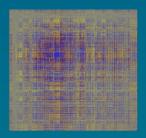


Training Schrödinger's Cat

Quadratically Converging algorithms for Optimal Control of Quantum Systems



David L. Goodwin & Ilya Kuprov d.goodwin@soton.ac.uk

$$\frac{\partial^2 J}{\partial c_{n_2}^{(k)} \partial c_{n_1}^{(k)}} = \langle \sigma | \, \hat{\mathcal{P}}_N \, \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial}{\partial c_{n_2}^{(k)}} \hat{\mathcal{P}}_{n_2} \cdots \frac{\partial}{\partial c_{n_1}^{(k)}} \hat{\mathcal{P}}_{n_1} \cdots \hat{\mathcal{P}}_2 \, \hat{\mathcal{P}}_1 \, | \psi_0 \rangle \qquad (1)$$

$$\exp\begin{pmatrix} -i\hat{\hat{L}}\Delta t & -i\hat{H}_{n_{1}}^{(k_{1})}\Delta t & 0\\ 0 & -i\hat{\hat{L}}\Delta t & -i\hat{H}_{n_{2}}^{(k_{2})}\Delta t\\ 0 & 0 & -i\hat{\hat{L}}\Delta t \end{pmatrix} = \begin{pmatrix} e^{-i\hat{L}\Delta t} & \frac{\partial}{\partial c_{n_{1}}^{(k_{1})}}e^{-i\hat{L}\Delta t} & \frac{1}{2}\frac{\partial^{2}}{\partial c_{n_{1}}^{(k_{1})}\partial c_{n_{2}}^{(k_{2})}}e^{-i\hat{L}\Delta t}\\ 0 & e^{-i\hat{L}\Delta t} & \frac{\partial}{\partial c_{n_{2}}^{(k_{1})}\partial c_{n_{2}}^{(k_{2})}}e^{-i\hat{L}\Delta t}\\ 0 & 0 & e^{-i\hat{L}\Delta t} \end{pmatrix}$$
(2)

01 Introducing Optimal Control

02 Newton-Raphson method

03 Gradient and Hessian

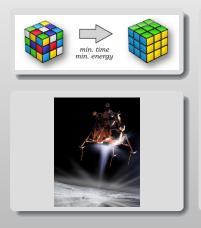
04 Van Loan's Augmented Exponentials

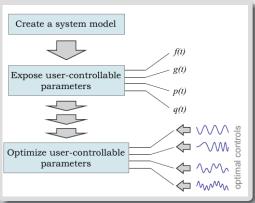
05 Regularisation

Introducing Optimal Control

Optimal Control Theory

- ▶ Optimal control can be thought of as an algorithm; there is a start and stop.
- Specifically, we can think of a dynamic system having a initial state and a target state.
- ▶ The optimality finds an algorithmic solution in a *minimum* of effort.





Newton-Raphson method

The Newton-Raphson method Taylor's Theorem

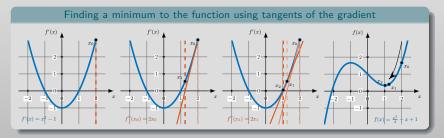
- ► Taylor series approximated to second order^[1].
 - lacktriangle If f is continuously differentiable

$$f(x+p) = f(x) + \nabla f(x+tp)^{T} p$$

▶ If *f* is twice continuously differentiable

$$f(x+p) = f(x) + \nabla f(x)^T p + \frac{1}{2} p^T \nabla^2 f(x+\alpha p) p$$

- ▶ 1st order necessary condition: $\nabla f(x^*) = 0$
- lacktriangleright 2nd order necessary condition: $abla^2 f(x^*)$ is positive semidefinite



^[1]B. Taylor. Inny, 1717, J. Nocedal and S. J. Wright. 1999.

 Gradient Descent Step in direction opposite to local gradient.

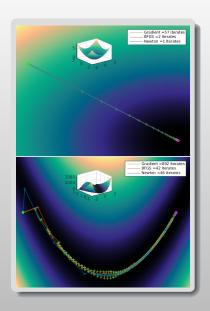
$$f(\vec{x} + \Delta \vec{x}) = f(\vec{x}) + \nabla f(\vec{x})^T \Delta \vec{x}$$

Newton-Raphson Quadratic approximation of objective function, moving to this minimum.

$$f(\vec{x} + \Delta \vec{x}) = f(\vec{x}) + \nabla f(\vec{x})^T \Delta \vec{x} + \frac{1}{2} \Delta \vec{x}^T \mathbf{H} \Delta \vec{x}$$

Quasi-Newton BFGS Approximate H with information from the gradient history.

