal that, in the simplest, one-dimensional case, is described by the general solution
to the wave equation, f (z − Ct), where z and t are the spatial coordinate and time, and C

is the phase speed of the propagation. The function f that describes the wave shape is an
arbitrary, sufficiently smooth function that is determined by the excitation. In particular, it
may be periodic, e.g. harmonic, or aperiodic, e.g. Gaussian.

In a more general case the function f can also gradually vary in time and space, as it is,
e.g. in the presence of dissipation, mode conversion, or non-plane effects. If nonlinear effects
are important, the speed C may become a function of the amplitude, and the wave evolution
is described by a certain evolutionary equation, e.g. the Burgers equation for magnetoacous-
tic waves, or the Cohen–Kulsrud equation for Alfvén waves. Nonlinear evolution of a wave
usually leads to the deformation of the wave shape, e.g. the formation of the characteris-
tic saw-tooth pattern in the case of nonlinear magnetoacoustic waves. Shock waves are a
specific class of nonlinear wave motions, with the functions f having an infinite gradient.

In dispersive media or systems, signals with different frequencies have different phase
and group speeds, for example a fast magnetoacoustic wave propagating within a system
with a field-aligned inhomogeneity. In this case, different spectral components that are the
results of the Fourier decomposition of the function f propagate at different speeds, and
an initially broadband signals evolves into a locally harmonic signal. This situation occurs,
in particular, in the case of the waves on the surface of water, which leads to our everyday
experience that a wave should be “wavy”.

Similarly to self-oscillations, there could be “self-waves”, more often called autowaves
that appear in active media, when the passage of the wave causes the energy release that
reinforces the wave. An example of an autowave is the wave of flame. The speed, amplitude
and other parameters of autowaves are determined by the properties of the medium. In solar
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physics, autowaves could occur, for example, as the “wave”of sympathetic flares: an energy
release in the first flare ignites the next one that, in turn, ignites the third, etc., i.e. a “domino
effect”. The progression of the quasi-periodic energy release site along the neutral line in a
two-ribbon flare could also be produced by an autowave.

Waves and oscillations are closely related to each other. A standing wave that is a linear
superposition of two oppositely propagating waves of the same amplitude, is usually called
an oscillation in solar physics. Examples of these oscillations are the fundamental magne-
toacoustic harmonics of coronal loops, such as kink, sausage, fluting, torsional and acoustic
modes (see, e.g. De Moortel and Nakariakov 2012; Nakariakov et al. 2016, for comprehen-
sive reviews).

1.2 Waves and Pulsations Generated by Flares

The dramatic energy release in flares can generate waves and pulsations in the elastic and
compressive solar atmosphere. Firstly, there is the impulsive energy release of the flare it-
self; this can act as an impulsive driver for waves and pulsations. Additionally, during the
huge magnetic restructuring that accompanies the reconnection, the magnetic field below
the reconnection site is believed to collapse in an “implosion” process (Hudson 2000) that
would very likely trigger waves too. Simply put, the flare is converting stored energy into
various forms which we observe both directly and indirectly, and waves/pulsations/outflows
are part of that energy conversion process (see, e.g. §3.3 of Hudson 2011).

Thus, there is a rich tapestry of wave-related phenomena associated with solar (and stel-
lar) flares. This review focuses on QPPs, but other types of waves and pulsations associated
with solar and stellar flares are discussed briefly in the appendices, where Appendix A con-
siders global waves generated by CMEs and flares (including shock waves, blast waves, EIT
waves, Moreton waves and ‘flare waves’) and Appendix B considers sunquakes (another
wave-like global phenomenon associated with flares).

1.3 Quasi-Periodic Pulsations

Quasi-repetitive patterns have been detected in a variety of signals generated by flares. These
are referred to as quasi-periodic pulsations (QPPs), and have been observed in radio, optical
and X-ray emission of solar flares (e.g. Kane et al. 1983; Kiplinger et al. 1983; Dennis 1985;
Asai et al. 2001; Inglis et al. 2008; Inglis and Nakariakov 2009; Nakariakov and Melnikov
2009; Hayes et al. 2016; Van Doorsselaere et al. 2016; Zhang et al. 2016) and stellar flares
(e.g. Mathioudakis et al. 2003; Mathioudakis et al. 2006; Mitra-Kraev et al. 2005). These are
not, rigorously speaking, oscillations or waves (see Sect. 1.1 for terminology), rather they
are oscillation trains (short bursts of oscillations) or, in some cases, modulated oscillations,
i.e. time-varying (in amplitude or period) oscillations.

An example of QPPs is illustrated in Fig. 1 for the X4.9 flare of 25 February 2014. QPP
oscillations with a period of ∼35 s are clearly visible as an oscillatory train in all displayed
time series that cover the radio (Nobeyama Radio Polarimeters 17 GHz), the EUV (PROBA-
2/Lyra 1–20 nm, see Dominique et al. 2013) and the HXR ranges (RHESSI 50–100 keV, see
Lin et al. 2002). Despite the very different ranges of energy considered, the oscillations are
remarkably synchronous.

In the top panel of Fig. 1, the green and red curves show the clear oscillatory pattern that is
often displayed in the flare non-thermal emission. At the end of the 1960s, those oscillations
were known to correlate well in the X-ray and radio bands, and a possible wave-origin
had already been invoked (Parks and Winckler 1969). Since then, numerous observations
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Fig. 1 Example of QPPs for the X4.9 flare of 25 February 2014. Top panel: the normalised flare time series
from GOES 0.1–0.8 nm (black), Lyra 1–20 nm (blue), RHESSI 50–100 keV (red) and Nobeyama 17 GHz.
Second, third and fourth panels: the same time series for respectively RHESSI, Lyra, and Nobeyama, de-
trended with a 50 s window. The QPPs appear to be remarkably synchronous. The data gap in the Lyra time
series from 00:50 UT onwards is caused by a spacecraft manoeuvre

of these QPPs have been reported during solar flares, not only in non-thermal (see e.g.
Kane et al. 1983; Inglis et al. 2008), but also in thermal emission, with example cases in the
visible (e.g. Jain and Tripathy 1998; McAteer et al. 2005), in the soft X-rays/EUV (e.g. Dolla
et al. 2012; Brosius and Daw 2015) and in the ultraviolet ranges (e.g. Tian et al. 2016), as
well as simultaneously in both thermal and non-thermal emission (e.g. Brosius et al. 2016).
Such a global wavelength coverage tends to indicate that QPPs affect all layers of the solar
atmosphere from the chromosphere to the corona.

The web-page2 presents a catalogue that contains information about QPPs in solar flares,
detected in various bands and with various instruments. The catalogue is based on the in-
formation provided in already published papers by various authors, is continuously updated,
and at the moment contains 278 QPP events reported in the literature. Figure 2 illustrates the
distribution of the detected QPPs in time and by the periods. In the cases of drifting periods
we took the mean value of the period. We attribute an event to a QPP in the thermal emission

2http://www2.warwick.ac.uk/fac/sci/physics/research/cfsa/people/valery/research/qpp/.

http://www2.warwick.ac.uk/fac/sci/physics/research/cfsa/people/valery/research/qpp/
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Fig. 2 Properties of 278 QPP events reported in the literature. The top panel shows the time distribution,
with the bin size being the calendar year. The bottom panel shows the distribution of detected periods. The
blue colour shows QPPs detected in the non-thermal emission, red in thermal, and green detected in both
thermal and non-thermal emissions simultaneously

if it was detected in EUV and/or soft X-rays, while QPPs in radio, microwave, visible light
and white light (see below), hard X-ray and gamma-ray bands are considered as QPPs in the
non-thermal emission. This separation is rather artificial, but may be useful for the choice of
appropriate instrumentation for further studies of this phenomenon.

We note that white light emission in flares is associated with non-thermal particles,
whereas visible light includes various lines that could be more sensitive to thermal effects
(for example, Hα is dependent mainly on temperature, not directly on the non-thermal pro-
cess). Thus, we have attributed QPPs detected in visible light as non-thermal emission, but
we emphasise that certain types of visible light could be classed as either thermal or non-
thermal emission (as stated, the separation is rather artificial, but potentially useful). The
classification is clearer for white light: with regards to white light and hard X-ray light
curves, it has been observed that both behave in a similar manner in many flares (e.g. Hud-
son et al. 1992) and that both of these emissions in the impulsive phase of flares are caused
by non-thermal electrons (e.g. Fletcher et al. 2007; Watanabe et al. 2010).

The statistics of the QPP detections clearly correlates with the solar cycle, which is not
a surprise, as the frequency of flares depends on the phase of the cycle. The recent increase
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in the detection of QPPs in the thermal emission is explained in the availability of EUV and
soft X-ray instruments. The increase in the number of QPPs detected simultaneously in both
thermal and non-thermal emission reflects also the growing interest in multi-instrumental
studies of the QPP phenomenon, necessary for the exclusion of instrumental artefacts. The
distribution of the detected periodicities is partly affected by the time resolution of the avail-
able instruments. These statistics confirms that QPPs are a rather common phenomenon that
is intensively studied observationally. Detected periods range from a fraction of a second
to several minutes, which means QPPs are detectable with the majority of modern solar
instruments.

Stellar flares, far more energetic than typical solar flares have been observed on solar-like
stars (Maehara et al. 2012) leading to predictions of ‘superflares’. QPPs have been reported
in stellar flares throughout the whole spectrum (see e.g. Pugh et al. 2016 and references
therein). Obviously, QPPs are neither a rare phenomenon, nor one that is limited only to
the Sun. Karoff et al. (2016) analysed 48 superflare stars using the LAMOST telescope
(Cui et al. 2012) and suggested that solar flares and superflares most likely share the same
underlying mechanism.3

Furthermore, there has been a wealth of QPP detections in stellar flares using NASA’s
Kepler mission (Borucki et al. 2010), e.g. Davenport et al. (2014) investigated the temporal
morphology of white-light flares in Kepler data (Davenport 2016 complied a Kepler cata-
logue of stellar flares). Anfinogentov et al. (2013) analysed the signal in the decay phase
of the U-band light curve of a stellar megaflare and reported that the oscillation was well
approximated by an exponentially-decaying harmonic function. Balona et al. (2015) anal-
ysed data from 257 flares in 75 stars to search for QPPs in the flare decay branch. Pugh
et al. (2015) presented an analysis of a white-light stellar superflare observed by Kepler and
detected a multi-period QPP pattern. Pugh et al. (2016) studied QPPs in the decay phase of
white-light stellar flares and looked for correlations between QPP periods and parameters
of the host star. For the 56 flares with QPP signatures detected, no correlation was found
between the QPP period and the stellar temperature, radius, rotation period or surface grav-
ity, suggesting that QPPs are independent of global stellar parameters and are likely to be
determined by the local parameters, e.g. of the flaring active region.

Systematic statistical studies of solar QPPs have also been performed. Kupriyanova et al.
(2010) analysed twelve ‘single-loop’ flares observed in the microwave band (i.e. in the non-
thermal emission) and found statistically significant QPPs in ten of them. Simões et al.
(2015) found that 80% of X-class flares from Cycle 24 (so far) display QPPs in thermal
emission. More recently, Li et al. (2017) reported on QPPs with periods that change de-
pending on whether the pulsations have thermal or non-thermal components.

While Inglis et al. (2015) claimed that QPPs are not statistically rigorous oscillations,
Inglis et al. (2016) performed a large-scale search for evidence of signals consistent with
QPPs in solar flares, focusing on the 1–300 second timescale, and concluded that 30% of
thermal events (GOES) and 8% of non-thermal events (Fermi/GBM) show strong signatures
consistent with the classical interpretation of a QPP, based on the significance level of the
corresponding peak in the Fourier power spectrum. These estimations are rather conserva-
tive, as they address the search for stationary periodicities in the spectrum, while QPPs are
often non-stationary, wavelet-like signals. There is a clear need for a definition of a QPP,
which would account for the effects of coloured noises, regular trend and the intrinsic non-
stationary nature of the quasi-oscillatory patterns in flaring light curves.

3Note that stellar QPPs are not to be confused with Quasi-Periodic Oscillations (QPOs) which is a term used
in the astrophysical literature in relation to X-ray binaries (e.g. Lewin et al. 1988; Stella and Vietri 1998) and
black hole binaries (e.g. Belloni et al. 2012).
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QPP observations cover a wide range of periodicities (see Fig. 2). If sub-second peri-
odicities are usually attributed to cyclic behaviours of self-organising systems driven by
wave-wave or wave-particle interactions (see the reviews by Aschwanden 1987; Zaitsev and
Stepanov 2008, as well as Chernov et al. 1998 for a specific example), QPPs with periodic-
ities from a few seconds to several minutes have often been attributed to MHD waves. Fast
sausage modes are usually considered here, especially when dealing with sub-minute QPPs
(e.g. Nakariakov et al. 2003; Melnikov et al. 2005), although slow magnetoacoustic (Van
Doorsselaere et al. 2011; Su et al. 2012) and fast kink modes (Foullon et al. 2005) have been
sometimes invoked to explain longer periodicities.

However, MHD waves are not the only possible explanation for QPPs (see Nakariakov
and Melnikov 2009 for a discussion). The initial electron acceleration process, if being itself
quasi-periodic, would also result in a spectrally broad modulation of the observed flux, both
thermal and non-thermal. This mechanism was for example invoked by Kane et al. (1983)
to explain the well-known Seven–Sisters Flare of 7 June 1980.

2 Physical Mechanisms Underpinning QPP Generation

The motivation to understand the physical mechanism(s) responsible for QPPs is clear: the
frequent occurrence of QPPs in flaring light curves puts additional constraints on the in-
terpretation and understanding of fundamental flare physics. Thus, the rest of this review
focuses on the discussion of the physical mechanisms proposed for the generation of QPPs
in solar and stellar flares.

Whether QPPs are caused by MHD waves or an alternative mechanism(s) is a highly
debated question and might depend on the considered range of periodicities. This section
summarises the state-of-the-art understanding of each of those processes and aims to pin-
point the spectral and temporal characteristics of the QPPs that each of them would produce,
so as to help diagnosing the origin of QPPs in the various observational cases.

