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A B S T R A C T 

The highly filamented nature of the coronal plasma significantly influences dynamic processes in the corona such as 
magnetohydrodynamic waves and oscillations. Fast magnetoacoustic waves, guided by coronal plasma non-uniformities, exhibit 
strong geometric dispersion, forming quasi-periodic fast-propagating (QFP) wave trains. QFP wave trains are observed in 

extreme-ultraviolet imaging data and indirectly in microwaves and low-frequency radio, aiding in understanding the magnetic 
connectivity , energy , and mass transport in the corona. Ho we ver, measuring the field-aligned group speed of QFP wave trains, 
as a key parameter for seismological analysis, is challenging due to strong dispersion and associated rapid evolution of the wave 
train envelope. We demonstrate that the group speed of QFP wave trains formed in plane low- β coronal plasma non-uniformities 
can be assessed through the propagation of the wave train’s ef fecti ve centre of mass, referred to as the wave train’s centroid 

speed. This centroid speed, as a potential observable, is shown empirically to correspond to the group speed of the most energetic 
Fourier harmonic in the wave train. The centroid speed is found to be almost insensitive to the waveguide density contrast with 

the ambient corona, and to vary with the steepness of the transverse density profile. The discrepancy between the centroid speed 

as the group speed measure and the phase speed at the corresponding wavelength is shown to reach 70 per cent, which is crucial 
for the energy flux estimation and interpretation of observations. 

Key words: MHD – waves – Sun: corona – Sun: oscillations. 
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 I N T RO D U C T I O N  

he elastic and compressible plasma of the corona of the Sun is
nown to support the propagation of various types of magneto- 
ydrodynamic (MHD) waves (e.g. Nakariakov & Kolotkov 2020 ). 
oronal MHD waves are a subject to intensive ongoing studies in 

he context of the coronal heating problem (e.g. Van Doorsselaere 
t al. 2020 ), and also as natural plasma diagnostic tools (e.g. De
oortel 2005 ). Properties of the waves are highly affected by 

erpendicular non-uniformity of equilibrium plasma parameters, 
uch as the density and temperature (e.g. Edwin & Roberts 1982 ,
983 ). Thus, the field-aligned filamentation of the solar corona in a
orm of various plasma loops, plumes, etc., plays a decisive role in the

HD wave processes in that plasma environment (e.g. Nakariakov 
t al. 2016 ). In particular, coronal plasma non-uniformities act as fast
agnetoacoustic wav e guides (e.g. Edwin & Roberts 1988 ). The fast
aves which, in a uniform medium, are perpendicular or oblique, 
ecome parallel to the magnetic field because of the reflection or
efraction on the non-uniformity of the fast speed. 

Guided fast waves are well resolved in the corona in a form of
uasi-periodic fast-propagating (QFP) disturbances of the extreme- 
 E-mail: D.Kolotk ov.1@w arwick.ac.uk (DYK); 
.Nakariak ov@w arwick.ac.uk (VMN) 
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ltraviolet (EUV) emission intensity (e.g. Liu et al. 2011 , 2012 ;
hen & Liu 2012 ; Shen et al. 2013 , 2019 , 2020 ; Qu, Jiang & Chen
017 ; Miao et al. 2019 , 2020 ). Typically, QFP waves resemble a
rain of ‘ripples’, emanating from an epicentre in an active region.
he waves travel along coronal loops or fan structures, extended in

he apparent direction of the magnetic field. Often, the perpendicular 
ize of the observ ed wav e front increases with the distance from
he driver, with the typical expansion angle of about a few tens
f degrees (e.g. Shen et al. 2022 ). Typical relative amplitudes of the
UV intensity perturbations are 1–8 per cent. Typical projected phase 
peeds are higher than several hundred km s −1 . The latter property
learly distinguishes the QFP waves from another propagating wave 
henomenon observed in the solar corona, the slow magnetoacoustic 
aves which propagate at the speed lower than a few hundred km s −1 

e.g. De Moortel 2006 ; Banerjee et al. 2021 ). In some cases, QFP
aves and slow waves are detected to propagate simultaneously 

