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Numerical Optimisation
Basic extrema finding

I Optimisation is the process of
finding minimum or maximum
(extrema) of functions

I Newton-Raphson method uses
the gradient at a trial point to,
incrementally, approach an
extrema of an objective
function

I xk+1 = xk −
f (x)
∇f (x)



Numerical Optimisation
Basic extrema finding

I Basic method to use a step length, α, and a step direction,
p, to iteratively find and extrema.

I We calculate a step direction, then decide how far to move in
that direction:

xk+1 = xk + αkpk

I for minimisation, the step direction should be a descent direction.

pk = −B−1
k ∇fk

Gradient Descent Bk is the identity matrix

Newton’s Method Bk is the exact Hessain matrix ∇2f (xk)

Quasi-Newton Methods Bk is an approximation to the Hessian.



Numerical Optimisation
Comparison of Methods

Gradient Descent Cheap, Scalable, Slow Convergence

Newton’s Method Can be Expensive, Good Convergence.

BFGS Requires line search, No matrix inversion, Each update in
O(n2).

l-BFGS Requires line search, No matrix inversion, Each update in
O(n).



Numerical Optimisation
Example - Rosenbruck Function



Optimal Control Theory

I The idea of optimal control is to use all controllable parts of the
full Hamiltonian to steer an initial quantum state into a target
state.

I A measure of “success” for this control can be fidelity; the
overlap between the controlled, final state and the target state (1
begin identical states, 0 being orthogonal states).

I The control parts of the Magnetic Resonance Hamiltonians are rf
pulses for NMR, and mw pulses for ESR.

I The optimal solutions to the stated optimisation problem are a
set of discrete-time control pulses.



Optimal Control Theory

I Separate Hamiltonian into the drift, Ĥ0, and the parts we can

control,
ˆ̂H(k).

Ĥ(t) = Ĥ0 +
∑
k

c(k)(t)
ˆ̂H(k)

I The control operators (e.g. Electromagnetic fields), each have a

coefficient, c(k)(t), dictating the controllable time-evolution.

I Find {c(k)(t)} to take our system from an initial state, |ψ0〉, to a
target state, |σ〉



Optimal Control Theory

I Use fidelity as a metric to measure the overlap between target
state and final state (1 = total overlap, 0 = no overlap)

J{c (k)(t)} = Re 〈σ| exp(0)

T∫
0

−i

(
Ĥ0 +

∑
k

c (k)(t)
ˆ̂H(k)

)
dt |ψ0〉

I The problem is to find the maximum of the fidelity (or the
minimum of 1−fidelity).



GRAPE

I Assumption: control pulse
sequence is piecewise constant.

I Time-ordered exponential now
a sequential multiplication of
propagators.

J{c(k)(t)} = Re
〈
σ
∣∣∣ÛN ÛN−1 · · · Û2U1

∣∣∣ψ0

〉
Ûn = exp(0)

−i
Ĥ0 +

∑
k

c(k)(tn)
ˆ̂H(k)

∆t





SolidStateNuclear
MagneticResonance



Ensemble Average
Crystallite orientation, Lebedev grid, Floquet space

I Take an ensemble average over
the crystallite orientations.

I Average over a Lebedev grid.

I Initialise each of the ensemble
to the same random guess.

I Calculate the Liouvillian in a
Floquet basis at each of the
grid weights.

I find the local cost and its
gradient.

I Take the weighted average
over the cost and gradient.

I Feed into a numerical
optimisation through GRAPE.



Ensemble Average



NoiseResilienceof
OptimalControl

Pulses



HCF simulations
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Figure: Interaction parameters of a
molecular group used in HCF small
system state transfer simulations, with a
magnetic induction of 9.4 Tesla.



protein backbone simulations
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Figure: Interaction parameters of a typical protein backbone used in large system
state transfer simulations, with a magnetic induction of 9.4 Tesla.



Ensemble Average

I In real experimental apparatus, the control channels will include
some level of noise as most electrical systems do

I Just as with the ssNMR optimisation, we average over an
ensemble of systems.

I each system has the same initial random guess

I In simulating this noise, the solution is to create an ensemble of
systems, each with their own instance of noise affecting the
control channels.