2.1 MHD Oscillations

Some of the observed periods of QPPs coincide with the order of magnitude of MHD waves
and oscillations that are abundantly detected in the corona (and well resolved both spatially
and temporally).

Coronal plasma flows or rearrangement of magnetic fields can cause the displacement of
coronal loops, filaments and streamers, which can result, for example, in transverse oscilla-
tions of these coronal structures. The initial energy deposition must come from somewhere,
and the dramatic energy deposition from a flare could be the origin of such a driver (there
are other potential origins, of course). In this sense, the flare is invoked as an impulsive per-
turbation, and that impulsive energy release could be modelled as a thermal pressure pulse
as well as a magnetic, velocity and/or heat perturbation to the system. Such perturbations
can be external to a loop system (e.g. Ofman and Thompson 2002; McLaughlin and Ofman
2008) or internal to a loop system. For example, in the latter case, Nakariakov et al. (2004a)
studied the evolution of a coronal loop in response to an impulsive energy release and found
that the evolution of the loop density exhibits quasi-periodic oscillations associated with
the second standing harmonics of an acoustic wave (note that the slow magnetoacoustic
oscillations—since their study was limited to 1D—could also be interpreted as the second,
standing slow magnetoacoustic mode of the loop). Here, the perturbation was modelled as
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Fig. 3 Light curves of the soft
X-ray emission (black and red
lines) and hard X-ray emission
(blue and green lines) at different
photon energy bands (see the
inset legend). A few post-flare
oscillations are visible in the soft
X-ray light curves. From Pinto
et al. (2016); their Fig. 12,
model V

the response of the loop to a flare-like impulsive heat deposition at a chosen location. Tsik-
lauri et al. (2004) extending this work to look at how the locations of the heat deposition
affects the mode excitation; it was found that excitation of such oscillations is independent
of the heat-deposition location within the loop. On the other hand, numerical simulations
of the response of a coronal loop to an impulsive heat deposition at one chromospheric
footpoints demonstrates the effective excitation of the fundamental acoustic mode (Taroyan
et al. 2005). Pinto et al. (2016) developed a model of the thermal and non-thermal emission
produced during the evolution of kink-unstable twisted coronal loops in a flare. Their mod-
elling showed post-flare oscillations, which could be interpreted as QPPs, in the soft X-ray
emission, see Fig. 3. Cho et al. (2016) investigated QPPs observed in the decay phase of
solar and stellar flares in X-rays, and proposed that the underlying mechanism responsible
for the stellar QPPs is a natural MHD oscillation in the flaring or adjacent coronal loops.

In this sense, the flare is invoked as a justification for a source region and energy provider,
but that once the finite-duration internal/external excitation occurs, we will get free MHD
oscillations of the emitting plasma. Thus, we are now within the field of coronal seismology
and so the observed parameters tell us diagnostic information about the medium and the
oscillating structure itself (e.g. the magnetic field strength of an oscillating coronal loop;
information about the heating function, transport coefficients, and fine sub-resolution struc-
turing) rather than about the driver (be that a flare or other). In other words, the period will
be independent of the flare energy and so coronal seismology tells us about the local condi-
tions in flaring active regions, rather than the flare itself. Coronal seismology is a significant
field in its own right and readers are recommended to consult the comprehensive reviews
in this area (e.g. see De Moortel 2005; De Moortel and Nakariakov 2012, and references
therein).

2.2 QPPs Periodically Triggered by External Waves

In the previous subsection, the flare is invoked as an impulsive forcing term, hence the
periodicity comes from the global parameters of the oscillating loop, not from the driver.
However, in some cases MHD waves and oscillations may affect, or back-react on, the flar-
ing process. Let us consider the trigger mechanism for flares. The pre-flare stage, i.e. before
the primary energy release (the impulsive phase), is one of energy storage. By definition,
flares are the rapid release of energy stored previously in the magnetic field, and the total
flare energy is of the same order of magnitude as the amount of magnetic free energy, while
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the specific fraction is still debated in the literature (e.g. Emslie et al. 2012 reports that for
large solar eruptive events, approximately 30% of the available non-potential magnetic en-
ergy is released). Reconnection must be at the heart of this energy release and thus waves
must play a role here, namely that it is known that steady-state reconnection models gener-
ate not only outflows/waves but also require inflows/waves (e.g. Parker 1957; Sweet 1958;
Petschek 1964). This is for example the case in the CSHKP standard flare model which has
a null point—a location where the magnetic field, and hence the Alfvén speed, is zero, at
least in a certain plane—as part of its magnetic topology.

In order to model and understand the pre-flare stage, one must understand how a stable
magnetic configuration (which has sufficient stored magnetic free energy) becomes unstable
in such a way as to produce a rapid and dramatic energy release. There are many models of
how a magnetic topology can store magnetic energy (e.g. Régnier 2013; Kleint et al. 2015)
or emerge with sufficient magnetic free energy (e.g. Heyvaerts et al. 1977; Török et al. 2014)
and here we focus specifically on the triggering of flares by MHD waves.

McLaughlin and Hood (2004) investigated the behaviour of an aperiodic fast magne-
toacoustic pulse about a 2D X-type null point and found that the fast wave refracts into the
vicinity of the null point and, ultimately, accumulates at the null point itself. As it approaches
the null, the refraction effect causes the pulse amplitude to be amplified and the length scales
(which can be thought of as the distance between the leading and trailing edges of the wave
pulse) to rapidly decrease. This leads to an increase of the electric current density associated
with the pulse, which manifests as exponential growth near the null point. The phenomenon,
i.e. fast waves accumulate at null points is entirely general and has been shown to work for
double X-type neutral points (McLaughlin and Hood 2005) as well as 3D null points (e.g.
Thurgood and McLaughlin 2012, and see McLaughlin et al. 2011 for a review). Crucially,
McLaughlin et al. (2009) showed that this accumulation of wave energy at the null is enough
to induce reconnection, i.e. wave-driven reconnection (see Sect. 2.3 for full details).

Nakariakov et al. (2006) investigated this phenomenon further by simulating the inter-
action of a periodic fast magnetoacoustic wave with a magnetic null point. This causes the
periodic occurrence of highly steep spikes of the electric current density. The current vari-
ations can, in turn, periodically induce current-driven plasma micro-instabilities which are
known to cause anomalous resistivity. This can then periodically trigger reconnection. The
modulation depth of these current variations is a few orders of magnitude greater than the
amplitude of the driving wave, and thus this may be a suitable mechanism for QPPs (see
Sect. 1.3 above). Nakariakov et al. (2006) postulated that this initial wave driver come from
an oscillating coronal loop outside (but close to) the flaring arcade. Thus, an external evanes-
cent or leaking part of the oscillation could reach the null point in the arcade. A sketch of
the mechanism can be seen in Fig. 4. Here, the period is determined by the period of the
oscillating loop, which corresponds approximately to the ratio of the loop length to the av-
erage magnetoacoustic speed. Moreover, in this scenario the inducing wave may be freely
propagating or guided by a plasma non-uniformity, with the periodicity appearing because
of its dispersive evolution (see Sect. 2.6 below).

Chen and Priest (2006) performed MHD simulations of transition-region explosive
events driven by five-minute solar p-mode oscillations. The authors considered an anti-
parallel magnetic field with a stratified atmosphere. Five-minute oscillations are imposed
at the photospheric base and this leads to periodically triggered reconnection. Specifically, it
was found that density variations in the vicinity of the reconnection site result in a periodic
variation in the electron drift speed, which switches on/off anomalous resistivity, and thus
accelerates the process of reconnection periodically. Thus the reconnection rate is modu-
lated with a period of approximately five minutes. The corresponding UV light curve in-
dicates impulsive bursty behaviour, which each spiky burst lasting for approximately one
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Fig. 4 The cool (shaded) loop experiences fast magnetoacoustic oscillations (e.g. kink or sausage mode).
A segment of the oscillating loop is situated nearby a flaring arcade. An external evanescent or leaking part
of the oscillation can reach the null point(s) in the arcade, inducing quasi-periodic modulations of the electric
current density. Via plasma micro-instabilities this cause anomalous resistivity which triggers reconnection.
This then accelerates particles periodically, which follow the field lines and precipitate in the dense atmo-
sphere, causing quasi-periodic emission in radio, optical and X-ray bands. From Nakariakov et al. (2006)

minute (for the parameters considered). Thus, this is an example of the periodic triggering
of reconnection due to MHD oscillations, specifically longitudinal, slow magnetoacoustic
(i.e. p-modes). In addition, this mechanism could readily explain the observed association
of QPPs of the microwave emission in solar flares with the slow magnetoacoustic waves
leaking from a sunspot in the corona (Sych et al. 2009). Thus, both fast and slow magne-
toacoustic waves could act as periodic triggers of magnetic reconnection, transferring their
periodicities in QPPs.

2.3 Oscillatory Reconnection (Reconnection Reversal)

Section 2.2 considered periodic flare triggering via MHD oscillations, but alternatively the
reconnection itself can be repetitive and even periodic. Traditionally, magnetic reconnection
and MHD wave theory have been viewed as separate topics. However, this is a misconcep-
tion: it is known that steady-state reconnection models generate not only outflows/waves but
also require inflows/waves (e.g. Parker 1957; Sweet 1958; Petschek 1964). This point-of-
view has been challenged by several authors via the mechanism of spontaneous oscillatory
reconnection which is a time-dependent magnetic reconnection mechanism that naturally
produces periodic outputs from aperiodic drivers. From the point of view of oscillation the-
ory, this process is a self-oscillation (see Sect. 1.1 for details).

The process was first reported by Craig and McClymont (1991) who investigated the
relaxation of a 2D X-point magnetic field disturbed from equilibrium. They found that the
additional free magnetic energy was released by oscillatory reconnection, which coupled the
resistive diffusion at the null point to global advection of the outer field.

The process is named oscillatory since inertial overshoot of the plasma carries more flux
through the null than is required for equilibrium and the plasma undergoes several oscilla-
tions through the null point. The oscillation period scales as lnη, with η being the resistivity.
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The reconnection rate was found to scale as | lnη|2, i.e. ‘fast’ (as opposed to ‘slow’ which
depends upon a power of η). In the theoretical set-up of Craig and McClymont (1991), the
free magnetic energy is dissipated across approximately 100 Alfvén times and thus, for typ-
ical solar parameters, the dissipation time scale is of the order of several minutes to an hour.
The authors note that this is sufficiently rapid to account for thermal energy release in the
decay phase but may be too slow to explain the impulsive phase flare timescale. This work
was expanded upon by Craig and Watson (1992), Hassam (1992) and Craig and McClymont
(1993) who suggested that for large-amplitude disturbances the structure of current flattens
out into a quasi-1D current sheet. Thus, fast dissipation results in the formation of flux pile-
up at the edges of the current layer, and so the bulk of the magnetic energy is released as
heat rather than kinetic energy (of bulk mass flows). These works were limited to cylindrical
geometries with artificial field line manipulation on the boundary, e.g. imposing a closing-
up of the angle of the separatrix field lines, as well as reflective boundaries; thus all the
outgoing wave energy was reflected and focused at the null point. Note that the gradients in
the spatially-varying, equilibrium Alfvén-speed profile lead to fast magnetoacoustic waves
being refracted into the null anyway (see McLaughlin and Hood 2004 for details).

McLaughlin et al. (2009) were the first demonstration of reconnection naturally driven by
MHD wave propagation, via the process of oscillatory reconnection. These authors investi-
gated the behaviour of nonlinear fast magnetoacoustic waves near a 2D X-type neutral point
and found that the incoming wave deforms the null point into a cusp-like point which in turn
collapses to a current sheet. Specifically, it was found that the incoming (fast) wave prop-
agates across the magnetic field lines and the initial annulus profile contracts as the wave
approaches the null. This can be seen in Fig. 5a. The incoming wave was observed to de-
velop discontinuities (for a physical explanation, see Appendix B of McLaughlin et al. 2009
or, alternatively, Gruszecki et al. 2011), and these discontinuities form fast oblique mag-
netic shock waves, where the shock makes B refract away from the normal. Interestingly,
the shock locally heats the initially plasma β = 0 plasma, creating plasma β �= 0 locally.
Subsequently, the shocks overlap and form a shock-cusp, which leads to the development
of hot jets and in turn these jets substantially heat the local plasma and significantly deform
the local magnetic field (Fig. 5b). When the shock waves reach the null, the initial X-point
field has been deformed such that the separatrices now touch one another rather than inter-
secting at a non-zero angle (called ‘cusp-like’ by Priest and Cowley 1975). The osculating
field structure continues to collapse; forming a horizontal current sheet. However, the sepa-
ratrices continue to evolve: the jets at the ends of the (horizontal) current sheet continue to
heat the local plasma, which in turn expands. This expansion squashes/shortens the current
sheet, forcing the separatrices apart. The (squashed) current sheet thus returns to a ‘cusp-
like’ null that, due to the continuing expansion of the heated plasma, in turn forms a vertical
current sheet. This is the manifestation of the overshoot reported by Craig and McClymont
(1991). The phenomenon then repeats: jets heat the plasma at the ends of this newly-formed
(vertical) current sheet, the local plasma expands, the (vertical) current sheet is shortened,
the system attempts to return itself to equilibrium, overshoots and forms a (second) horizon-
tal current sheet. The evolution proceeds periodically through a series of horizontal/vertical
current sheets. The oscillatory nature can be clearly seen by looking at the time evolution of
the current (in McLaughlin et al. 2009, this was jz(0,0)) as shown in Fig. 5c. We also note
that there is nothing unique about the orientation of the first current sheet being horizontal
followed by a vertical, this simply results from the particular choice of initial condition, and
McLaughlin et al. (2012a) use the more general terminology: orientation 1 and orientation 2.
McLaughlin et al. (2009) also present evidence of reconnection; reporting both a change in
field line connectivity as well as changes in the vector potential which directly showed a
cyclic increase and decrease in magnetic flux on either side of the separatrices.
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Fig. 5 Contours of v⊥ (i.e. velocity across the magnetic field) for a fast wave pulse initially located at a
radius r = 5 and its resultant propagation at (a) time t = 1 and (b) time t = 2.6 (measured in Alfvén times).
Black lines denote the separatrices and null is located at their intersection. Note in (b) the separatrices have
been deformed and now form a ‘cusp-like’ field structure. Subfigure have their own colour bars since v⊥
amplitude varies substantially throughout the evolution. (c) Time evolution of jz(0,0) for 0 ≤ t ≤ 60. Insert
shows time evolution of jz(0,0) for 25 ≤ t ≤ 60 (i.e. same horizontal but different vertical axis). Dashed lines
indicate maxima (red) and minima (blue). Green line shows limiting value of jz(0,0) = 0.8615. Adapted
from McLaughlin et al. (2009)

McLaughlin et al. (2012b) quantified and measured the periodic nature of oscilla-
tory reconnection. They identified two distinct periodic regimes: the (transient) impulsive
phases and a longer-lived stationary phase. In the stationary phase, for driving amplitudes
6.3–126.2 km/s, they measured (stationary-phase) periods in the range 56.3–78.9 s. In partic-
ular, a driving amplitude of 25.2 km/s corresponds to a stationary period of 69.0 s. McLaugh-
lin et al. (2012b) highlighted that the system acts akin to a damped harmonic oscillator (in
the stationary phase). Thus, the greater the initial amplitude, the longer and stronger the
current sheets at each stage, and thus the greater restoring force, leading to shorter periods
(compared to smaller initial amplitude, shorter resultant current sheets, weaker restoring
force and thus longer periods).