long the same coronal plasma structure (e.g. Zhang et al. 2015 ).
he oscillation periods range from several tens to several hundred 
econds. A QFP with a much shorter oscillation period, of about 6 s,
nd the phase speed of about 2100 km s −1 , travelling along an active
egion coronal loop, was observed by Williams et al. ( 2002 ) in the
hite light intensity during a solar eclipse. Usually, QFP waves show

e veral consecuti vely propagating wave fronts, and last for a few
scillation cycles only, which is another difference with slow waves 
hich typically last for several tens of cycles at least. Ho we ver, in
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ome cases, a QFP wave train has more than ten wave fronts (Nistic ̀o,
ascoe & Nakariakov 2014 ). In addition, there is another kind of
FP waves detected in EUV, which are seen to propagate apparently

cross the local magnetic field (Shen et al. 2022 ). These so-called
road QFP waves have a relative amplitude of up to 30 per cent, and
 larger angular extent of about 90 ◦–360 ◦. 

Sometimes, quasi-periodic pulsations (QPP) often observed in
ight curves of solar flares detected in v arious observ ational bands
see Zimo v ets et al. 2021 , for a recent comprehensi ve re vie w),
ave time signatures typical for QFP wav es. F or e xample, K u-
ar, Nakariakov & Cho ( 2017 ) observed a QPP pattern with

scillation periods about 100 s in the microwave, decimetric, and
oft X-ray emissions. Almost simultaneously, a QFP wave with
he instantaneous period decreasing from 240 to 120 s, and the
hase speed about 1000 km s −1 appeared in the EUV. This finding
upports the association of QPP with QFP waves in cases when
he latter is not detected (e.g. M ́esz ́arosov ́a et al. 2009 ; M ́esz ́arosov ́a,
arlick ́y & Ryb ́ak 2011 ; Kolotk ov, Nakariak ov & Kontar 2018 ; Yu &
hen 2019 ). 
QFP waves could be driven by either periodic or impulsive energy

eleases, see Ofman et al. ( 2011 ), Ofman & Liu ( 2018 ) and, for
 xample, Nakariako v et al. ( 2004 ), Yuan et al. ( 2013 ), and Nistic ̀o,
ascoe & Nakariakov ( 2014 ), respectively. Theoretical modelling of

he latter mechanism demonstrated the formation of a quasi-periodic
ave train from an impulsive initial perturbation (e.g. Murawski &
oberts 1993a , b , c ; Nakariakov, Pascoe & Arber 2005 ; Nistic ̀o,
 ascoe & Nakariako v 2014 ). This effect is an intrinsic feature of

he guided fast magnetoacoustic wave propagation, caused by the
ave dispersion, i.e. the dependence of the phase and group speeds
n the oscillation period or the wavelength along the wav e guide
e.g. Roberts, Edwin & Benz 1984 ; Oliver, Ruderman & Terradas
014 ; Li et al. 2020 ). The wave dispersion is caused by the presence
f the characteristic spatial scale in the system, the perpendicular
idth of the wav e guide. This dispersion mechanism appears in

deal MHD, and is not caused by the Hall effect or electron inertia.
ypically, f ast w a ve trains ha v e an asymmetric env elope, and show

he variation of the instantaneous oscillation period. Both effects
ease with narrowing the initial spectrum of the driver (Nakariakov,
ascoe & Arber 2005 ). 
Characteristic signatures of the dispersively formed f ast w ave train

re determined by the perpendicular profile of the fast speed (e.g.
akariakov & Roberts 1995 ; Yu et al. 2017 ; Li et al. 2018 ). For