I Noise is additive Gaussian, and is defined at the start of the
simulation for each noise instance.

I We then optimise over the ensemble.



Ensemble Average
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Figure: Convergence of the noise simulations to a number of noise instances



Ensemble Average
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Figure: Population of states local at
each spin of HCF (upper-left), and total
population of each state (lower-left).

Total populations of correlations in the
system (upper-right), and coherence
orders (lower-right).

a direct product basis set the full
state space, L, is a direct sum of
correlation order subspaces:

L = L0 ⊕ L1 ⊕ L2 ⊕ L3

where the population of a
correlation order, pk , is given by
the projection onto its
subspace

pk =
∥∥∥ ˆ̂PLk

|ρ̂〉
∥∥∥



Ensemble Average
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Figure: Measures of similarity between
the trajectory of a noisy system
compared to that of a similar one
without noise



The
Newton-Raphson

Method



Objective function and Gradient Cal-
culation

I The problem of second order methods, that require a gradient
calculation, is reduced to:

1. Propagate forwards from the source

2. Propagate backwards from the target

3. Compute the expectation of the derivative〈
σ

∣∣∣∣∣ÛN ÛN−1 · · ·
∂

∂c
(k)
n=t

Ûn=t · · · Û2U1

∣∣∣∣∣ψ0

〉



Augmented Exponential
Gradient Calculation

I We can use a the work of C. Van Loan (1970’s) and Sophie
Schirmer to find the derivative of the control pulse at a specific
time point

exp

(
−i ˆ̂L∆t −i ˆ̂

H
(j)
k ∆t

0 −i ˆ̂L∆t

)
=

e−i
ˆ̂
L∆t ∂

∂c
(j)
k

e−i
ˆ̂
L∆t

0 e−i
ˆ̂
L∆t





Hessian Matrix
Avoiding Singularities

I Symmetric

I Non-singular

I Size is time-points multiplied
by control channels.

I Diagonally dominant.



Hessian Matrix
Calculating the Hessian elements

I Calculation of the Hessian elements requires the second order
derivatives

I Scales to O(n2) calculations (compared with O(n) for a gradient
calculation).

I second order derivatives can be calculated with a 3× 3
augmented exponential.

exp

−i
ˆ̂
L∆t −i ˆ̂

H
(k1)
n1 ∆t 0

0 −i ˆ̂L∆t −i ˆ̂
H

(k2)
n2 ∆t

0 0 −i ˆ̂L∆t

 =


e−i

ˆ̂L∆t ∂

∂c
(k1)
n1

e−i
ˆ̂L∆t ∂2

∂c
(k1)
n1

∂c
(k2)
n2

e−i
ˆ̂L∆t

0 e−i
ˆ̂L∆t ∂

∂c
(k2)
n2

e−i
ˆ̂L∆t

0 0 e−i
ˆ̂L∆t





Hessian Calculation
Expectation of second order derivatives

I We can reduce the computation to scale with O(n) by realising
that we can store propagators from gradient calculation, and then
perform an extra set of 3× 3 augmented exponentials for the
(block) diagonal elements.〈

σ

∣∣∣∣∣∣ÛN ÛN−1 · · ·
∂2

∂c
(k)
n=t

2
Ûn=t · · · Û2U1

∣∣∣∣∣∣ψ0

〉
〈
σ

∣∣∣∣∣ÛN ÛN−1 · · ·
∂

∂c
(k)
n=t

Ûn=t+1
∂

∂c
(k)
n=t

Ûn=t · · · Û2U1

∣∣∣∣∣ψ0

〉
〈
σ

∣∣∣∣∣ÛN ÛN−1 · · ·
∂

∂c
(k)
n=t

Ûn=t2 · · ·
∂

∂c
(k)
n=t

Ûn=t1 · · · Û2U1

∣∣∣∣∣ψ0

〉



Hessian Regularisation
Avoiding Singularities

I A singular matrix is one that is not invertable.

I Common when we have negative eigenvalues.

I We can regularise the Hessian matrix:

TRM - We can add a multiple of the identity to the Hessian

Hreg = H + λI

where λ > max{0,−min[eig(H)]}
RFO - Prevents the algorithm taking large steps....



Results
Comparing the Newton method
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