The physics behind oscillatory reconnection has been investigated by McLaughlin et al.
(2009), Murray et al. (2009) and Threlfall et al. (2012). The restoring force of oscillatory
reconnection has been shown to be a dynamic competition between the thermal-pressure
gradients and the Lorentz force (i.e. a local imbalance of forces) with each in turn restoring
an overshoot of the equilibrium brought on by the other (see Sect. 3.3 of McLaughlin et al.
2009; Sect. 3.2 of Murray et al. 2009; Fig. 7 of Threlfall et al. 2012). In other words, the
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reconnection occurs in distinct bursts: the inflow/outflow magnetic fields of one reconnec-
tion burst become the outflow/inflow fields in the following burst. With the Lorentz force,
it is magnetic pressure that dominates (Threlfall et al. 2012) whereas magnetic tension only
aids the compression of field lines as the current sheet forms. Note that in consecutive bursts
of reconnection, the contrast between the thermal-pressure gradients and magnetic pressure
decreases. Thus, each successive overshoot is smaller than the last and so the system is
ultimately able to relax back to equilibrium.

2.3.1 Periodic Signals Associated with Magnetic Flux Emergence

An important example of oscillatory reconnection was found in the work of Murray et al.
(2009) who utilised a stratified atmosphere permeated by a unipolar magnetic field (to rep-
resent a coronal hole) and investigated the emergence of a buoyant flux tube. Flux emerging
into a pre-existing field had been studied in detail before, but Murray et al. (2009) were the
first to investigate the long-term evolution of such a system, i.e. previous simulations ended
once reconnection was first initiated. Murray et al. found that a series of “reconnection rever-
sals” take place as the system searches for equilibrium, i.e. a cycle of inflow/outflow bursts
followed by outflow/inflow bursts. Thus, the system demonstrates oscillatory reconnection
in a self-consistent manner.

This seminal work was generalised by McLaughlin et al. (2012a) who detailed the
oscillatory outputs and outflows of the system. They found that the physical mecha-
nism of oscillatory reconnection naturally generates quasi-periodic vertical outflows with
a transverse/swaying aspect. The vertical outflows consist of both a periodic aspect and a
positively-directed flow of 20–60 km/s. Parametric studies show that varying the magnetic
strength of the initial-submerged, buoyant flux tube Bbuoyant yield a range of associated peri-
odicities of 105–212.5 s for 2.6×103 G ≤ Bbuoyant ≤ 3.9×103 G, where the stronger the ini-
tial flux tube strength, the longer the period of oscillation. Note that if the flux tube strength
is too low (for McLaughlin et al. 2012a, this was Bbuoyant < 2.6 × 103 G) the tube cannot
fully emerge into the atmosphere since the buoyancy instability criterion is not satisfied
(failed emergence). If the initial-submerged flux was too high (Bbuoyant > 3.9 × 103 G) then
plasmoids are ejected from the ends of the current sheet. These ejected plasmoids change
the properties of the X-point, e.g. taking magnetic flux with them. Thus, even though there is
still oscillatory behaviour, this represents a fundamentally different regime than that of burst
of reconnection without plasmoids. Thus, there are natural limitations placed on the periods
generated by oscillatory reconnection in such a system. As before, the mechanism naturally
generates periodic outputs even though no periodic driver is imposed on the system. Note
that the transverse behaviour seen in the periodic jets originating from the reconnection re-
gion of the inverted Y-shaped structure is specifically due to the oscillatory reconnection
mechanism, and would be absent for a single, steady-state reconnection jet.

Thus, oscillations associated with magnetic flux emergence (as well as the continuous
emergence of the magnetic flux) show promise as a physical mechanism for QPPs, for ex-
ample McLaughlin et al. (2012a) could not generate periodicities shorter than 105 seconds
since this was restricted by the buoyancy instability criterion (i.e. failed emergence): lower
periods could have been generated by changing the equilibrium parameters, such as mod-
ifying the strength of the pre-existing coronal field in the model. Longer periods are also
possible for different equilibrium set-ups, e.g. Lee et al. (2014) saw 30-min oscillations
during the interaction of an emerging magnetic flux with a pre-existing coronal magnetic
configuration, see Fig. 6 (Fig. 9 from Lee et al. 2014).
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Fig. 6 Variations of the magnetic rope speed and temperature at the X-point below the flux rope, caused
by the interaction of an emerging magnetic flux with a pre-existing magnetic configuration. From Lee et al.
(2014)

2.3.2 Periodicities Generated

McLaughlin et al. (2012b) also ask what determines the (stationary) period (post-transients)
and what determines the exponentially-decaying timescale. They recall the work of Craig
and McClymont (1991) who derived an analytical prediction for two timescales:

toscillation ≈ 2 lnS, tdecay ≈ toscillation
2/2π2

where S is the Lundquist number and we identify toscillation as our stationary period and tdecay

as our decay time. From McLaughlin et al. (2012b), for a driving amplitude of 25.2 km s−1,
this gives toscillation = 109.6 s and tdecay = 76.7 s, compared to the measured stationary period
of 69.0 s and decay time of 66.7 s. These estimates are in fair agreement given the simplicity
of the Craig and McClymont (1991) model and hence we could conclude that the periodic-
ity is determined by the Lundquist number, S, or equivalently the magnetic Reynolds num-
ber, Rm, since everything in McLaughlin et al. (2012b) is non-dimensionalised with respect
to the Alfvén speed.

However, the model of Craig and McClymont (1991) is a closed system, whereas
McLaughlin et al. (2012b) is an open system. Thus, the period of Craig and McClymont
(1991) is better interpreted as the signal travel time from their outer boundary to the dif-
fusion region (see, e.g. §7.1 of Priest and Forbes 2000 for further discussion). Craig and
McClymont (1991) also neglect both nonlinear and thermal-pressure effects and so, in that
sense, the similarity in periods between Craig and McClymont (1991) and McLaughlin et al.
(2012b) could be simply coincidental. Thus, what dictates the period of oscillatory recon-
nection remains an open question.

The periodicities generated by the oscillatory reconnection mechanism are promising:
around a lone null point, periodicities of 56.3–78.9 s have been found, and via flux emer-
gence scenarios, periodicities of 105–212.5 s have arisen in a self-consistent manner. Flares
unlock the stored non-potential magnetic energy in magnetic fields and, by releasing en-
ergy, a stressed magnetic system can return to a lower energy state. As noted by Murray
et al. (2009) flares, therefore, are perfect events in which to search for signs of oscillatory
reconnection.

Crucially for the mechanism these oscillations are generated with an exponentially-
decaying signature for both the flux emergence scenario (McLaughlin et al. 2012a) and
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single null (McLaughlin et al. 2012b). QPPs with these properties have been detected in soft
X-ray light curves of both solar and stellar flares (e.g. Cho et al. 20164). What is important to
note is that the oscillations caused by this mechanism would be decaying not due to a partic-
ular dissipative mechanism, but due to the generation mechanism itself. Physically, this can
be thought of as injecting a finite amount of energy into the oscillatory reconnection mech-
anism and so, intuitively, the resultant periodic behaviour must be finite in duration. Clearly
this is a dynamic reconnection phenomena as opposed to the classical steady-state, time-
independent reconnection models. This means that the oscillatory reconnection mechanism
will struggle to explain decayless oscillations.

Only specific examples of oscillatory reconnection have been investigated so far but,
given that the underlying physical mechanism in the dynamic competition between gas and
magnetic pressure searching for equilibrium, the mechanism looks to be a robust, general
phenomenon that may be observed in other systems that demonstrate finite-duration recon-
nection. The mechanism could occur at all scales. Recently, Thurgood et al. (2017) demon-
strated how the oscillatory reconnection mechanism works about a three-dimensional null
point, and now parametric studies are needed to investigate the full range of periodicities
possible, as well as an investigation into how plasmoid generation modifies the system. Fur-
ther studies should focus on heat conduction which is expected to reduce the temperature of
the outflow jets. However, to ensure force balance in the current sheet, the density of out-
flows may actually be increased by heat conduction, which may make the outflow jet more
observable. Another interesting question is whether this mechanism can produce QPPs in
flaring light curves, if in the flare site there are several or a number of plasmoids and hence,
elementary null points, as has been suggested in the fractal reconnection model (Shibata and
Takasao 2016).

2.4 Thermal Over-Stability

In the solar coronal plasma there is a continuous competition between the radiative losses
and the energy supply, that constitutes the coronal heating problem (see, e.g. Parnell and
De Moortel 2012, for a recent review). The misbalance of the radiative losses and heating
can lead to the appearance of oscillatory regime of thermal instability, and variations of
thermodynamical properties of the plasma and induced flows. In particular, the dispersion
relation describing acoustic oscillations along the field is:
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where ω is the cyclic frequency, k is the wave number, Cs is the sound speed, κ and ν

are the parallel thermal conductivity and bulk viscosity, respectively, and ãρ = ∂Q/∂ρ and
ãp = ∂Q/∂p are the derivatives of the combined plasma heating/cooling function Q(p,ρ)

at the thermal equilibrium with the pressure p0 and density ρ0, and other notations are
standard (see Kumar et al. 2016, for details). The heating mechanism is not specified, and is
assumed to be stationary. The radiation is assumed to be optically thin. In the case of weakly
non-adiabatic effects, one can readily separate the real and imaginary parts of dispersion
relation (1), obtaining:

R(ω) ≈ Csk, (2)

4Note that Cho et al. (2016) concluded the mechanism of Sect. 2.1, rather than that of Sect. 2.3, was more
applicable to their observations.
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Fig. 7 Different regimes of the evolution of the fundamental acoustic oscillation of a coronal loop, deter-
mined by the misbalance of radiative cooling and plasma heating. The plasma speed is normalised at double
the initial amplitude. The time is normalised at half the oscillation period. The spatial coordinate is nor-
malised at the loop length L. Top raw, left: a decaying linear oscillation in the absence of radiative cooling
and heating; right: undamped oscillation occurring when radiative and dissipative losses are compensated
by heating. Bottom raw, left: a growing oscillation; right: an over-damped oscillation. Adapted from Kumar
et al. (2016)
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respectively. The sign and specific value of ãρ/C2
s + ãp is determined by the dependence of

the radiative and heating function on thermodynamical variables. If the value is positive, the
misbalance of the radiative losses and plasma heating counteracts the dissipation because of
thermal conduction and viscosity. Moreover, if this value is sufficiently large, the acoustic
oscillation becomes undamped and even growing (see Fig. 7). In the case of the negative
value, this effect enhances the oscillation damping. In the over-stable regime, the oscillation
amplitude experiences the saturation because of nonlinear effects. The oscillation frequency
is determined by the wavelength, e.g. the distance between the footpoints along the mag-
netic field line (e.g. Tsiklauri et al. 2004). This phenomenon is acoustic over-stability that
can occur in flaring regions. As the second term on the right hand side of Eq. (3) depends
on k2, the acoustic over-stability is most pronounced for long wavelength perturbations, for
example, fundamental modes of long loops. Typical periods of the quasi-periodic pulsations
of thermal emission, generated by acoustic self-oscillations, are determined by the length
of the oscillating loop and the plasma temperature. For typical flaring loops the periods of
these oscillations range from a few to several minutes, and may be longer in the case of these
oscillations in long, cold pre-flare loops or filaments.
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Examples of the decayless and growing oscillations detected in the Doppler shifts of hot
coronal emission lines (possibly, incorrectly best-fitted by a decaying harmonic function)
could be seen in Fig. 3 of Mariska et al. (2008). The recently detected very long period
pulsations of the plasma temperature before the onset of flares (8–30 min “preflare-VLPs”,
Tan et al. 2016) may perhaps be linked to this effect too. In addition, this effect may be
responsible for the high-quality oscillatory patterns of the thermal X-ray emission, with the
intermittent variation of the amplitude, detected in the time derivative of the GOES light
curves of X-class flares by Simões et al. (2015) (see also Hayes et al. 2016 and Dennis et al.
2017).

An interesting research avenue is the investigation of the effect on the misbalance be-
tween the radiative losses and (quasi-)steady heating on another highly compressive mode,
the sausage oscillation. Damping of this mode is known to be connected with the finite
transport coefficients, i.e. the ion viscosity and electron thermal conductivity, and also by
leakage of the fast magnetoacoustic oscillations across the field, in the external medium
(e.g. Stepanov and Zaitsev 2014; Nakariakov et al. 2012). On the other hand, observations
show the presence of high-quality compressive QPP with the periods typical for the sausage
mode. For example, 25-s intensity and Doppler shift oscillations were recently detected in
the thermal emission by Tian et al. (2016), and interpreted as the sausage mode. In these os-
cillations, the dissipative, radiative and leaky losses should be compensated by some energy
supply that could be the thermal over-stability.