moother profiles, the wavelet power spectrum of the f ast w ave train
as a characteristic ‘tadpole’ shape in both slab and cylindrical
eometries, see e.g. (Nakariakov et al. 2004 ; Guo et al. 2022 )
nd (Shesto v, Nakariako v & K uzin 2015 ), respectiv ely, and in a
lab with a current sheet (Jel ́ınek & Karlick ́y 2012 ; M ́esz ́arosov ́a
t al. 2014 ). This feature is consistent with those detected in some
bservations (e.g. Nakariakov et al. 2004 ; K umar, Nakariako v &
ho 2017 ). For steeper profiles, the wavelet spectrum has a char-
cteristic ‘boomerang’ shape (Kolotkov et al. 2021 ), which has
lso been observationally detected (e.g. M ́esz ́arosov ́a, Karlick ́y &
yb ́ak 2011 ). Essentially, the wavelet signature is determined by

he dependence of the group speed of the guided fast wave upon
he parallel wavenumber (Nakariakov et al. 2004 ). This effect takes
lace in 2D non-uniformities too, e.g. in magnetic funnels (Pascoe,
akariako v & K upriyano va 2013 ). F ast wav e trains driv en by a quasi-
eriodic driver modelled by e.g. Ofman et al. ( 2011 ) and Liu et al.
 2012 ) are also consistent with the observed behaviour of QFP waves.
 periodically driven wave train does not demonstrate a significant

volution. It is consistent with the dispersive evolution model, as in a
NRAS 527, 6807–6813 (2024) 
arrow-band signal, group speeds of spectral harmonics do not differ
uch from each other. 
The projected phase speed of QFP waves could be readily

stimated by measuring the angle of the diagonal ridges in the time–
istance map constructed along the wave path in observational data.
o we ver, coronal seismology by QFP waves, such as estimating

he parameters of the perpendicular non-uniformity of the plasma
hich is crucial for revealing the nature of coronal loops and the
eating mechanism, also requires the estimation of the group speed.
urthermore, the energy flux in the waves is determined by the group
peed (e.g. Laing & Edwin 1995 ), which is crucial for assessing the
ole of QFP waves in coronal heating (Van Doorsselaere et al. 2020 ).
ts estimation by the phase speed (as in, e.g. Ofman & Liu 2018 )
elies on the assumption that those speeds have close values. But,
revious theoretical modelling demonstrated that group and phase
peeds of guided fast waves can significantly differ from each other
e.g. Nakariakov & Roberts 1995 ; Yu et al. 2017 ; Li et al. 2018 ).
n particular, the difference between the phase and group speeds
ffects the energy flux estimation, as it depends on the value of the
peed to the power of three (see e.g. equation 1 of Ofman & Liu
018 ). Thus, there is a need for a practical recipe for estimating the
roup speed in imaging data. This procedure is not trivial, as the
extbook definition of the group speed as the speed of an envelope
f a wave packet is based on the assumption that the wave spectrum
s narro w. Ho we ver, f ast magnetoacoustic w aves with the parallel
avelengths comparable to the perpendicular width of the wav e guide
 xperience high dispersion. Impulsiv ely e xcited, i.e. broad-band fast
a ve trains ha ve spectral components with group speeds different by
 factor of more than two from each other. This means that the wave
rain env elope e xperiences rapid evolution and is not symmetric. In
articular, the maximum of the perturbation propagates at a speed
ifferent from the centre of the wave train and of its leading and
railing edges. 

The aim of this paper is to develop a technique for estimating the
roup speed of guided fast wave trains in plasma non-uniformities
f the solar corona, and to assess its difference with the phase speed
hat one should expect in the data analysis. In the study, we adapt the
oncept of a ‘centro v elocity’ related to the centroid of the pulse in the
ime and spatial domains and used in, for example, Geophysics for
haracterizing the wave energy transport in dissipative and dispersive
edia (e.g. Carcione, Gei & Treitel 2010 ). In Section 2 , we describe

he theoretical model and introduce the concept of a centroid velocity
f QFP wave trains in the solar corona. In Section 3 , we demonstrate
he link between the wave train’s centroid speed and the group speed
f the most energetic parallel spatial harmonic. Section 4 provides a
rief summary of the obtained results, discussion, and conclusions. 