$$\mathbf{H}_{k+1} = \mathbf{H}_k + \frac{\vec{g}_k \vec{g}_k^T}{\vec{g}_k^T \Delta \vec{x}_k} - \frac{\mathbf{H}_k \Delta \vec{x}_k (\mathbf{H}_k \Delta \vec{x}_k)^T}{\Delta \vec{x}_k^T \mathbf{H}_k \Delta \vec{x}_k}$$



The Newton step:
$$p_k^N = -\mathbf{H}_k^{-1} \nabla f_k$$

 $ightharpoonup
abla^2 f_k = \mathbf{H}_k$ is the Hessian matrix, one of second order partial derivatives [2]:

$$\mathbf{H} = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{pmatrix}$$

- ▶ The steepest descent method results from the same equation when we set H to the identity matrix.
- Quasi-Newton methods initialise H to the identity matrix, then to approximate it from an update formula using a gradient history.
- ▶ The Hessian proper must be positive definite (and quite well conditioned) to make an inverse; an indefinte Hessian results in non-descent search directions.

Gradient and Hessian

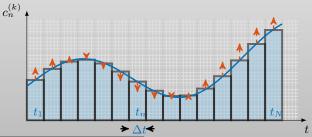
Southampton

Gradient Ascent Pulse Engineering

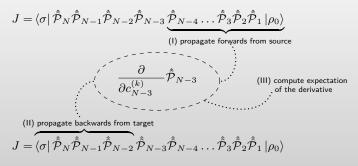
▶ Split Liouvillian to controllable and uncontrollable parts^[3]

$$\hat{L}(t) = \hat{H}_0 + \sum_k c^{(k)}(t)\hat{H}_k$$

- $\qquad \qquad \mathbf{Maximise the fidelity measure, } \ J = \Re e \left< \hat{\sigma} \right| \exp_{(0)} \left[-i \int\limits_0^T \hat{\hat{L}}(t) dt \right] \left| \hat{\rho}(0) \right>$
- ▶ Optimality conditions, $\frac{\partial J}{\partial c_k(t)}=0$ at a minimum, and the Hessian matrix should be positive definite
- Discretize the time into small fixed intervals during which the control functions are assumed to be constant (piecewise-constant approximation).

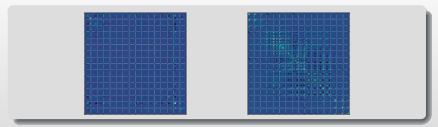


Gradient found from forward and backward propagation:



Propagator over a time slice:

$$\hat{\mathcal{P}}_n = \exp\left[-i\left(\hat{H}_0 + \sum_k c_n^{(k)}\hat{H}_k\right)\Delta t\right]$$



▶ (block) diagonal elements

$$\frac{\partial^2 J}{\partial c_n^{(k)^2}} = \langle \sigma | \, \hat{\mathcal{P}}_N \, \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial^2}{\partial c_n^{(k)^2}} \hat{\mathcal{P}}_n \cdots \hat{\mathcal{P}}_2 \, \hat{\mathcal{P}}_1 \, | \psi_0 \rangle$$

non-diagonal elements

$$\frac{\partial^2 J}{\partial c_{n_2}^{(k)} \partial c_{n_1}^{(k)}} = \langle \sigma | \, \hat{\mathcal{P}}_N \, \hat{\mathcal{P}}_{N-1} \cdots \frac{\partial}{\partial c_{n_2}^{(k)}} \hat{\mathcal{P}}_{n_2} \cdots \frac{\partial}{\partial c_{n_1}^{(k)}} \hat{\mathcal{P}}_{n_1} \cdots \hat{\mathcal{P}}_2 \, \hat{\mathcal{P}}_1 \, | \psi_0 \rangle$$

 All propagators of the non-diagonal blocks have been calculated within a gradient calculation, and can be reused. Only need to find the diagonal blocks.

Van Loan's Augmented Exponentials

Efficient Gradient Calculation Augmented Exponentials

Among the many complicated functions encountered in magnetic resonance simulation context, chained exponential integrals involving square matrices \mathbf{A}_k and \mathbf{B}_k occur particularly often:

$$\int_{0}^{t} dt_{1} \int_{0}^{t_{1}} dt_{2} \cdots \int_{0}^{t_{n-2}} dt_{n-1} \left\{ e^{\mathbf{A}_{1}(t-t_{1})} \, \mathbf{B}_{1} \, e^{\mathbf{A}_{2}(t_{1}-t_{2})} \, \mathbf{B}_{2} \cdots e^{\mathbf{A}_{1}(t-t_{1})} \, \mathbf{B}_{n-1} \, e^{\mathbf{A}_{n}t_{n-1}} \right\}$$