Longer period variations of the thermal emission intensity could be associated with en-
tirely thermodynamical processes, for example the evaporation-condensation cycles (e.g.
Froment et al. 2017, and references therein). These cycles include recurrent plasma con-
densations and temperature variations, followed by high-speed plasma flows (Müller et al.
2004), even in the case of a time-independent heating function. In this regime the QPP pat-
terns are usually highly anharmonic, and resemble relaxation oscillations. It is found that this
effect gives a wide range of periods, while we are not aware of any systematic studies of the
dependence of the oscillation period upon the plasma parameters. Similar quasi-oscillatory
variations are observed in laboratory plasma devices, in particular the phenomenon of the
multifaceted asymmetric radiation from the edge (“MARFE”, DePloey et al. 1994).

2.5 MHD Flow Over-Stability

In the self-oscillation scenario, the energy supply can also be associated with steady flows
of the plasma. Ofman and Sui (2006) considered the dynamical reconnection in a current
sheet with a steady plasma flow localised near its plane. The profiles of all equilibrium
quantities were taken to be smoothly non-uniform in the transverse direction. The profile
of the flow had the transverse spatial scale about one order of magnitude smaller than the
transverse non-uniformity of the magnetic field. The plasma density and temperature was
initially constant. In the vicinity of the current sheet the plasma β was taken to be high, of
about 4. Such a plasma configuration could appear because of, for example, the interaction
between an emerging flaring loop and the overlying magnetic field. In this scenario, the
plasma flow is caused by the chromospheric evaporation, which can be taken as steady if its
time scale is much longer than the period of QPPs.

For a sufficiently high speed of the plasma flow, e.g. about the Alfvén speed, the plasma
configuration was found to be unstable to the coupled Kelvin–Helmholtz and tearing in-
stabilities, giving rise to the over-stable, i.e. oscillating, modes. During the evolution, the
integrated Ohmic heating rate was found to vary quasi-periodically, see Fig. 8. The oscil-
lation period is about 50 Alfvénic transit times across the current sheet. In the numerical



 45 Page 20 of 54 J.A. McLaughlin et al.

Fig. 8 Variation of the integrated
Ohmic heating rate, 
Hr , in a
reconnecting current sheet with a
non-uniform steady flow of the
plasma. The dotted curve
corresponds to the case without
the flow, the dashed curve shows
the case when the flow speed is
equal to the local Alfvén speed,
and the solid line to the case
when the flow speed is 1.5 of the
local Alfvén speed. The time unit
is the transverse Alfvén time that
is the ratio of the current sheet
half-width and the Alfvén speed.
From Ofman and Sui (2006)

simulations of Ofman and Sui (2006), for a macroscopic current sheet of the half-width
about 1500 km, and the Alfvén speed of 500 km/s, the oscillation period is about 150 s.

This mechanism can naturally produce QPPs of the thermal emission, by the variation of
the plasma heating rate. In addition, as the over-stability leads to the development of mag-
netic islands (plasmoids), there appear strong oscillating electric field that can readily exceed
the Dreicer field. Hence, the over-stability is accompanied by the periodic acceleration of
non-thermal electrons and associated QPP of non-thermal emission.

A parametric study of this mechanism, in particular the investigation of the effect of the
specific values of the transport coefficients, the steepness of the transverse profiles of the
flow, the electric current and plasma densities, temperature, magnetic field, and the anoma-
lous resistivity, on the oscillation period, would be an interesting future task. Also, the over-
stability could be associated not with the Kelvin–Helmholtz instability, but with one of the
negative energy instabilities that have a much lower shear flow threshold, e.g. Joarder et al.
(1997).

2.6 Waves and Plasmoids in a Current Sheet

Neutral current sheets are common structures both in the solar corona and in magnetosphere
of the Earth. In the solar atmosphere, we can find these structures, for example, above the
helmet structures, in coronal streamers, at the boundary between closed and open fields,
or between coronal loop systems which have opposite magnetic polarity. A macroscopic
current sheet is the key ingredient of the standard model of a solar flare. Neutral current
sheets can be formed in one of three possible ways: the interaction of topologically different
regions (this may give rise to a solar flare), the loss of equilibrium of a force-free field, and
X-point collapse (see Priest 2014). Owing to their enhanced density, neutral current sheets
are the structures that can guide the MHD waves. A Harris-type current sheet structure can
support several kinds of guided magnetoacoustic waves, in particular, both kink and sausage
modes. In the sausage mode, the current sheet pulsates like a blood vessel, with the central
axis remaining undisturbed. In the kink mode the central axis moves back and forth during
the wave motion. In a continuously non-uniform current sheet, three types of mode can
exist: body, surface and hybrid, depending on the transverse structure of the perturbation
(Smith et al. 1997). Hybrid modes contain elements of both body and surface waves, see
e.g. Cramer (1994), Smith et al. (1997) and references therein. The nature of the mode
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determines its dispersion, i.e. the dependence of the phase speed on wavenumber. MHD
waves and oscillations of current sheets can be excited by various processes where one of the
most probable, providing either single or multiple sources of disturbances, is the impulsive
energy release in a flare. In turn, these oscillations, e.g. the quasi-periodic signals appearing
because of the dispersion, can be the sources of QPPs.

The analysis of group speeds of the guided modes shows that the long-wavelength spec-
tral components propagate faster than the medium- and short-wavelength ones. This sug-
gested that an impulsively-generated fast wave train has a characteristic wave signature with
three distinct phases: the periodic phase, followed by quasi-periodic phase and then a decay
phase (Roberts et al. 1983, 1984). Nakariakov et al. (2004b) simulated the formation of a
quasi-periodic wave train in fast magnetoacoustic waveguides with the transverse plasma
density profiles of different steepness. It was established that the dispersive evolution of
fast wave trains leads to the appearance of characteristic “crazy” tadpole wavelet signatures,
which was also confirmed by the observations. The key element of this mechanism is the
broadband excitation, in other words, by a pulse that could occur because of a flaring energy
release.

Pascoe et al. (2013) simulated numerically the dispersive evolution of fast waves in an
expanding magnetic field generated by an impulsive, spatially localised energy release with
a field-aligned density structures. The numerical results were found to be consistent with
the observations, see Yuan et al. (2013). Jelínek and Murawski (2013) numerically studied
magnetoacoustic-gravity waves in an open magnetic structure. They found that a pulse of the
horizontal velocity both below and above the transition region could trigger oscillations with
the periods in the range of three minutes, which correspond with those observed above the
sunspots e.g. in UV/EUV emission by the Solar Dynamics Observatory (SDO)/Atmospheric
Imaging Assembly (AIA) and in radio emission by the Nobeyama Radioheliograph (NoRH).
The propagation of fast magnetoacoustic waves along coronal magnetic funnels has been
studied numerically in Yang et al. (2015). The waves are excited impulsively by plasmoids
formed in the X-point in the coronal magnetic funnel structure followed by the collision
between them and the magnetic field in the outflow region. Nisticò et al. (2014) found good
agreement of the numerical simulations of rapidly propagating fast wave trains with the ob-
servations of quasi-periodic rapidly-propagating waves of the EUV intensity observed with
SDO/AIA. It was found out that an impulsive energy release could generate a quasi-periodic
propagating fast wave train with a high signal quality from a single impulsive source. All
the above mentioned studies modelled the fast wave propagation in a plasma slab. However,
the results are not sensitive to the direction of the magnetic field as long as it is parallel to
the slab’s boundaries. Hence, these results could be applied to the case of a neutral current
sheet, provided it remains stable on the time scale of the wave evolution.

The widely used current sheet model satisfying the MHD equilibrium, ∇p = j × B, is
the so-called Harris model given by the magnetic configuration:

B = B0 tanh

(
y

wcs

)
êx, (4)

where B0 is external magnetic field and wcs is the semi-width of the current sheet. This
formula was first derived by Harris (1962) in terms of the kinetic Vlasov theory.

It is well known that magnetoacoustic waves can be triggered easily during reconnection
of magnetic field lines. In Kliem et al. (2000) the authors present a 2D MHD numerical
model of pulsating decimetric continuum radio bursts, caused by quasi-periodic particle
acceleration, resulting from the dynamic phase of magnetic reconnection in a large-scale
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Fig. 9 Comparison of wave signals (left column) and corresponding wavelet tadpole shapes (right column)
for two different widths of the Harris current sheet; wcs = 0.50 Mm (first row) and wcs = 1.50 Mm (second
row). From Jelínek and Karlický (2012)

current sheet. By means of this model, where the formation of plasmoids, their coalescence
and repeated formation of next plasmoids, they explain the presence of quasi-periodic pulses
with the characteristic periods ranging in 0.5–10 s.

Radio spikes, defined as a group of very short and narrowband bursts, are observed dur-
ing solar flares and are believed to be generated during the reconnection process (Bárta and
Karlický 2001). Karlický et al. (2011), Bárta et al. (2011) demonstrated that narrowband
dm spikes could be associated with fast magnetoacoustic waves, numerically modelling the
waves excited by turbulent reconnection outflows in a neutral Harris current sheet. The dis-
persively evolved waves were found to have the same wavelet spectral signatures as de-
tected in the radio observations. It was concluded that narrowband dm spikes are generated
by driven coalescence and fragmentation processes in turbulent reconnection outflows. The
propagating magnetoacoustic waves (indicated by tadpole wavelet spectral signatures) mod-
ulate these coalescence processes via a modulation of current densities in interaction regions
between colliding plasmoids. These waves modulate an acceleration of electrons and gen-
eration of plasma and electromagnetic waves that produce the spikes. The narrowband dm
spikes can thus be considered as a radio signature of the fragmented reconnection in solar
flares.

Jelínek and Karlický (2012) performed a more extended and detailed study of fast
sausage waves in a current sheet. The specific interest has been placed on the parameters
of the current sheets, such as the width, plasma β, and the distance between the wave ini-
tiation and detection sites, that influence the detected signal and its corresponding wavelet
spectrum, see Fig. 9. The wave period, similarly as in the case of simple mass density slab,
can be expressed as:

P ≈ wcs

vAe
, (5)

where vAe is the external Alfvén speed.
Assuming that fast magnetoacoustic waves guided by current sheets modulate the radio

fluxes (or even UV fluxes) at various locations, Jelínek and Karlický (2012) proposed that
this knowledge can be helpful for estimating physical parameters of flare current sheets—
another example of MHD seismology. From the point-of-view of the diagnostics of either
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flare current sheets or flare loops, the most important measurements and findings were:
(a) the periods of the fast waves, which give information about the half-width of the Harris
current sheet, and (b) that the wavelet tadpoles become longer and their heads are detected
later in time when increasing the distance between the detection and perturbation points.
Thus, it is possible to estimate the distance between the radio source at which the modulated
signal is detected, and the region where the modulating magnetoacoustic wave is initiated.
For example, the magnetoacoustic wave can propagate along the current sheet upwards in
the solar atmosphere, and modulate the radio emission (produced by the plasma emission
mechanism) at lower radio frequencies. The wavelet spectra of the signals at these frequen-
cies would then show how the wavelet tadpoles have shifted in time, corresponding to the
propagating magnetoacoustic wave train. Each tadpole corresponds to a specific plasma
frequency, i.e. to the specific plasma density. Using models of the density stratification it
is possible to determine the height. In particular, the recent detection of a quasi-periodic
sequence of short radio ‘sparks’ (finite-bandwidth, short-duration isolated radio spikes) re-
vealed that their repetition rate, 100 s, coincides with the periodicity in a quasi-periodic
rapidly-propagating train of the EUV emission, detected in the low corona (Goddard et al.
2016).

There also exist several important differences between the propagation of fast magnetoa-
coustic waves in a vertical flare current sheet in a gravitationally-stratified solar atmosphere
and a gravity-free case. The authors (Galsgaard and Roussev 2002; Jelínek et al. 2012)
implemented in their 2D numerical simulations for the altitude-variant current sheet in the
gravitational-stratified solar atmosphere an additional horizontal component of the magnetic
field, contrary to the gravity-free case and altitude-invariant current sheet:

Bx(x, y) = B0
wcs

H0
ln

[
cosh

(
x

wcs

)]
exp

(
− y

H0

)
, (6)

By(x, y) = B0 tanh

(
x

wcs

)
exp

(
− y

H0

)
, (7)

where the coefficient H0 denotes the magnetic scale height.
As a consequence of this modification, waveguiding properties of the current sheet can

change significantly (Jelínek et al. 2012). At very low altitudes of the vertical current sheets
the parameters are the same in both cases. However, in the stratified case the width of the
current sheet grows with height (Jelínek et al. 2012). By this fact the authors in their 2D nu-
merical simulations explained (according to Eq. (5)) the longer wave periods of propagating
fast magnetoacoustic waves in the gravitationally-stratified solar atmosphere compared to
the gravity-free case, see Fig. 10.

Variations of the wave signal and their wavelet tadpoles are more irregular in the case
with gravity (altitude-variant current sheet) than in the gravity-free case (altitude-invariant
current sheet), which result from the variation with height of the dispersive properties and
group velocities of the propagating magnetoacoustic waves in the gravitational case. As the
gravitationally-stratified atmosphere is more realistic than gravity-free, it allows one to make
a direct comparison with observational data. The most frequently measurable parameters
of these waves in solar events are the wave periods and their temporal changes (i.e. the
period modulation). Combining these data with the possible determination of the wave types
and their wavelengths (from spatially-resolving measurements) together with independent
estimates of the Alfvén speed at these locations (e.g. by the magnetic field extrapolation or
UV and optical spectroscopy methods), it could be possible to directly compare these results
with the observational findings.
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Fig. 10 Temporal evolution of wavelet tadpoles for the three detection points: LD = 50 Mm, 60 Mm, and
70 Mm (upper, middle, and lower panel, respectively) for the gravity-free (left panels) and gravitationally
stratified (right panels) solar atmosphere. The semi-width of the current sheet is wcs = 1.0 Mm. From Jelínek
et al. (2012)

Fiber bursts are fine structures of broadband type IV radio bursts, manifested by a cer-
tain frequency drift. In the wavelet spectra of the fiber bursts computed at different radio
frequencies, wavelet tadpole features were found, whose head maxima have the same fre-
quency drift as the drift of fiber bursts, see Fig. 11. It indicates that the drift of these fiber
bursts can be explained by the propagating fast sausage wave train, which modulates the
radio emission produced by non-thermal electrons trapped in a flare loop or current sheet.
Karlický et al. (2013) presented a model for fiber bursts in the dm band, based on assuming
fast sausage wave trains that propagate along a dense vertical current sheet to support this
idea. They found that the frequency drift of the wavelet tadpoles corresponds to the drift of
individual fiber bursts and they suggested the use of this information for the determination
of the density profiles of the propagating magnetoacoustic wave from the fiber burst profiles
measured along the radio frequency at some specific times.