 T H E  CONCEPT  O F  T H E  CENTRO I D  SPEED  

F  G U I D E D  FA ST  WAV E  T R A I N S  

n the magnetically dominated coronal plasma, i.e. with the plasma
arameter β → 0, the dynamics of linear fast magnetoacoustic waves
uided by a plasma slab stretched along an equilibrium magnetic
eld, which represents a coronal plasma non-uniformity, is described
y the 2D wave equation, 

∂ 2 v x 

∂t 2 
− C 

2 
A ( x ) 

[
∂ 2 v x 

∂x 2 
+ 

∂ 2 v x 

∂z 2 

]
= 0 , (1) 

here v x stands for the perturbation of the perpendicular plasma
elocity, the z-axis coincides with the direction of the guiding
agnetic field B 0 , and the x -axis represents the direction of the cross-
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Figure 1. Perturbation of the perpendicular plasma velocity v x at time t = 

25 w/ C A0 in an impulsively excited and dispersively evolving fast magnetoa- 
coustic wave train (also referred to as QFP wave in observations), guided by a 
field-aligned plasma slab with smooth (a) and steep (b) perpendicular profiles 
of the plasma density, according to equation ( 1 ). The horizontal dashed lines 
correspond to x = ±x max , the value of x at which | v x | is maximum for all 
values of z; | x max | = 1 . 02 w, 0 . 79 w in panels (a) and (b), respectively. z cent 

denotes the position of the centroid, approximately equal to 104 w and 100 w 

in panels (a) and (b), respectively. The parameter w denotes the half-width of 
the slab, and C A0 is the Alfv ́en speed at the axis of the slab. 
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eld plasma density enhancement, ρ0 ( x ). The total pressure balance 
equires the equilibrium magnetic field to be constant. Hence, the 
nhancement of the equilibrium plasma density at a certain location 
cross the field results in the local depletion of the Alfv ́en speed,
 A ( x) = B 0 / 

√ 

μ0 ρ0 ( x) . Thus, a field-aligned enhancement of the
ero- β plasma density is a cavity or a wav e guide for fast magne-
oacoustic waves (e.g. Nakariakov et al. 2016 ). We approximate the 
quilibrium perpendicular density profile ρ0 ( x ) by the generalized 
ymmetric Epstein function (Nakariakov & Roberts 1995 ), 

0 ( x) = ( ρin − ρext ) sech 2 
[ ( x 

w 

)p ] 
+ ρext , (2) 

here w is the characteristic half-width of the slab, ρ in and ρext are 
he values of the plasma density at x = 0 and x → ∞ (corresponding
o the Alfv ́en speeds C A0 and C A ∞ 

, respectively). The parameter p
ontrols the steepness of the perpendicular density profile. In the 
imit p � 1, the profile becomes a step function. The eigenvalue 
roblem for the profile given by equation ( 2 ), describing dispersion
elations and the perpendicular structure of guided fast magnetoa- 
oustic wav es, has e xact analytical solutions for p → ∞ (Edwin &
oberts 1982 ) and p = 1 (Nakariakov & Roberts 1995 ; Cooper,
akariakov & Williams 2003 ). As the profile of ρ0 ( x ) is symmetric, it

s convenient to distinguish between kink and sausage perturbations, 
ith d v x ( x = 0) / d x = 0 and v x ( x = 0) = 0, respectively. 
The model with the generalized Epstein profile, i.e. with an 

rbitrary value of p , has been proposed by Nakariakov & Roberts
 1995 ), and used in a number of studies. Ho we ver, in contrast to,
or e xample, Hornse y, Nakariako v & Fludra ( 2014 ), Kolotkov et al.
 2021 ), we do not make the Fourier transform along the slab axis
n equation ( 1 ). An initial value problem constituted by the 2D
ave equation is solved numerically with the procedure ND-Solve 

n the Wolfram Mathematica 12 environment, keeping the functional 
ependence on all three variables t , x , and z. The described approach,
n one hand, allows us to study the evolution of the entire broad-
and perturbation in time and space (not just the evolution of a single
ourier harmonic along the slab axis) with the subsequent fast wave 

rain formation, and, on the other hand, is more computationally 
f fecti ve than modelling fast wave trains in terms of full MHD. 