- ▶ A method for computing some of the integrals of the general type shown in Equation of this type was proposed by Van Loan in 1978^[4] (pointed out by Sophie Schirmer^[5])
- Using this augmented exponential technique, we can write an upper-triangular block matrix exponential as

$$\exp\begin{pmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{A} \end{pmatrix} = \begin{pmatrix} e^{\mathbf{A}t} & \int_{0}^{t} e^{\mathbf{A}(t-s)} \mathbf{B} e^{\mathbf{A}s} ds \\ \mathbf{0} & e^{\mathbf{A}t} \end{pmatrix} = \begin{pmatrix} e^{\mathbf{A}} & \int_{0}^{1} e^{\mathbf{A}(1-s)} \mathbf{B} e^{\mathbf{A}s} ds \\ \mathbf{0} & e^{\mathbf{A}} \end{pmatrix}$$

^[4]C. F. Van Loan. In: Automatic Control, IEEE Transactions on 23.3 (1978), pp. 395–404.

^[5] F. F. Floether, P. de Fouquieres and S. G. Schirmer. In: New Journal of Physics 14.7 (2012), p. 073023.

- Find the derivative of the control pulse at a specific time point
- set

$$\int_{0}^{1} e^{\mathbf{A}(1-s)} \mathbf{B} e^{\mathbf{A}s} ds = D_{c_n}(t) \exp\left(-i\hat{\hat{L}}\Delta t\right) \Rightarrow \mathbf{B} = -i\hat{\hat{H}}_n^{(k)} \Delta t$$

▶ leading to an efficient calculation of the gradient element

$$\exp\begin{pmatrix} -i\hat{\hat{L}}\Delta t & -i\hat{\hat{H}}_n^{(k)}\Delta t \\ \mathbf{0} & -i\hat{\hat{L}}\Delta t \end{pmatrix} = \begin{pmatrix} e^{-i\hat{\hat{L}}\Delta t} & \frac{\partial}{\partial c_n^{(k)}} e^{-i\hat{\hat{L}}\Delta t} \\ \mathbf{0} & e^{-i\hat{\hat{L}}\Delta t} \end{pmatrix}$$

Efficient Hessian Calculation Augmented Exponentials

Southampton

- \blacktriangleright second order derivatives can be calculated with a 3×3 augmented exponential $^{[6]}$
- set

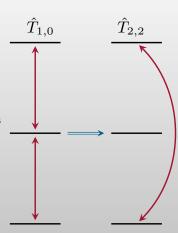
$$\int_{0}^{1} \int_{0}^{s} e^{\mathbf{A}(1-s)} \mathbf{B}_{n_1} e^{\mathbf{A}(s-r)} \mathbf{B}_{n_2} e^{\mathbf{A}r} dr ds = D_{c_{n_1} c_{n_2}}^2(t) \exp\left(-i\hat{\hat{L}}\Delta t\right) \Rightarrow \mathbf{B}_n = -i\hat{\hat{H}}_n^{(k)} \Delta t$$

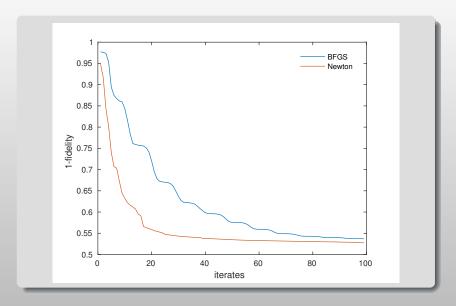
Giving the efficient Hessian element calculation

$$\exp \begin{pmatrix} -i\hat{\hat{L}}\Delta t & -i\hat{H}_{n_{1}}^{(k_{1})}\Delta t & 0\\ 0 & -i\hat{\hat{L}}\Delta t & -i\hat{H}_{n_{2}}^{(k_{2})}\Delta t\\ 0 & 0 & -i\hat{\hat{L}}\Delta t \end{pmatrix} = \begin{pmatrix} e^{-i\hat{\hat{L}}\Delta t} & \frac{\partial}{\partial c_{n_{1}}^{(k_{1})}}e^{-i\hat{\hat{L}}\Delta t} & \frac{1}{2}\frac{\partial^{2}}{\partial c_{n_{1}}^{(k_{1})}}\partial c_{n_{2}}^{(k_{2})}e^{-i\hat{\hat{L}}\Delta t}\\ 0 & e^{-i\hat{\hat{L}}\Delta t} & \frac{\partial}{\partial c_{n_{2}}^{(k_{1})}}e^{-i\hat{\hat{L}}\Delta t}\\ 0 & 0 & e^{-i\hat{\hat{L}}\Delta t} \end{pmatrix}$$

^[6] T. F. Havel, I Najfeld and J. X. Yang. In: Proceedings of the National Academy of Sciences 91.17 (1994), pp. 7962–7966, I. Najfeld and T. Havel. In: Advances in Applied Mathematics 16.3 (1995), pp. 321 –375.