Jelínek et al. (2017) advanced the above-mentioned studies by performing high-
resolution numerical simulations of the oscillatory processes during magnetic reconnection
in a vertical, gravitationally-stratified current sheet. Development of magnetic reconnection
leads to appearance of plasmoids that under the gravitational and buoyancy forces move up-
ward or downward along the current sheet. These plasmoids collide with each other, as well
as with the underlining magnetic arcade. After the collisions the plasmoids oscillate with
the periods determined by the Alfvén travel time within the plasmoids. These oscillations
could be responsible for the drifting pulsating structure (DPS) with distinct quasi-periodic
oscillations in frequency, detected in the radio spectrum (Karlický et al. 2016).

Finally, efforts have been made using kinetic theory to model pulsations and periodicities
generated by the plasma-emission mechanism of radio waves. For example, quasi-periodic
generation of Langmuir waves and radio emission due to density inhomogeneities (Kontar
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Fig. 11 Upper panels: examples of the fiber bursts at 12:01:05–12:01:16 UT (November 23, 1998, left
panel) and 8:35:05–8:35:17 UT (November 18, 2003, right panel). Bottom part: corresponding wavelet power
spectra showing the tadpoles with the period P = 1.4 s. In both spectra, at selected frequencies the times of
the tadpoles head maxima were determined (t1–t6) and also shown in the upper dynamic radio spectra (upper
panels). The tadpole head maxima drift as the fiber bursts. From Karlický et al. (2013)

2001) and radio-emission pulsations produced via nonlinear oscillations (see Ratcliffe and
Kontar 2014; Fonseca-Pongutá et al. 2016; and references therein).

2.7 “Magnetic Tuning Ork” Oscillation Driven by Reconnection Outflow

Magnetic reconnection, the central engine of solar flares, can drive supersonic Alfvénic
flows. Such fast reconnection outflows can be an exciter of oscillations through the collision
with the ambient plasma. The oscillations excited by the reconnection outflows may have
the potential to tell us about the in situ physical quantities of flares. However, the oscil-
lation process will be highly nonlinear, because the supersonic reconnection outflows will
form nonlinear waves and shocks. Therefore, direct MHD simulations are necessary for a
complete understanding.

Takasao and Shibata (2016) performed a set of 2D MHD simulations of a solar flare
and studied oscillations excited by the reconnection outflow. Unlike previous models for
quasi-periodic propagating fast-mode magnetoacoustic waves (QPFs), their model includes
essential physics for solar flares such as magnetic reconnection, heat conduction, and chro-
mospheric evaporation. From the simulations, they discovered the local oscillation above
the loops filled with evaporated plasma (above-the-loop-top region) and the generation of
QPFs from such oscillating region. In this section, we will introduce the physical process
found in their study.

Figure 12a displays snapshots of the density distribution in the site of the simulated flare.
Magnetic reconnection drives the narrow reconnection outflow. The reconnected fields pile
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Fig. 12 Quasi-periodic
propagating fast-mode waves
(QPFs) in a simulation of
Takasao and Shibata (2016).
(a) Top: density map. The
solid lines denote magnetic field
lines. An enlarged image of the
above-the-loop-top region is also
displayed. Bottom: the
normalized running difference of
the density. (b) Snapshots of the
above-the-loop-top region. The
colour contour indicates the
density

up and form a loop system which is eventually filled with the hot dense plasma coming from
the chromosphere (chromospheric evaporation). The loops filled with evaporated plasma
correspond to the soft X-ray flare loops, and therefore the authors call the region above the
loops “above-the-loop-top region” (an enlarged image of this is shown in Fig. 12a).

Takasao and Shibata (2016) discovered an oscillation in the flaring region even without
imposing any oscillatory perturbations. The normalised running difference image of the
density (
ρ/ρ) in Fig. 12a clearly shows the recurrent generation of isotropic waves. These
waves are identified as fast-mode MHD waves. A noticeable point is that these waves are
emitted from the oscillating above-the-loop-top region. Thus, the wave source of the fast-
mode waves (QPFs) or “quasi-periodic flows” is very small compared to the system size
(less than 10% of the system size in this simulation).

The above-the-loop-top region is found to be full of shocks and waves (see Fig. 12a),
which is different from the previous expectations based on a standard flare model and pre-
vious simulations (Yokoyama and Shibata 2001). These shocks and waves are formed as
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Fig. 13 Above-the-loop-top oscillation or magnetic tuning fork oscillation. Left: snapshots of the distribu-
tion of the plasma β of the above-the-loop-top region. Right: time-sequenced images of the plasma β and
normalised running difference of the total pressure along the slit shown in the left panels. The horizontal
lines in the time-sequenced images denote the timings of the snapshots in the left panels

a result of the collision of the supersonic reconnection outflow with the reconnected loops
piled up below. In the standard flare model, a standing horizontal fast-mode shock is ex-
pected to be formed at the termination site of the outflow and is often referred to as a “ter-
mination shock” (Priest and Forbes 2002). However, the simulation shows that a V-shaped
pattern is formed by two oblique fast-mode shocks and later by two oblique shocks and a
single horizontal fast-mode shock (Fig. 12b). Moreover, the multiple termination shocks are
never stationary and the structure changes drastically with time. We note that the very dy-
namic shocked region can be formed even in the case of steady reconnection (the localised
resistivity is fixed in time and space in this study). It can be shown that this is a natural
consequence of the termination of the reconnection outflow (see Takasao et al. 2015 and
Takasao and Shibata 2016 for more details).

The above-the-loop-top region shows a pair of the sharply bent magnetic field structures
(see Fig. 12b). Looking at the temporal evolution, one finds that the distance between the
two arms changes quasi-periodically. The oscillation is displayed in Fig. 13. The left panels
show snapshots of the plasma β of the above-the-loop-top region. The right panels indicate
time-sequenced images of plasma β and normalised running difference of the total pressure

ptot/ptot obtained along the slit shown in the left panels, where the total pressure is the sum
of the gas and magnetic pressures. The slit is positioned just below the V-shaped termination
shocks. The figure shows that the two arms, shown as the two narrow high-β regions at the
left and right edges, are oscillating with a period of ∼40 s (top and bottom rows show the
timings when the two arms are closed and open, respectively).
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Fig. 14 (a) Backflow of the
reconnection outflow in the
above-the-loop-top region.
(b) Schematic illustration of the
magnetic tuning fork oscillation

Time-sequenced images of 
ptot/ptot in Fig. 13 indicate that outward-propagating fast-
mode waves are excited quasi-periodically when the outward motion of the arms terminates.
These fast-mode waves are what we have already displayed in Fig. 12a. Thus, it is clarified
that the QPFs in the simulations are excited by the oscillatory motion of the above-the-loop-
top region.

What is the generation mechanism of the oscillation and QPFs? Looking at Fig. 14a,
one will find a fast backflow of the reconnection outflow in the small above-the-loop-top
region. It was found that this backflow is the exciter of the oscillation. Figure 14b illustrates
how the backflow controls the oscillation. The backflow (more exactly, the gradient of the
dynamic pressure by backflow) pushes the two arms outward and compresses the magnetic
field around the arms. This leads to the generation of outward-propagating fast-mode waves.
Once the magnetic field there becomes strong enough to overcome the backflow, the arms
start to move inward. The same process repeats and the oscillation is maintained as long
as there is a strong backflow. The generation process of fast-mode waves by the backflow-
driven oscillatory motion of the two arms is similar to the generation process of sound waves
by an externally-driven tuning fork. For this reason, Takasao and Shibata (2016) name the
two arms (a pair of the sharply bent magnetic field structures) “magnetic tuning fork”. For
the rest of this section, the oscillation is called the “magnetic tuning fork oscillation”.

The shock structure is essential for maintaining the oscillation. The oscillation stops
when a horizontal fast-mode shock appears in between the two oblique shocks (right panel
of Fig. 13b). The timing of the appearance is also indicated in Fig. 13. The horizontal shock
more significantly decelerates the reconnection outflow than oblique shocks. Therefore, the
backflow should become slower after the formation of the horizontal shock. This leads to
the disappearance of the oscillation. Thus, the termination shock structure is key for the
maintenance of the oscillation.

The magnetic tuning fork oscillation generates not only QPFs but also the quasi-periodic
oscillation of the termination shock strength. It has been argued that termination shocks
could be a promising site for particle acceleration (Tsuneta and Naito 1998; Nishizuka and
Shibata 2013; Chen et al. 2015) and could be related to the above-the-loop-top hard X-ray
source (Masuda et al. 1994; Krucker et al. 2010; Oka et al. 2015), although the detailed
acceleration process in such low Mach number and high-β shocks should be studied in more
detail (for recent studies about electron acceleration at such shocks, see Matsukiyo et al.
2011; Guo et al. 2014). If this is correct, it is possible that the quasi-periodic oscillation of
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the multiple termination shocks found in their study leads to QPPs in non-thermal emissions
through the quasi-periodic variation of the efficiency of particle acceleration. In addition, the
simulations showed that the oscillation of multiple termination shocks and QPFs can have a
common origin. On this basis, the authors suggest a new picture in which QPFs and QPPs
in the non-thermal emissions have a common origin. Thermal emissions may also respond
to the variation of the efficiency of acceleration through the thermalisation of non-thermal
particles, showing QPPs.

What underlying physics determines the periodicity? Since the magnetic tuning fork os-
cillation is controlled by the backflow of the reconnection outflow in the above-the-loop-top
region, we expect that the oscillation period P is proportional to the timescale determined
by the backflow in this region: P ∝ w/vbf, where w is the size of the above-the-loop-top
region and vbf is the backflow speed. This expectation is supported by a set of numerical
simulations with different magnetic field strength B (equivalently, different plasma β in
their study). Therefore, the problem is to clarify what determines the dependencies of the
backflow speed vbf and the size w.

The simulations show that the backflow speed is of the order of the Alfvén speed, as
expected. This indicates that vbf ∝ B ∝ β−1/2. The dependence of the size w could be de-
termined by the balance between the mass flux of the reconnection outflow and the mass
flux carried horizontally by the backflow. Considering the fundamentals of reconnection
and shock theories, gives w ∝ β4/7L9/7 (see Takasao and Shibata 2016 for details). From
these results, we obtain the following scaling relation:

P ∝ w

vbf
∝ β15/14L9/7 ∝ B−2.1. (8)

Numerical results are consistent with this predicted scaling relation. This further supports
the fact that the oscillation is controlled by the backflow of the reconnection outflow.

It is noteworthy that the period is sensitive to the magnetic field strength (see Eq. (8)).
In the typical case of a flare with the size of 60 Mm and plasma β of 0.08, the oscillation
has a period of ∼40 s. Since the real coronal field strength will vary from flare to flare,
typically from a few G to several tens G or larger, the magnetic tuning fork oscillation
can create a large range of periods. This is consistent with the fact that QPFs and QPPs
have a wide range of periods. Attention must be paid when one directly applies the scaling
relation to observations, because the effects of the 3D global magnetic field structure and
time-dependent magnetic reconnection, which are not considered in the study, can make
the process more complex. Investigating these effects will be important for advancing the
theory.

Recently, Takahashi et al. (2017) performed a series high-resolution 2D simulations of
magnetic reconnection which occurs below an erupting CME. They showed that the oscil-
lation in the above-the-loop-top region operates even in the case of plasmoid-dominated
reconnection, although the oscillation tends to be asymmetric and the dynamics in the cur-
rent sheet becomes turbulent in this case. Since the reconnection jets are bi-directional,
two oscillation periods from the two termination shock regions emerge in their simulations.
Takahashi et al. (2017) presents an observational example of a flare associated with a CME
which shows two distinct periods in the QPPs. Another important finding is that the mag-
netic tuning fork oscillation at the bottom of a CME can cause quasi-periodic oscillations
of the CME. Since such oscillations of CMEs have been reported (e.g. Krall et al. 2001), it
will be interesting to statistically investigate the relationship between oscillations of CMEs
and QPPs in emissions.
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The above-the-loop-top region is very small, and therefore resolving a detailed structure
of this region is observationally challenging. Nevertheless, confirming the key features of the
magnetic tuning fork oscillation from observations is necessary to validate this mechanism.
It is important to affirm the presence of the fast backflow from spectroscopic observations.
The oscillation can lead to a quasi-periodic pulsations of emissions from the above-the-loop-
top region. Therefore, investigating the temporal evolution of emissions from this region
may allow us to infer whether the magnetic tuning fork oscillation actually operates. If the
pulsations in the above-the-loop-top region and QPFs have a similar period, then this can be
strong supporting evidence.

Direct identification of the magnetic tuning fork oscillation is very challenging. There-
fore, it is necessary to accumulate pieces of indirect supporting evidence. For this aim, the
following (and probably more) considerations will be useful. Bursts in non-thermal emis-
sions, which seem to occur quasi-periodically in some cases, are sometimes attributed to the
electron acceleration associated with plasmoid dynamics (Drake et al. 2006; Nishizuka et al.
2015; Takasao et al. 2016). One has to check if QPPs are accompanied by plasmoid ejec-
tions/dark downflows from coronal images and/or dynamic radio spectra (since plasmoids
may be seen as drifting pulsating signatures in dynamic radio spectra, Karlický 2004). The
quasi-periodic change of the magnetic reconnection rate is also a possible cause for QPPs,
and plasmoid-dominated reconnection and oscillatory reconnection have been discussed in
this context (Kliem et al. 2000; McLaughlin et al. 2009). If the change in reconnection rate
is the main cause of QPPs, then QPPs in emissions and the reconnection rate estimated from
e.g. flare ribbon separation (e.g. Isobe et al. 2005) will correlate well. These do not nec-
essarily correlate in the case of the magnetic tuning fork oscillation (of course this is also
true for many other cases). We need to examine if standing MHD waves in flare loops (e.g.
Chen et al. 1999; Nakariakov et al. 2004a) are irrelevant to the observed oscillations or not.
This may be done by tracking the motion of reconnected field lines or hard X-ray loop top
source (Li and Gan 2006) and from Doppler observations (Mariska 2005). We are aware
that the amplitude of the oscillation in Li and Gan (2006) is estimated to be only approxi-
mately 300 km (∼0.4′′) which is much smaller than the spatial resolution of RHESSI, ∼7′′.
Therefore, there needs to be caution with regards to the interpretation of such a result.