Snapshots of a fully developed fast wave train of the sausage 
ymmetry, excited by an impulsive driver 

 x ( x, z, t = 0) = A 0 x exp 

[ 

−
(

x 

d x 

)2 
] 

exp 

[ 

−
(

z − z 0 

d z 

)2 
] 

, (3) 

re shown in Fig. 1 for a smooth ( p = 1) and steep ( p = 5) density
rofiles, and the density ratio ρ in / ρext = 10. In equation ( 3 ), A 0 is the
rbitrary amplitude, the parameters d x = w and d z = 

√ 

2 w determine
he width of the initial pulse in the x and z directions, respectively.
he initial pulse is centred at the axis of the slab ( x = 0) and shifted
y z 0 = 75 w along the slab axis from the origin. The computational
omain extends from −50 w to 50 w in x and from 0 to 150 w in z. 
Due to the broad-band nature of the dri ver gi ven by equation ( 3 ),
ultiple Fourier harmonics along the slab axis are excited within 
 broad range of parallel wavenumbers k z . Eventually, parallel 
armonics with k z shorter than a certain cut-of f v alue prescribed
y the parameters of the perpendicular density profile leak out of the
lab. The cut-off wavenumbers are 

 

smooth 
c = 

1 

w 

√ 

2 C 

2 
A0 

C 

2 
A ∞ 

− C 

2 
A0 

, (4) 

 

steep 
c = 

π

2 w 

√ 

C 

2 
A0 

C 

2 
A ∞ 

− C 

2 
A0 

, (5) 
or the Epstein and steep profiles, respectively (Roberts, Edwin & 

enz 1984 ; Nakariakov & Roberts 1995 ). The remaining harmonics,
ith k z ≥ k c , get trapped inside the wav e guide, propagate along it

t different group speeds due to dispersion, and collectively form a
uasi-periodic f ast w ave train guided along the slab. Thus, as such
 wave train comprises a broad, continuous range of wavenumbers 
nd corresponding group speeds, a meaningful detection of its speed 
f propagation in observations remains a challenge. On the other 
and, we can see in Fig. 1 that, for e xample, wav e trains in plasma
labs with smoother density profiles appear globally to propagate 
aster. Thus, for practical purposes, it is useful to characterize the
peed of propagation of such quasi-periodic dispersively evolving 
 ast w ave trains from such a global point of view, with the focus
ut on the dynamics of the entire ensemble rather than the dynamics
f individual Fourier components constituting it. As such a global 
easure of the f ast w ave train dynamics, we suggest to use the

osition of its centroid determined as the ef fecti ve ‘centre of mass’
f the wave train. 
Due to the symmetry of the problem with respect to the axis of the

lab, the centroid position in the x -direction remains fixed to the axis
f the slab, i.e. at x = 0. Thus, only the wave train’s centroid position
long the z -axis, z cent varies with time as the wave train propagates.
ence, we consider the centroid speed v cent = d z cent / d t . Therefore,
nding v cent as a characteristic measure of the wave train propagation
long the slab axis reduces to the one-dimensional problem of finding
 cent ( t ). For this, we fix x to x max at which the wave train has the highest
mplitude for all z (see Fig. 1 ) and consider v 2 x ( x = x max , z, t) which
s an equi v alent of the instantaneous kinetic energy density. The
MNRAS 527, 6807–6813 (2024) 
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M

Figure 2. Calculation of the wave train’s centroid position and speed. Panels (a) and (b) show v 2 x ( x = x max , z, t) at times t = 15 w/ C A0 and t = 25 w/ C A0 . The 
dots in panels (a) and (b) designate the centroid, with position z cent (see Section 2 , for details). Panel (c) is the time–distance plot for the centroid, the curve is 
approximated by a linear function in the region delimited by the vertical bars, with the gradient v cent ≈ 1.2 C A0 being the centroid speed. 
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erturbation of the plasma mass density in the wave train ρ( x = x max ,
, t ) can also be used for this analysis, using its linear relationship with
 x ( x , z, t ) given by equation (7) in Cooper, Nakariakov & Williams
 2003 ), and also Kaltman & K upriyano va ( 2023 ). Thus, for each
nstant of time, we obtain z cent as the weighted centre of the region
ounded by the curve v 2 x ( z) and the z-axis, as illustrated in the left
olumn of Fig. 2 . The functions Polygon and Region-Centroid in
athematica 12 are used for this. 1 