- lacksquare Excite $^{14}{\sf N}$ from a state $\hat{T}_{1,0}
 ightarrow \hat{T}_{2,2}.$
- Solid state powder average, with objective functional weighted over the crystalline orientations (rank 17 Lebedev grid - 110 points).
- Nuclear quadrupolar interaction.
- ▶ 400 time points for total pulse duration of $40\mu s$





Southampton

Regularisation

- ▶ BFGS (using the DFP formula) is guaranteed to produce a positive definite Hessian update
- ► The Newton-Raphson method does not:

$$p_k^N = -\mathbf{H}_k^{-1} \nabla f_k$$

- Properties of the Hessian matrix:
 - 1. Must be symmetric: $\frac{\partial^2}{\partial c^{(i)}\partial c^{(j)}}=\frac{\partial^2}{\partial c^{(j)}\partial c^{(i)}}$; not if control operators commute
 - 2. Must be sufficiently positive definite; non-singular; invertible.
 - 3. The Hessian is diagonally dominant.

Regularisation

Southampton

Avoiding Singularities

- Common when we have negative eigenvalues, regularise the Hessian to be positive definite^[7].
- Check eigenvalues performing an eigendecomposition of the Hessian matrix:

$$\mathbf{H} = Q\Lambda Q^{-1}$$

Add the smallest negative eigenvalue to all eigenvalues, then reform the Hessian with initial eigenvectors:

$$\lambda_{\min} = \max [0, -\min(\Lambda)]$$

$$\mathbf{H}_{\text{reg}} = Q(\Lambda + \lambda_{\min}\hat{I})Q^{-1}$$

TRM Introduce a constant δ ; region of a radius we trust to give a sufficiently positive definite Hessian.

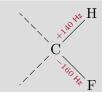
$$\mathbf{H}_{\text{reg}} = Q(\Lambda + \delta \lambda_{\min} \hat{I}) Q^{-1}$$

However, if δ is too small, the Hessian will become ill-conditioned.

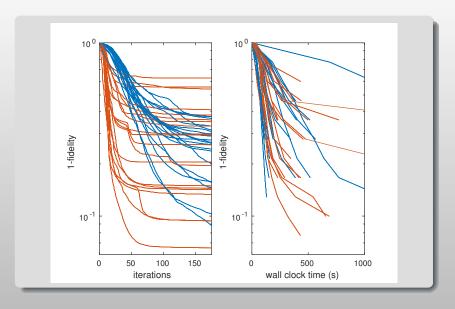
RFO The method proceeds to construct an augmented Hessian matrix

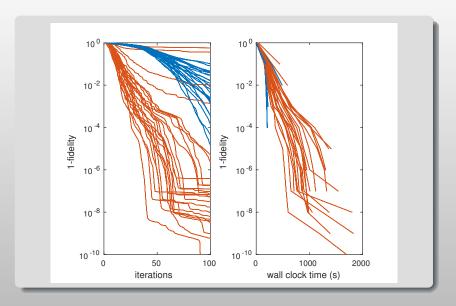
$$\mathbf{H}_{\mathsf{aug}} = egin{bmatrix} \delta^2 \mathbf{H} & \delta \vec{g} \ \delta \vec{g} & \mathbf{0} \end{bmatrix} = Q \Lambda Q^{-1}$$

- lacksquare Controls $:= \left\{ \hat{\hat{L}}_{x}^{(H)}, \hat{\hat{L}}_{y}^{(H)}, \hat{\hat{L}}_{x}^{(C)}, \hat{\hat{L}}_{y}^{(C)}, \hat{\hat{L}}_{x}^{(F)}, \hat{\hat{L}}_{y}^{(F)} \right\}$
- valid vs. invalid parametrisation of Lie groups.



Interaction parameters of a hydroflourocarbon molecular group used in state transfer simulations, with a magnetic induction of 9.4 Tesla





Closing Remarks

- ▶ Hessian calculation that scales with O(n) computations.
- ▶ Efficient directional derivative calculation with augmented exponentials
- better regularisation and conditioning
- infeasible start points?
- Different line search methods?
- forced symmetry of a Hessian