2.8 Wave-Driven Reconnection in the Taylor Problem

As mentioned in Sect. 2.3, the seminal reconnection models of Sweet–Parker (Parker 1957;
Sweet 1958) and Petschek (Petschek 1964) are steady-state models. Apart from the obvious
problem of applying steady-state theory to dynamic flaring events, there is a subtler issue
here: steady-state models can only provide one timescale, that of steady reconnection; pro-
portional to S1/2 for Sweet–Parker, and to lnS for Petschek (Bhattacharjee 2004). However,
flares require a growth rate that is not only fast, but also exhibits a sudden increase in its time
derivative. This is referred to as the ‘trigger problem’; the magnetic topology evolves slowly
for an extended duration, only to then undergo a sudden change over a shorter timescale.
Sweet–Parker and Petschek cannot account for the time evolution of the reconnection rate.
Instead, time-dependent reconnection rates are referred to as impulsive or bursty. In addi-
tion, magnetic reconnection can be broadly classified into two types: free or spontaneous,
i.e. caused by an intrinsic instability which taps into the magnetic free energy stored within
the equilibrium topology, or forced, which is driven by perturbations (e.g. from a boundary)
that induce a change in connectivity to an equilibrium or a sudden increase in the anomalous
resistivity in the reconnection site.

An interesting forced, impulsive mechanism has been investigated with regards to the
so-called ‘Taylor’ problem, which was proposed by J.B. Taylor in a private communication
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to Hahm and Kulsrud (1985) who then carried out the analysis themselves. Hahm and Kul-
srud (1985) considered a slab plasma equilibrium that is suddenly subjected to imposed,
small-amplitude boundary perturbations such as to drive magnetic reconnection at the cen-
tre of the slab. The so-called ‘Taylor’ problem has then been developed by several authors,
including Wang and Bhattacharjee (1992), Wang et al. (1996) and Fitzpatrick (2003), who
all consider slight variations on the initial and boundary conditions of the fundamental sys-
tem, and Comisso et al. (2015) who extended the theory into the plasmoid-unstable regime.
A self-consistent solution for the continuous plasma-heating was derived by Vekstein and
Jain (1999) within a similar system undergoing forced external driving. The authors found
that the plasma-heating rate displayed a relaxation-type dependency on the driving fre-
quency, leading to a discussion whether forced magnetic reconnection can be interpreted
as an Alfvén resonance with zero frequency (Uberoi and Zweibel 1999) or not (Vekstein
2000).

As an illustrative example, here we adopt the conditions of Fitzpatrick et al. (2003).
Initial conditions are chosen such that B = (0,B0x,BT ), where B0 and BT are constants,
and A = [0,0, φ(x, y, t)] is the vector potential. The plasma is stable to tearing modes. The
plasma is bounded by perfectly conducting walls (located at x = ±a) and is periodic in
the y-direction with periodicity length L. The conducting walls are subject to displacement
Ξ(t) cos (ky) at x = a where k = 2π/L. An equal and opposite displacement is applied at
x = −a. Here Ξ(t) ∝ 1 − exp (t/τ ) − (t/τ ) exp (−t/τ ) is a ramp-up term. At early times,
the plasma builds up a concentration of current (surface current) along x = 0 (the resonant
surface). Subsequently, reconnection of flux across the resonant surface occurs, forming a
chain of magnetic islands. As the reconnection proceeds, the surface current decreases and
the plasma tends towards equilibrium. The process evolves through multiple stages in the
reconnection process, labelled A, B , C, D and E by Hahm and Kulsrud (1985). Phases A

to C are governed by linear boundary-layer physics, phase D corresponds to Sweet-Parker
reconnection (under certain circumstances, see Wang and Bhattacharjee 1992) and phase E

corresponds to the nonlinear magnetic island dynamics of Rutherford (1973).
Hahm and Kulsrud (1985), Wang and Bhattacharjee (1992), Wang et al. (1996) and Fitz-

patrick (2003) investigated the Taylor problem using Laplace Transforms and solved the
resulting equations via asymptotic matching, equivalent to a boundary-layer problem. Es-
sentially, there is an assumption that the plasma is divisible into two regions: an inner region
(non-ideal, time-dependent, narrow) around the x = 0 resonant surface and an outer region
(ideal, steady) consisting of the rest of the plasma (see, e.g. Bhattacharjee 2004). The inner
and outer solutions are then matched asymptotically; referred to conventional asymptotic
theory. Fitzpatrick et al. (2003) developed an improved Laplace Transform approach, which
does not involve asymptotic matching, to investigate the early time response of the plasma;
which is missed by the boundary-layer approach.

If the wall perturbation is switched on slowly compared to the Alfvén time, then the
plasma response eventually asymptotes to that predicted by conventional asymptotic the-
ory. However, at early times there is a compressible Alfvén wave driven contribution to the
reconnection rate which leads a significant increase in the reconnection rate. If the wall per-
turbation is switched on rapidly compared to the Alfvén time then strongly localised com-
pressible Alfvén wave pulses are generated which bounce back and forth between the walls
several times. Each time these wave-pulses cross the resonant surface, they generate a tran-
sient surge in the reconnection rate. The maximum pulse-driven reconnection rate is much
larger than that from conventional asymptotic theory. The evolution of the current density is
dominated by a series of spikes in the reconnection rate. This can be seen in Fig. 15.

Fitzpatrick et al. (2003) derive an expression for the evolving current (see their equation
30) that involves integrating over the Bromwich contour. The numerator of the integrand
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Fig. 15 Evolution of the
magnetic reconnection rate, J (t).
Solid curve shows numerical
solution generated by the FLASH
code. Long-dashed curve shows
the solution produced by
conventional asymptotic
matching theory. The
short-dashed curve shows the
solution generated by the
improved Laplace Transform
approach (and has been shifted
downwards slightly to make it
more visible). Reproduced from
Fitzpatrick et al. (2003)

contains multiple poles which correspond to those of the function ∂Y/∂x|x=0 where Y (x,g)

is a solution of the linearised, Laplace-transformed MHD equations governing the system.
The poles can be written g = ±iωn where ωn (which are real) represents the oscillation fre-
quencies associated with the natural Alfvénic modes of oscillation of the plasma. The plasma
response emanating from these poles can be thought of as due to compressible Alfvén waves
excited by the sudden imposition of the wall perturbation (Fitzpatrick et al. 2003).

Note that Fitzpatrick et al. (2003) uses the terminology compressible and compressional
Alfvén wave. In the solar literature, compressional (or, actually, compressive) Alfvén waves
are usually called fast magnetoacoustic waves, even in the case of gas pressure being ne-
glected and the wave is driven by the magnetic pressure gradient (so as to avoid confusion
with the incompressive shear Alfvén wave or, in cylindrical geometry, torsional Alfvén wave
which are both sustained solely by magnetic tension). Thus, in accordance with the solar lit-
erature, for the rest of this section we use the terminology fast magnetoacoustic.

Simulations by Fitzpatrick et al. (2003) show that this manifests such that the sudden
switch-on of the wall perturbation generates two strongly localised pulses which propagate
towards the resonant surface, pass through one another and reflect off the walls. The two
pulses then subsequently bounce back and forth several times. The arrival time of the pulses
at x = 0 correlates with the spikes in the reconnection rate. The authors conclude that the
strong spikes in J (t), i.e. the amplitude of the current sheet driven at the resonant surface,
represent magnetic reconnection driven by fast magnetoacoustic waves which are excited by
the sudden onset of the wall perturbation. The physical mechanism as to why the reconnec-
tion rate increases sharply as the fast magnetoacoustic wave pulse transits the resonant layer
is not reported, although we may speculate that this is related to an increase in gradients of
B and therefore ∇ × B and J (t) as the wave passes through the resonant layer.

The period is governed by the fast magnetoacoustic speed and the distance between the
walls 2a, i.e. the travel time. For example, increasing the central pressure increases the (fast
magnetoacoustic) propagation speed and hence decreases the period between the spikes
in J (t). Since this is a theoretical model solely, a broad range of periods, e.g. from seconds
to minutes, can be obtained by tuning the fast magnetoacoustic speed and a.

We note that the pulses only remain coherent over several transits where k 
 1, equiv-
alent to L � a. This is equivalent to the wavelength of the wall perturbation ∝ k−1 being
much greater than the wall separation ∝ a, which places limitations on the applicability of
the model.

All the Taylor problem models considered so far are restricted to 2D nonlinear MHD
and so a natural progression would be to extend the modelling to three-dimensions. In ad-
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dition, the periodicity of the model is based on reflections between opposing solid bound-
aries and thus its applicability to solar and stellar atmospheres is unclear (whereas its ap-
plicability to, e.g., tokamaks is more obvious). In the solar atmosphere, the requirement for
solid boundaries is usually achieved via, say, bouncing repeatedly between two footpoints
in a wave-guiding coronal loop. However, in such systems, the fast magnetoacoustic waves
would take a different form and one would require a resonant layer (as defined in the Tay-
lor problem, not resonant absorption) to be located at the loop apex. It is unclear how this
could be achieved topologically, let alone the wave generation aspect. This is of course not
the only scenario; one can imagine a reconnection region might be bounded by a strong
magnetic field, which would act as walls enveloping a cavity. As an example for stellar ob-
jects, Gao et al. (2008) reported on a periodicity in the flaring rate of binary star YY Gem
and proposed that magnetic reconnection (responsible for the flaring) is modulated by fast
magnetoacoustic waves which are trapped between the surfaces of the two stars, so that the
reconnection rate presents a periodic behaviour. Regardless of specific applicability, from a
forced, impulsive reconnection mechanism point-of-view, these papers are seminal.

2.9 Two Loop Coalescence

It has been widely believed that a current sheet with a high (>104) Lundquist number is
subject to fragmentation (Shibata and Takasao 2016). This instability is called the plasmoid
instability and leads to the formation of plasmoids in a current sheet (Tanuma et al. 2001;
Loureiro et al. 2007; Bhattacharjee et al. 2009), where plasmoids are magnetically-confined
plasma. Plasmoids in the current sheet will contain the electric current in almost the same
direction with each other, because the plasmoid formation results in the discretization of
the electric current in the current sheet. Therefore an attracting Lorentz force will oper-
ate between these plasmoids, which will lead to the coalescence of plasmoids. This process,
known as the coalescence instability (Finn and Kaw 1977; Pritchett and Wu 1979), is consid-
ered as a key process for the bursty, impulsive energy release during solar flares (Biskamp
and Welter 1980; Bhattacharjee et al. 1983). The coalescence of plasmoids were actually
observed (Takasao et al. 2012).

Previous nonlinear simulations revealed that the coalescing plasmoids show quasi-
periodic oscillations in fields and other particle quantities (Pritchett and Wu 1979; Tajima
et al. 1987). Since the particle acceleration is expected during the coalescence (Tajima et al.
1982; Oka et al. 2010; Karlický and Bárta 2011), QPPs seen in emissions originated from
non-thermal, high-energy particles could be caused by the oscillations associated with the
coalescence instability (an observational example is given by Takasao et al. 2016). On this
basis, Tajima et al. (1987) investigated the characteristics of the oscillations in detail and
compared their results with observations. As a representative work on the oscillations caused
by the coalescence of plasmoids, we here briefly introduce their study in the following. This
work has been generalised by Kolotkov et al. (2016), which will be also mentioned later.

Tajima et al. (1982, 1987) was motivated particularly by the observations of the (Seven–
Sisters) flare on 7 June 1980 that showed seven successive pulses with a quasi-periodicity
of ∼8 s (Nakajima et al. 1983). This flare was observed in hard X-ray, gamma-ray, and
microwave emissions. All of the pulses in these bands were almost synchronous within
±2.2 s and have a similar shape. The observations suggest a quasi-periodic acceleration of
both electrons and ions. An interesting feature of the pulsation is that a few of the pulses of
microwaves at 17 GHz showed double subpeaks. It seems that the first subpeak coincides
with the peak of the corresponding hard X-ray, while the second subpeak coincides with the
peak of the corresponding gamma-ray pulse. To understand the observational characteristics,
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Fig. 16 Temporal profiles of particle and field quantities for the coalescence process. (a) The thick line
represents the magnetic energy, the thin one the ion temperature in the x-direction. (b) Electrostatic field
energy in time. (c) Ion temperature in the z-direction. (d) Electron temperature in the x-direction. (e) Electron
temperature in the z-direction. (f) Inductive electric field (Ez). From Tajima et al. (1987)

the authors investigated the coalescence of plasmoids numerically and theoretically in detail.
They performed both particle and MHD simulations in 2.5D (two spatial dimensions x, y

and three velocity and field dimensions), but here we only focus on the results of the particle
simulations to see the relation between the oscillation and particle acceleration. The initial
setup of their typical simulations assumes two plasmoids that are attracted by the Lorentz
force by each other. A uniform external magnetic field, Bz, is applied. A more detailed
explanation for the setup is given in Leboeuf et al. (1982).

Figure 16 displays the temporal evolution of particle and field quantities during the co-
alescence process. Looking at the magnetic energy (thick line in Fig. 16a), one sees three
peaks clearly. Corresponding to these peaks, the electrostatic field EL and ion and electron
temperatures show double subpeaks. Strong particle acceleration in the z-direction occurs
at the subpeaks of EL through the EL × B acceleration.