The right panel of Fig. 2 shows the variation of the wave train’s
entroid position z cent in a wav e guide with a smooth density profile
ith time. The fluctuations seen at t � 5 w/ C A0 are attributed to a

ombined effect of the initial wave train dispersive formation and
eakage of longer wavelength harmonics. In general, the time-scale
f such a wave train development could represent another new and
otentially interesting observable, but its further discussion is out
f the scope of this work. Thus, for estimating v cent as the gradient
f z cent in time, we use the later interval of the obtained z cent ( t )
ependence. In the example illustrated by Fig. 2 for a slab with a
mooth density profile (the parameter p = 1 in equation 2 ) and density
atio ρ in / ρext = 10, the value of v cent is found to be about 1 . 2 C A0 .
or a slab with a steep density profile ( p � 1) and the same density
atio ρ in / ρext = 10, the application of the same approach results in
 cent ≈ 1 . 0 C A0 . 

 T H E  C ENTRO ID  A N D  G RO U P  SPEED  O F  

A ST  WAV E  T R A I N S  

n this section, we investigate the physical meaning of the revealed
entroid speed v cent through its relationship with the group speed v g 
f individual Fourier harmonics constituting the wave train. 
In order to investigate the behaviour of different Fourier harmonics

n the wave train over time, we make the Fourier transform of v x ( x =
 max , z, t ) with respect to z (see Fig. 3 , left panel). For t = 0, the Fourier
NRAS 527, 6807–6813 (2024) 

 For each z i corresponding to the elementary area a i under the sig- 
al of interest, the centroid position z cent is calculated as z cent = 

 i a i z i / � i a i . For more details, see https:// reference.wolfram.com/ language/ 
ef/RegionCentroid.html . 

o  

ρ  

m  

a  

p  

o  
ower spectrum is of a Gaussian shape which is consistent with the
orm of the initial broad-band perturbation given by equation ( 3 ).
or later times, the Fourier power density in the longer wavelength
art of the spectrum (for k z < k c ) decreases to almost zero due to
he leakage of those harmonics into the external medium. Among
he remaining Fourier harmonics with k z ≥ k c , we consider the most
owerful one and refer to its wavenumber as k max . In the initial phase
f the wave train development, the value of k max varies (see Fig. 3 ,
ight panel). Ho we ver , after some transition period, k max con verges
o a constant value which is found to be about 0.8/ w and 0.7/ w for
he wav e guides with the Epstein and step-function density profile,
espectively. 

We now determine the group speed v g = d ω/ d k z of the most
owerful Fourier harmonic with the parallel wavenumber k z = k max 

n a fully developed wave train by solving the dispersion relation for
 smooth density profile with p = 1, i.e. the Epstein profile, 

| k z | w 

C 

2 
A0 

(
V 

2 
p − C 

2 
A0 

)
= 

3 

C A ∞ 

√ 

C 

2 
A ∞ 

− V 

2 
p + 

2 

| k z | w 

, (6) 

here V p = ω/ k z is the phase speed (Cooper, Nakariakov & Williams
003 ). Likewise, we determine the group speed of f ast w aves guided
y a slab with a steep density profile, corresponding to p → ∞ , 

tan ( wq) = − q 

m 

, (7) 

here 

 

