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Introduction
Chained exponential integrals involving square matrices occur particularly often in magnetic 
resonance. A general form of a chained exponential integral is:

where Ak and Bk are square matrices. Their common feature is the complexity of evaluation: 
expensive matrix factorisations are usually required. This makes the application of the associ-
ated theories difficult when matrix dimension exceeds 103, i.e. for ten spins or more.
Consider the example of spin relaxation theory. The techniques currently used for the evalua-
tion of Redfield's integral, which involves a static Hamiltonian H, a rotational correlation 
function G(τ) and an irreducible spherical component Q of the stochastic Hamiltonian, either 
involve the diagonalisation of H followed by the evaluation of a large number of Fourier 
transforms:

or a matrix-valued numerical quadrature with a large number of time steps. The latter method 
scales better because matrix sparsity is preserved at every stage and diagonalisation is 
avoided, but the evaluation is still difficult. Such situations are ubiquitous in magnetic reso-
nance and these chained exponential integrals are the bottleneck in many important cases.
This work we proposes a solution to this problem, based on the observation that matrix expo-
nentiation, does not require factorisations and preserves spin operator sparsity [1,2] and on the 
auxiliary matrix technique [3,4,5] for the evaluation of the chained exponential integrals.
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Exponentiation of Auxiliary Matrices
A method for computing some of the integrals of the general type shown above was proposed 
by Van Loan in 1978 [3]. He noted that the integrals in question are solutions to linear block 
matrix differential equations and suggested that block matrix exponentials are used to com-
pute them. In the simplest case of a single integral:

This was later refined [5] using the block-bidiagonal auxiliary matrix:

Spin Hamiltonians are guaranteed to be sparse in the Pauli basis [6] and their exponential 
propagators are also sparse when ||HΔt|| < 1, if care is taken to eliminate insignificant ele-
ments after each matrix multiplication in the scaled and squared Taylor series procedure [2]:

Out of the multitude of "dubious ways" [7] of computing matrix exponentials, the Taylor 
series method with scaling and squaring is recommended here because it is compatible with 
dissipative dynamics, only involves matrix multiplications, uses minimal memory resources,  
and only requires approximate scaling.
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Spin Relaxation Theories
Exponential integrals appear in Bloch-Redfield-Wangsness spin relaxation theory, in which 
the relaxation superoperator R arising from the stochastic rotational modulation of spin inter-
action anisotropies has the following general form:

where H0 is the time-independent part of the spin Hamiltonian commutation superoperator,   
Qkm are the 25 irreducible spherical components of its anisotropic part H1(t).
Rotational correlation functions Gkmpq(t) are defined as ensemble averages of products of 
second-rank Wigner functions of molecular orientation:

In systems undergoing stochastic motion these become a linear combinations of decaying ex-
ponentials,           , which are scalars commuting with all matrices. The individual 
matrix-valued integrals in R are now a case of an auxiliary exponential relationship:

The integration limit should be set to the accuracy goal for the relaxation superoperator [1].
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Optimal Control Theories
Optimal control is the task of taking a system from one state to another to a specified accuracy 
with minimal expenditure of time and energy. Optimal solutions can be found numerically, by 
maximizing the overlap between the final state of the system and the desired destination state:

where          indicates a time-ordered exponential, H0 is the drift Hamiltonian, H1 is the control 
Hamiltonian, R is the relaxation operator, ρ0 is the initial state vector and δ is the destination 
state. The gradient ascent pulse engineering (GRAPE) method [8,9,10] proceeds by splitting 
the Hamiltonian into the uncontrollable part and a number of control operators with time-
dependent coefficients

With a piecewise-constant Hamiltonian the overlap of the final and desired states becomes

and the corresponding gradient and Hessian elements are

The first order propagator derivative can be calculated efficiently with the auxiliary matrix 
formalism [4,11]:

Similarly, the second order derivative can be calculated with a larger auxiliary matrix:
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Rotating Frame Transformations
The interaction representation transformation splits the Hamiltonian matrix into the "large, 
simple" part H0 and the "small, complicated" part H1. The effective rotating frame Hamilto-
nian over a time interval [0,T], with T equal to the period of the propagator                  is [12]:

where ln(P) is the principal value of the logarithm. Under the typical interaction representation 
assumptions, ||H1|| < ||H0||, and therefore the H1 term under the exponential in the previous 
equation is a correction to the H0 term. The corresponding Taylor series with respect to the H1 
direction step length parameter α is:

The logarithm disappears after the first differentiation and the number of matrix terms is 
linear with respect to the approximation order n

with the general expression also obtainable using binomial coefficients:

The simplicity of this equation stands in sharp contrast with the very large expressions pro-
duced by Magnus expansions. The derivatives, Dk are known [4] to have the form that 
matches auxiliary matrix integrals:

This makes them easy to compute by constructing and exponentiating a sparse block-bidiago-
nal matrix:

and extracting the first block row from the result. This exponential is also sparse [6] if due 
care is taken to eliminate inconsequentially small elements from the non-zero index after each 
multiplication in the Taylor series procedure [2]. The number of blocks in M grows linearly 
and the effort of exponentiating it approximately quadratically with the rotating frame correc-
tion order n.
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Wall clock time (in seconds) comparison between the 
matrix-valued numerical quadrature method and the auxil-
iary matrix method. The spin systems indicated in the 
figure come from the Spinach library [2] example set.

The comparison is given relative to the quadrature 
method - it is impossible to diagonalize an 800,000 by 
800,000 matrix during a NOESY calculation for ubiquitin.

The auxiliary exponential method permits accurate quan-
tum mechanical spin relaxation theory treatment, includ-
ing all cross-correlations and non-secular pathways, for 
liquid state NMR systems with up to about 2000 spins [2] 
when it is combined with restricted state space methods.

Spin system of methylaziridine (state space dimension 9,889 
using IK-2(4) basis [13] in Liouville space), the rotating frame 
transformation with respect to the Zeeman Hamiltonian of the 
14N nucleus is computed in seconds and the scaling of the 
wall clock time with respect to the approx-imation order is 
quadratic. Second-order transformation is sufficient in prac-
tice, but terms up to order ten were computed and timed to 
illustrate the fundamental improvement in automation and 
scalability over the commutator series approach.

Molecular geometry, chemical shielding tensors, J-couplings, 
and nuclear quadrupolar interaction tensors were computed 
using GIAO DFT M06/cc-pVDZ method in Gaussian09.