This oscillation process is schematically described in Fig. 17. When the coalescence
starts, a strong acceleration of ions by the Lorentz force takes place. At t = t1, the accelera-
tion reaches a maximum, leading to a strong compression at the far sides of the two plasma
blobs. This compression causes the first temperature peak. In addition, the difference in in-
ertia between ions and electrons results in charge separation at the compressed regions. The
charge separation generates the electrostatic field EL. The EL × B acceleration, together
with the magnetic acceleration, produces high energy particles in the z-direction. At time
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Fig. 17 Schematic sequence of snapshots of the plasma and electric and magnetic fields during the coales-
cence process. Note that the direction of the electric field is defined in the opposite way as usual. From Tajima
et al. (1987)

t = t2 when two plasma blobs totally merge, the inductive electric field (v × B) vanishes.
The direction of the acceleration of electrons and ions along the z-direction is reversed at
this moment. At time t = t3, the overshooting plasma blob motions result in the genera-
tion of the reverse electrostatic field. The temperature again reaches a maximum. This is the
mechanism’s interpretation of the formation of the double peaks in the electrostatic field and
temperature.

Tajima et al. (1987) developed a theoretical model of the coalescence of two plasmoids.
They assume that ∂/∂x � ∂/∂y, ∂/∂z, where x is the direction of coalescence so that the
dynamics of the coalescence is treated as a one-dimensional problem. To separately deal
with the dynamics of ions and electrons, they start from the two-fluid ideal MHD equations.

Since no specific scale length appears in this one-dimensional coalescence process, we
expect the presence of a self-similar solution for this problem. They introduced scale factors
a(t) and b(t) in the following way to look for self-similar solutions:

vex = ȧ

a
x, vix = ḃ

b
x (9)

where a dot represents the time derivatives and vex and vix are the electron and ion velocities
in the x-direction, respectively. An ansatz imposed here is that the velocities are linear in x.
Further assuming quasi-neutrality (ni = ne), we get a = b. As a result, it is found that a
self-similar solution for the fields and particle quantities can be written as a function of the
scale factor a(t).

The equation that governs the temporal evolution of the scale factor a(t) can be written
as follows:

ä = −∂V (a)

∂a
, (10)

where the effective potential V (a) has essentially the same functional form as that of the
effective potential for the gravitational force (see Fig. 18a). Thus, this means that the scale
factor a (and therefore the other quantities) oscillates within a finite range. The minimum
oscillation period Pmin is estimated as:

Pmin = 2π
Cs

3

v4
A

λ � 2 s

(
β

0.1

)3/2(
λ

104 km

)(
vA

103 km s−1

)−1

(11)

where Cs and vA are the sound and Alfvén speeds, respectively, and λ is a characteristic
scale length of the magnetic field in the interaction region (typically the size of plasmoids).
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Fig. 18 Schematic behaviour of
the explosive collapse. (a) The
Sagdeev potential for the scale
factor of the explosive
coalescence. (b) The temporary
behaviour of the magnetic field
energy constructed from the
Sagdeev potential. (c) The
temporal behaviour of the
electrostatic field energy
constructed from the Sagdeev
potential. (d) The temporal
behaviour of the ion temperature
in the x-direction (in the
direction of coalescence)
constructed from the Sagdeev
potential. From Tajima et al.
(1987)

One can see that the period increases as the plasma β increases. More detailed investigation
implies that the period also depends on the magnetic twist of the plasmoids (namely, the
ratio of the toroidal to poloidal magnetic fields) and the colliding velocity of the plasmoids.

Figure 18 shows a schematic temporal behaviour of (b) the electrostatic field E2
x (E2

L),
(c) magnetic energy B2

y , and (d) ion temperature Tix . The double subpeak is prominent in
the E2

x and Tix profiles, although E2
x shows another small peak. The triple-peak profile will

be a double-peak profile when the plasma β is sufficiently small.
From numerical and analytical investigations, it is found that the coalescence results in

the quasi-periodic particle acceleration as seen in the observations of a flare on 7 June 1980.
The double-peak profiles of the electrostatic field and ion and electron temperatures are
likely to be relevant to the double subpeaks in emissions. If one looks at the electron energy
spectrum, it can be fitted by a double power law with a break. This is consistent with the
observations (Kane et al. 1983).

The theoretical discussion of Tajima et al. (1987) is based on the quasi-neutrality assump-
tion, which is valid only at the non-kinetic scale (current sheet thickness is larger than the
Debye length—We are aware that this assumption may not be consistent with the interpreta-
tion where the charge separation at a kinetic scale is discussed, see Fig. 17). Kolotkov et al.
(2016) generalised the discussion to cover both the kinetic and non-kinetic scales. When
the current sheet is thicker than the kinetic scale, the electrostatic field Ex is produced by
the mechanical effects (coming from the momentum equations). This Ex appears from the
equation of motion for ions. On the other hand, when the current sheet is comparable to or
thinner than the kinetic scale, Ex is mainly produced by the charge separation. Kolotkov
et al. (2016) found that the double-peak structure in Ex will be a general feature and can be
found in both the kinetic and non-kinetic scales, although the shape of the profile is different
from that in Tajima et al. (1987). In addition to this, the anharmonicity of the oscillations is
also a distinct feature of the nonlinear large amplitude regime of the coalescence. The anhar-
monicity is clearly seen only in the nonlinear regime. The theory of Tajima et al. (1987) is
constructed under the assumption that the gas pressure can be ignored during the implosion,
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but the gas pressure significantly increases at the center of the current sheet and produces
two MHD fast-mode shocks (Forbes 1982; Takeshige et al. 2015).

Now numerical modelling of plasmoid coalescence is an essential method to advance
our understanding of particle acceleration associated with plasmoid dynamics. Drake et al.
(2006) pointed out that contracting plasmoids can be an efficient accelerator via Fermi ac-
celeration. Guidoni et al. (2016) applied the idea to plasmoid-dominated reconnection in a
simulated eruptive flare using a 2.5D MHD simulation, and found that energy gain of elec-
trons in plasmoids can be higher than the previous estimation by Drake et al. (2006) due to
strong plasma compression that occurs at the flare current sheet. However, Oka et al. (2010)
performed 2D particle-in-cell simulations of magnetic reconnection with multiple plasmoids
and found that the key process for electron acceleration is the secondary magnetic reconnec-
tion at merging points formed between coalescing plasmoids. The idea around the interac-
tion between plasmoids and shocks by Nishizuka and Shibata (2013) has not been examined
numerically. Therefore, our knowledge regarding electron acceleration has not been estab-
lished yet. More detailed numerical modelling and comparison with observations should be
important for understanding the origin of QPPs in non-thermal emissions.

2.10 Equivalent LCR Contour

An alternative, non-hydrodynamic mechanism for QPPs, based upon the consideration of a
flaring magnetic configuration as an equivalent LCR contour was proposed by Zaitsev et al.
(1998). The model is based on the difference in the values of the electrical conductivity
in the coronal and chromospheric parts of the flaring region. In the corona, the parallel
conductivity is much higher than across the field, and the electric current should go along
the magnetic field lines. In the partly-ionised photospheric plasma, the electric current could
go across the field. Hence there appears a closed electrical circuit formed in a coronal loop
by a field-aligned current, which goes from one footpoint to the other, and the cross-field
current between the footpoints in the photosphere.

Dynamics of the electric current I in such a contour is described by the equation:

1

c2
L

d2I
dt2

+R(I)
dI
dt

+ 1

C(I)
I = 0, (12)

where c is the speed of light,

1

C
= I2l2

c

πc4ρ0r4
c

(
1 + c2r2

c B2
z0

4I2

)
, L = 2lcΛ,

are the effective circuit capacitance and inductance, respectively; where Bz0 is the magnetic
field along the axis of the loop; rc and lc are the minor radius and length of the coronal part
of the loop, respectively; ρ0 is the mass density in the coronal part of the loop (Khodachenko
et al. 2009) and Λ = ln 4lc

πrc
− 7

4 . The nonlinear term R(I) represents the effective resistance.
It combines the resistance connected with the ion-neutral collisions in the photosphere, pro-
portional to I2, and the electromotive force associated with the photospheric convection.
For sufficiently large photospheric convective flows the expression for R(I) can become
negative, inducing the alternate current in the system. This effect is more pronounced in the
loops with a lower equilibrium electric current.

In the linear regime, when the effective resistance R and capacitance C are independent
of the amplitude of the alternate current, equation (12) is a damped harmonic oscillator
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equation. It describes an alternate electric current with the period:

PLCR ≈

⎧⎪⎪⎨
⎪⎪⎩

4πrc
√

2πΛρc

Bz0
, in an untwisted loop,

2πr2
c

√
2πΛρc

I0
, in a highly twisted loop,

(13)

where I0 is the equilibrium electric current in the loop, which is connected with the az-
imuthal component of the equilibrium magnetic field. For different values of the parame-
ters, the model gives periods from a fraction of a second to a few minutes (e.g. Zaitsev and
Stepanov 2008).

The LCR oscillations of a flaring magnetic loop can produce QPPs of both thermal and
non-thermal emission. In particular, the intensity of the microwave emission produced by the
gyrosynchrotron mechanism, is proportional to the angle between the line-of-sight and the
local magnetic field. Thus, periodic variations of the field-aligned electric current that can
be considered as the periodic appearance of the azimuthal component of the magnetic field,
should result in the modulation of the gyrosynchrotron emission. The Ohmic heating of the
alternate current would lead to a periodic variation of the plasma temperature. The tempera-
ture variation period is two times shorter than the period of the electric current oscillations,
as it is proportional to the current amplitude squared. The associated variation of the elec-
tric field may result in periodic acceleration of charged particles, provided the electric field
exceeds the Dreicer field. The periodic acceleration will lead to the periodic non-thermal
emission. Another possibility is the transverse perturbation of the axis of the loop, caused
by the periodic twisting of the loop by the alternate electric current. Indeed, twisting leads to
the deformation of the loop’s plane, i.e. making the loop having an S-shape. Hence, periodic
alternate twisting should periodically deform the loop’s plane, resembling a kink oscillation,
with the structure resembling the second or higher harmonics. The interaction of this oscil-
lation with a magnetic X-point situated nearby, could lead to the periodic modulation of the
reconnection rate.

This mechanism may also easily explain drifts of the QPP periods, that are often observed
in flares. For example, Dennis et al. (2017) detected high-quality oscillations of the time
derivative of the soft X-ray emission of the decay phase of a flare, with the period gradually
increasing from 25 s to 100 s. If the detected QPPs are produced by the alternate current, a
gradual decrease in the equilibrium current I0, caused, for example, by Ohmic dissipation,
would lead to the increase in the oscillation period, see Eq. (13).

Similar ideas could be applied to the oscillatory interaction of two or several current-
carrying loops, via the variation of the mutual inductance (e.g. Khodachenko et al. 2005,
2009). This interaction would result in variation of the electric currents, and also of the ge-
ometrical parameters of the magnetic configuration, for example the variation of the loop
plane, the distance between individual loops, etc., which would look like transverse oscil-
lations. It was shown that the inductive interaction inside a flaring active region may lead
to longer period oscillations, of several minutes. The observational manifestation of these
oscillations could, in particular, lead to QPPs in flaring light curves, either directly, by the
effect of the alternate electric current, or indirectly, by, for example, periodically induced
magnetic reconnection.

As was emphasised by Khodachenko et al. (2009), the equivalent LCR circuit approach
ignores the fact that changes of the magnetic field and related electric current propagate as
torsional Alfvén waves at the Alfvén speed, assuming the instant changes of the electric
current in the whole circuit. Therefore, this model describes adequately the oscillations and
evolution with time scales longer than the Alfvén travel time along the loop.
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2.11 Autowave Processes in Flares

The effect of autowaves has not been directly addressed in the context of solar flares so
far. However, the possibility of the triggering of flaring energy release by an MHD wave,
and the subsequent excitation of the wave by the flare, creates a theoretical ground for the
occurrence of autowave processes.

One possible manifestation of such a process is connected with the well-established pro-
gression of the flaring hard X-ray and EUV brightenings along the photospheric neutral line
in two-ribbon flares. The typical speed of this progression along the ribbons is a few tens
of km/s (e.g. Krucker et al. 2003, 2005; Bogachev et al. 2005; Grigis and Benz 2005; Yang
et al. 2009; Inglis and Gilbert 2013).5 Nakariakov and Zimovets (2011) suggested that this
value of the speed is well consistent with the perpendicular group speed of a highly oblique
slow magnetoacoustic wave. It was found that the perpendicular group speed has a rather
sharp maximum reaching about 10–20% of the sound speed for the propagation angles of
about 25–28 degrees to the magnetic field. In a typical flaring plasma of temperature 107 K
and with Alfvén speed of 1000 km/s, the highest perpendicular group speed of a slow mag-
netoacoustic wave is about 40 km/s.

In the proposed scenario a primary energy release occurring somewhere above the neutral
line, in the flaring arcade, excites a slow magnetoacoustic pulse that propagates downward.
The pulse gets reflected from the chromosphere and returns back to the top of the flaring
arcade, slightly offset from the location of the primary energy release along the neutral line
(Gruszecki and Nakariakov 2011). There the wave triggers another energy release by one
of the mechanisms described in Sect. 2.2. This energy release excites another slow wave,
causing the next cycle of this autowave mechanism. Along the field, the pulse propagates at
a speed close to the sound speed, while across the field its group speed is 10–20% which is
consistent with the observed speed of the brightening progression along the neutral line. In
addition, this mechanism explains readily the quasi-periodic nature of the energy releases.
The oscillation period would be determined by the acoustic travel time from the footpoints
to the arcade top, e.g. 30–80 s for typical solar flares. This value is consistent with the
quasi-periodic progression of hard X-ray sources along the neutral line, observed by Grigis
and Benz (2005). An important element of this mechanism is that, in contrast with the fast
magnetoacoustic waves propagating in a non-uniform plasma (see Sect. 2.6), slow waves
experience very weak dispersion, and hence the initial pulse does not evolve in a quasi-
periodic wave train.