2 = 

(
ω 

C A0 

)2 

− k 2 z and m 

2 = k 2 z −
(

ω 

C A ∞ 

)2 

Edwin & Roberts 1982 ). It is interesting that in the Epstein slab
ase the dispersion relation can be solved analytically, as a solution
f a bi-quadratic equation, while in the step function case the roots
f the dispersion relation should be determined numerically. The
btained dispersion curves are shown in Fig. 4 for the density contrast
in / ρext = 10. As one can see, the resulting group speeds v max 

g of the
ost powerful Fourier harmonics with k z = k max are found to be

bout 1 . 2 C A0 and 1 . 0 C A0 for the Epstein and step-function density
rofiles, respectively, which approximately coincide with the values
f the centroid speed v cent detected in Section 2 . In other words, the

https://reference.wolfram.com/language/ref/RegionCentroid.html
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Figure 3. Determining the wavenumber k max of the most powerful parallel spatial harmonic present in the wave train. Left: normalized power spectral density 
of the wave train for the Epstein transverse density profile at three instances of time; k smooth 

c ≈ 0 . 5 /w denotes the cut-off wavenumber given by equations ( 4 ) and 
( 5 ), and k max ≈ 0.8/ w is the wavenumber of the most powerful harmonic at t → ∞ . Right: evolution of k max with time for the Epstein ( p = 1) and step-function 
( p = 5) density profiles. The values k smooth 

max ≈ 0 . 8 /w and k steep 
max ≈ 0 . 7 /w correspond to the value of k max at t → ∞ for the Epstein and steep density profiles, 

respectively. 

Figure 4. Left: Finding the group speeds v g,smooth 
max and v g,steep 

max of the most powerful harmonic in a fast magnetoacoustic wave train in plasma slabs with 
the Epstein (smooth) and step-function (steep) density profiles. The left panel shows the dependences of the group speed v g on the parallel wavenumber k z , 

obtained with equations ( 6 ) and ( 7 ). The values k smooth 
max = 0 . 8 /w and k steep 

max = 0 . 7 /w, obtained in Fig. 3 , correspond to the group speeds v g,smooth 
max ≈ 1 . 2 C A0 and 

v 
g,steep 
max ≈ C A0 , respectively. Right: Dependence of the group speed to phase speed ratio v g / v p , e v aluated at k max , upon the wav e guide’s density contrast, for the 

Epstein and step-function density profiles. 
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entroid speed v cent of fast magnetoacoustic wave trains, revealed in 
his work as a potentially observable parameter, could be interpreted 
s the group speed of the most powerful Fourier harmonic in the
ave train propagating along the wav e guide. In addition, we use

quations ( 6 ) and ( 7 ) to illustrate the ratio between the guided fast
ave group speed and phase speed, both taken at the wavenumber 
 z = k max as most pronounced in observations (Fig. 4 , right panel).
s one can see, the ratio V g / V p decreases with the density contrast

nd steepness of the wav e guide. F or e xample, for the wav e guide with
 steep density profile and density contrast ρ in / ρext = 20, it drops
elow 0.3. 
We now investigate whether the relationship between the wave 

rain’s centroid speed v cent and the group speed of the wave train’s
ost powerful harmonic v max 

g , revealed empirically for the density 
ontrast ρ in / ρext = 10, persists for other density contrasts. For this, we
erform the analysis described in Sections 2 and 3 for a broad range
f ρ in / ρext , from 5 to 25, typical for the Sun’s corona. As shown by
ig. 5 , for all density contrasts considered, the wave train’s centroid
peed v cent appears to be about the group speed of the most energetic
ourier harmonic in the wave train, v max 

g . Indeed, the obtained values
f v cent and v max 

g , according to Fig. 5 , exhibit minor fluctuations in
he vicinity of 1 . 2 C A0 (for the Epstein profile) and C A0 (for the step-
unction profile), and differ from each other by less than 3.5 per cent
hich is intrinsically below the expected observational uncertainties 
f the instrumental or noisy origin. The revealed tendency holds 
rue for the wav e guides with smooth and steep perpendicular density
rofiles. 

 DI SCUSSI ON  A N D  C O N C L U S I O N S  

e studied the group speed of broad-band fast magnetoacoustic 
ave trains guided by coronal plasma non-uniformities of plane 
eometry in the low- β regime, seen as the phenomenon of QFP waves
n multiband observations. As such impulsively excited QFP wave 
MNRAS 527, 6807–6813 (2024) 
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M

Figure 5. Comparison of the group speed v 
g 
max of the most powerful 

harmonic (solid line) and the corresponding centroid speed v cent (dots) 
for varying density ratios, shown for the Epstein and step-function density 
profiles. The average centroid speeds are given by v avg 

cent ≈ 1 . 2 C A0 and 
v 

avg 
cent ≈ C A0 for smooth and steep density profiles, respectively. 
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rains are subject to strong dispersion caused by the wav e guiding
ffect, the main aim of this work was to identify a potential observable
hich can be used as a characteristic measure of the wave train’s
roup speed. The main findings of this study can be summarized as
ollows: 

(i) Despite each individual Fourier harmonic constituting the wave
rain propagates at its own speed due to the effect of dispersion, the
ave train in the wav e guide with a smooth density profile is found to
ropagate globally faster than the wave train in the wav e guide with
 steep density profile. 

(ii) As such a global characteristic of the wave train’s dispersive
ynamics in the wav e guide, we identified the position of its ef fecti ve
entre of mass and referred to its speed of propagation along the
av e guide axis as the wave train’s centroid speed. This centroid

peed of a fully developed wave train is found to be about the
nternal Alfv ́en speed, C A0 for wav e guides with steep (step-function)
ensity profiles. In consistence with the abo v e finding based on
he visual inspection, the wave train’s centroid speed for a smooth
Epstein-function) density profile is found to be about 20 per cent
igher, i.e. about 1 . 2 C A0 . Interestingly, the wave train’s centroid
osition varies non-monotonically with quasi-periodic fluctuations
t the very beginning of the wave train’s evolution, when it is subject
o a combined effect of dispersion and leakage of longer wavelength
armonics. The time-scale of this settlement process may represent
nother potentially interesting observable which would require a
edicated follow-up study. 
(iii) The revealed centroid speed of such dispersively evolving

FP wave trains is shown to coincide approximately with the group
peed of the most energetic Fourier harmonic in the wave train
or both smooth and steep transverse density profiles. This result
as important implications for a more meaningful estimation of
he energy flux carried by the wave train. Indeed, in contrast to
revious works which are based on the assumption that the observed
ransverse propagating waves in coronal plasma structures are just
eakly dispersive and hence the group speed can be approximated
y the observed phase speed (e.g. Van Doorsselaere et al. 2014 ;
fman & Liu 2018 ), observations of the centroid speed would allow

or obtaining a lower bound estimate of the actual energy flux. Our
tudy shows that the group to phase speed ratio of the most energetic
ourier harmonic in the wave train (expected to be most pronounced
NRAS 527, 6807–6813 (2024) 
n observations) can readily be lower than 0.3. The latter would result
n more than an order of magnitude discrepancy if one uses the phase
peed instead of the group speed in the energy flux estimation. 

(iv) The group speed of the most energetic Fourier harmonic in
he wave train (characterized by the wave train’s centroid speed)
hows almost no dependence on the density contrast inside and
utside the wav e guide, which allows for reducing the number of free
arameters in seismological analysis (cf. Yu et al. 2016 ; Kolotkov
t al. 2021 , who proposed the use of the minimum in the group
peed dip which is sensitive to both the density profile steepness and
ontrast). In other words, observations of the wave train’s centroid
peed may help us with assessing the local internal Alfv ́en speed,
 A0 within 20 per cent uncertainty (as it is found to vary from C A0 to
 . 2 C A0 , according to our analysis). Or, if C A0 can be obtained from
ndependent observations, its comparison with the centroid speed
an be used for discriminating between steep and smooth transverse
ensity profiles of the wave-hosting plasma structure. 

The performed analysis is based on a plasma slab model, i.e.
lane geometry, which is typical, for example, for streamers and/or
urrent sheets. Thus, in addition to the application of the revealed
entroid speed to observations, the next natural step would be to
eneralize this study for cylindrical geometry to account for broader
ange of coronal plasma structures. Ho we ver, as properties of coronal
FP wave trains in plane and cylindrical geometries were previously

hown to be qualitatively similar (e.g. Li et al. 2018 ), we expect only
inor quantitative differences. 
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