This mechanism could be modified. For example, the excitation of the slow magnetoa-
coustic pulse could occur not near the energy release site, but at the chromosphere, by the
precipitating non-thermal particles accelerated by the energy release near the top of the ar-
cade. Some asymmetry of the footpoints with respect to the arcade top would cause some
difference in the acoustic travel time in the opposite magnetic legs. It would produce the
double-peak structure of the emission peaks in the flare light curve, which is a frequently
detected feature of QPPs.

3 Conclusions

There are quasi-periodic patterns in solar and stellar flaring energy releases. Often the EM
radiation generated in flares shows a pronounced oscillatory pattern, with characteristic pe-

5Note that this propagation along the ribbons is a different phenomenon to the gradual separation motion of
the flare ribbons, which is (also) typically of the order of tens of km/s.
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riods ranging from a fraction of a second to several minutes, or even longer in the case of
stellar superflares. These are referred to as quasi-periodic pulsations (QPPs) to emphasise
that they often contain apparent amplitude and period modulation. QPPs have been detected
in all EM bands (including radio, microwave, white-light, Hα, UV, EUV, soft X-ray, hard
X-ray and gamma-ray) and occur in all stages of the flare. QPPs are detected across multiple
instruments, so they are not an instrumental effect, and are observed in a significant fraction
of flares. This review paper is primarily a theoretical modelling review and details the pos-
sible physical mechanisms underpinning QPPs, with an emphasis on the physical processes
that generate the resultant range of periodicities.

We have reviewed eleven potential physical mechanisms underpinning QPP generation
(Sect. 2). These can be classed according to the nature of the underlying physical process:

– Oscillatory processes of the emitting plasma, including MHD oscillations (Sect. 2.1),
QPPs triggered periodically by external waves (Sect. 2.2), dispersive wave trains
(Sect. 2.6), the magnetic tuning fork (Sect. 2.7) and the equivalent LCR contour
(Sect. 2.10). Oscillations are (quasi-)periodic motions around an equilibrium, connected
with the competition between inertia and an effective restoring force. Properties of oscil-
lations (spectrum, amplitudes, phases, etc) are prescribed by the initial perturbation. The
advantage of the MHD oscillation explanation is the observation of multiple periodicities.

– Self-oscillatory processes, including the “load-unload” model and relaxation processes.
This includes periodic or repetitive spontaneous reconnection, including oscillatory re-
connection (Sect. 2.3), thermal overstabilities (Sect. 2.4) and wave-flow overstabilities
(Sect. 2.5), wave-driven reconnection in the Taylor problem (Sect. 2.8) as well as the
coalescence of two magnetic flux tubes (Sect. 2.9). Mathematically, self-oscillations are
associated with a limit cycle. Usually self-oscillations have properties that are indepen-
dent of the initial excitation and occur in essentially non-conservative systems. The self-
oscillation period may depend upon the amplitude. In flares, a steady inflow of magnetic
flux towards a reconnection site could result in repetitive magnetic reconnection (“mag-
netic dripping”) that should be considered a self-oscillatory process. The energy supply
for self-oscillations comes from an essentially non-periodic source. In the “load-unload”
model, QPPs are a side-effect of the transient energy release, connected with the relation-
ship of the energy load-and-then-unload balance. The advantage of the time-dependent
reconnection model is the natural explanation of the simultaneity of QPPs in different
bands (as they are produced by the same cause: the time-varying rate of the electron ac-
celeration).

– We also considered autowave processes in flares (Sect. 2.11). Properties of autowaves are
independent or weakly-dependent on the initial excitation, and so they are determined
only by the parameters of the system.

Terminology and definitions were given in Sect. 1.1.

3.1 Future Directions and Key Unanswered Questions

There remain key unanswered questions concerning QPPs, including:

– Is there any statistical relationship between QPP parameters (periods, decay times, rela-
tive and absolute amplitudes, modulations, etc) with the parameters of the host flare?

– The observed periods of QPPs coincide by the order of magnitude with the MHD oscil-
lations and waves detected abundantly in the solar corona (and well resolved in time and
space). These MHD oscillations and waves typically have a few percent relative ampli-
tude. In contrast, QPPs can reach a modulation depth of up to 100%. If QPP are caused
by MHD oscillations, how can the oscillatory signal be amplified?
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– Are QPPs detected in different phases of the flare fundamentally different? Are QPPs
detected in thermal and non-thermal emission different?

– Can we distinguish between different classes of QPPs (if indeed there are different
classes)?

– Are the QPPs detected in stellar superflares, that are much more powerful than the
strongest detected solar flares, produced by the same mechanisms as in solar flares?

The occurrence of QPPs puts additional constraints on the interpretation and understand-
ing of the fundamental processes operating in both solar and stellar flares, e.g. particle ac-
celeration and magnetic energy liberation. Simply put, there must be a physical reason for
the flaring emission being arranged in a sequence of quasi-periodic bursts. The importance
of a full understanding of QPPs is essential in order to work towards an integrated model of
solar and stellar flares, as well as unlocking a potential diagnostic of the flare process.

When reviewing the QPP physical mechanisms in this paper, we have emphasised (where
possible) the following details: (i) What range of periods can the mechanism generate?
(ii) What underlying physics determines these periodicities? (iii) How much can this mech-
anism be proven/identified in observations? All the QPP physical mechanisms detailed in
Sect. 2 require further study and refinement, e.g. parametric studies and forward modelling
of produced observables. There is currently no physical mechanism that can unambiguously
explain all QPPs, and conclusive proof will require identification of multiple characteris-
tics in a single observed event with a favourable magnetic configuration. In this context, the
main advantage of solar observations, the availability of spatial information about the plasma
and magnetic structures in the flaring region, and also of the sources of different emissions,
opens up very interesting perspectives and needs full exploitation. Another important feature
of QPP, the non-stationarity of the period and amplitude of the oscillatory patterns, in other
words, the “quasi”-ness, requires the development of new analytical techniques addressing
the intrinsically non-stationary nature of QPPs.
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Appendix A: Global Waves Generated by Flares: Shock Waves, Blast
Waves and ‘Flare Waves’

On the global scale, we can consider flares to be enormous impulsive energy releases in an
elastic and compressive medium surrounding the flaring site. Simply put, we expect MHD
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waves and shocks to propagate away from the flaring region. Vršnak and Cliver (2008)
provide an excellent review of the origin of large-scale coronal shock waves, and detail the
physical mechanisms capable of launching MHD shocks. Of relevance, Vršnak and Cliver
(2008) review the idea of a shock wave driven by a 3D piston effect, where the expanding
driver pushes the plasma in all directions (piston-shock). As a special case, when the driver is
of finite duration (temporary piston) this generates a freely-propagating simple-wave shock,
also known as a blast wave. Thus, a flare modelled as a (explosion-like) pressure pulse
would generate a blast wave or shocked simple-wave (i.e. the driver has an acceleration
phase, deceleration phase and then stops). Whereas a CME-driven shock is a piston-shock
in its early stages (and in later stages, a piston-shock in combination with a bow shock). The
physical difference is that the piston-driven shock wave is drawing additional energy from
the piston (source region) whereas in a blast wave the shock is freely propagating and there
is no additional energy input (see also Landau and Lifshitz 1959).

Global-scale propagating disturbances have been observed directly in the corona initially
with the SoHO/EIT instrument and became known as EIT waves. These are bright, wave-like
(pulse) features propagating globally across the solar disk through the corona (Moses et al.
1997; Thompson et al. 1998). After being observed by different instruments, EIT waves later
became known as large-scale Coronal Bright Fronts (CBFs, see reviews by Gallagher and
Long 2011; Warmuth 2015) and also as Global Coronal Waves (Hudson 1999; Chen 2016).

In addition to EIT waves, there are Moreton waves (Moreton 1960; Moreton and Ramsey
1960). These are propagating, bright fronts in Hα line center and blue wing (and dark fronts
in Hα red wing) and, given that the Hα spectral line is formed in the chromosphere, are
a chromospheric phenomenon. The study of EIT waves and their association, or not, with
chromospheric Moreton waves is a subject of active research (e.g. Long et al. 2011; Long
et al. 2013; Long et al. 2014) and readers are referred to a comparison of different EIT wave
models (Long et al. 2017). What seems to be clear is that Moreton waves are related to
CMEs (Chen et al. 2002; Chen 2016). But what about the link to flares, specifically? Since
Moreton waves were discovered before CMEs were discovered (Tousey 1973) solar flares
were initially thought to be the cause of Moreton waves (Ramsey and Smith 1966). Uchida
(1968) proposed that the pressure pulse in the solar flare generates a fast wave propagating
in the corona. As the wavefront sweeps through the chromosphere, it pushes chromospheric
material downward and this is how a Moreton wavefront is formed. Thus, Moreton waves
were thought to be blast waves (freely-propagating shock wave). Moreover, chromospheric
Moreton waves were given the specific terminology flare waves (e.g. Zirin and Werner 1967;
Warmuth et al. 2001; Warmuth et al. 2004a; Warmuth et al. 2004b). Note that under this
interpretation, the chromospheric Moreton wave is the footprint of the fast-mode EIT wave.
This coronal counterpart (i.e. the fast-mode EIT wave) then also took on the terminology
coronal flare wave and coronal Moreton wave (e.g. Thompson et al. 2000; Vršnak et al.
2002).

However, this interpretation has now been superseded by the link to CMEs, rather than
driven by flares. E.g. Chen et al. (2002) replace the blast wave (initiated by the solar-flare
pressure pulse) by a piston-driven shock wave from a CME (see Vršnak and Cliver 2008 and
§2.2 of Warmuth 2015 for further details). Furthermore, Chen (2006) selected 14 M-class
and X-class flares that were not associated with CMEs and found that none of the flares was
associated with any EIT waves. Chen et al. conclude that it is unlikely that pressure pulses
from flares generate EIT waves. Thus, even though the current evidence favours CMEs as
the origin of EIT waves rather than flares, there is still the possibility that some waves
are generated by flare-associated pressure pulses (e.g. Liu et al. 2012; Kumar and Innes
2013; and see §5.1 of Warmuth 2015). It is seen that there are many types of waves in the
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corona, some are driven by CMEs, and some are by flares. Even for CME-associated waves,
it seems that there are two distinct types of EUV coronal global waves, where the faster EUV
global waves are interpreted as nonlinear fast waves (driven by the impulsive expansion of
an erupting CME) and that there also exists a slower type of EUV wave (see reviews by
Warmuth 2015; Chen 2016; Long et al. 2017, and references therein).

Appendix B: Global, Flare-Generated Waves in the Solar Interior:
Sunquakes

Another global wave-like phenomenon associated with flares is that of sunquakes. Wolff
(1972) proposed that solar flares could excite free global oscillations inside the Sun similar
to earthquakes, i.e. that flares should deliver acoustic impulses to the solar interior (Hud-
son 2011). These seismic transients were modelled by Kosovichev and Zharkova (1995)
and then were first discovered by Kosovichev and Zharkova (1998). Sunquakes are seis-
mic (acoustic) waves generated by flares and manifest themselves at the photospheric solar
surface, as a quasi-circular pattern of ripples moving away from the flare epicentre. Donea
(2011) reports that the manifestation of this acoustic energy is seen 20–50 Mm from the
source when it refracts back to the solar surface within about an hour after the commence-
ment of the flare. This refraction is a result of the increasing sound speed with increasing
depth in the solar interior. Thus, flare-driven sunquakes open the prospect of using seismol-
ogy (helioseismic analysis) to study the solar interior structure (Lindsey and Donea 2008)
as well as informing the general topic of MHD wave behaviour in inhomogeneous media.
See Kosovichev (2011) for a comprehensive review of the basic principles of global and lo-
cal helioseismology and see Kosovichev (2006) for a review of the properties of sunquakes.
For examples of sunquakes see, e.g., Martínez-Oliveros et al. (2008) and examples by Judge
et al. (2014), Matthews et al. (2015), and Buitrago-Casas et al. (2015).

Kosovichev (2014b) reports that the excitation impact strongly correlates with the im-
pulsive flare phase and is caused by the energy/momentum transported from the energy-
release site(s) but that the physical mechanism is currently uncertain. These seismic tran-
sients have been explained via a ‘thick-target’ hydrodynamic model (see e.g. Kostiuk and
Pikelner 1975; Livshits et al. 1981; Fisher et al. 1985). Here, a beam of high-energy par-
ticles is accelerated in the corona, heats the chromosphere, which results in a compression
of the lower chromosphere. This compression produces chromospheric evaporation and a
downward-propagating shock wave (velocity impulse) which impacts the photosphere (i.e.
a hydrodynamic impact) causing the seismic response (Kosovichev and Zharkova 1998;
Kosovichev 2014b; Zharkova and Zharkov 2015).

Donea (2011) details several alternative generation mechanisms for sunquakes that have
been proposed, including a generation mechanism based on the direct interaction of high-
energy particles (electrons or protons) with the photosphere (Donea and Lindsey 2005;
Zharkova and Zharkov 2007); pressure transients related to photospheric backwarming by
enhanced chromospheric radiation (Lindsey and Braun 2000; Donea and Lindsey 2005);
flare acoustic emission due to impulsive heating of the low photosphere and radiative back-
warming (Donea et al. 2006); and a magnetic jerk that manifests as a seismic response
occurring during the re-organisation of the magnetic topology, specifically a change in field
line inclination at the footpoints (Hudson et al. 2008, and see recent extension by Russell
et al. 2016).

Donea (2011) reports that (with current instruments) sunquakes are a rare phenomenon
and most flares do not generate detectable seismic emission in the p-mode spectrum. How-
ever, Kosovichev (2014b) speculates that perhaps all flares generate some seismic response,
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but if the amplitude is not high enough the signal may be lost in the background noise.
‘Starquakes’ resulting from stellar flares have also been detected on other stars (Kosovichev
2014a), while other studies are less optimistic (e.g. Balona et al. 2015). If detected confi-
dently, starquakes could provide new asteroseismic information and impose rigorous con-
straints on stellar flare mechanisms.
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A. Warmuth, B. Vršnak, J. Magdalenić, A. Hanslmeier, W. Otruba, A multiwavelength study of solar flare
waves. I. Observations and basic properties. Astron. Astrophys. 418, 1101–1115 (2004a). https://doi.org/
10.1051/0004-6361:20034332
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