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Introducing Optimal Control
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Optimal Control Theory Southampton

» Optimal control can be thought of as an algorithm; there is a start and stop.

» Specifically, we can think of a dynamic system having a initial state and a
target state.

» The optimality finds an algorithmic solution in a minimum of effort.
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The Newton-Raphson method SOLIIHEII;’EHMB(C)(F)H
Taylor's Theorem

» Taylor series approximated to second order!l.
> If f is continuously differentiable

f@+p)=f(=@) +Vf@+tp)Tp

> If f is twice continuously differentiable
f(z+p) = fx) + V@) p+ 50" V2f(z +ap)p

> 1st order necessary condition: Vf(z*) =0

» 2nd order necessary condition: V2 f(x*) is positive semidefinite

f'(@) I'(@) S'(@) f(@)

f@)|=2 1o+l

B, Taylor. Inny, 1717, J. Nocedal and S. J. Wright. 1999.
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» Gradient Descent Step in direction opposite
to local gradient.

f(@+AZ) = f(2) + V(@) AT

» Newton-Raphson Quadratic approximation of
objective function, moving to this minimum.

f(Z+ AZ) = f(2) + V(@) TAZ
+ %AfTHA:E‘

» Quasi-Newton BFGS Approximate H with
information from the gradient history.

Gr i
GTAT,
 Hp Az (HpAzy)"
AZTHL ATy,

Hy 1 =Hi +
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The Hessian Matrix Southampton
The Newton step: pkN = —H,ZIka

» V2f, = Hy, is the Hessian matrix, one of second order partial derivatives(?:

o2f 2f ... _9f

Bz% Oz, 0z, 9z, dx,,
9 L -

H-— Oz,0x 015 0z, 0z,
Oz, 0z Oz, 0z, Bm%

> The steepest descent method results from the same equation when we set H
to the identity matrix.

> Quasi-Newton methods initialise H to the identity matrix, then to approximate
it from an update formula using a gradient history.

> The Hessian proper must be positive definite (and quite well conditioned) to
make an inverse; an indefinte Hessian results in non-descent search directions.

PIL. 0. Hesse. Chelsea, 1972.
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GRAPE Southampton

Gradient Ascent Pulse Engineering
» Split Liouvillian to controllable and uncontrollable parts[3]

L) =Ho+ > P )A,

T A
> Maximise the fidelity measure, J = Re (6] exp g, { i[L(t dt] |5(0))
0

» Optimality conditions, % = 0 at a minimum, and the Hessian matrix
should be positive definite

> Discretize the time into small fixed intervals during which the control functions
are assumed to be constant (piecewise-constant approximation).
(k)
Cn

A

A
v M.
{1 ¢
> A< t

BIN. Khaneja et al. In: Journal of Magnetic Resonance 172.2 (2005), pp. 296 —305.
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> Gradient found from forward and backward propagation:

J = (o] PnNPrn-1PN-2Pn—3Pn-a...PsP:P: |po)

(1) propagate forwards from source

3 ~N
/7 6 A N ..'
kiPN*:)’ )eet (1) compute expectation
\ 9t b LU
N N—3 . of the derivative
~ s g

(1) propagate backwards from target

J = (o] PNPy-1Pn—2Pn_sPn_s... PsPaPy |po)

> Propagator over a time slice:

7§n = exp |:—i (ﬁ[o + Zc&k)l?[k) At:|
k
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> (block) diagonal elements

9%J A o2 H? A 2
PYCE = <0'|PNPN—1"'WP71 P2 P1 |1o)
Cn, Cn

> non-diagonal elements

82J A A 0 2 0 2 A A
m = (o|PNPn_1-"" 78053“2) Prg - -+ 78053“1) Pry - P2P1 |tho)

> All propagators of the non-diagonal blocks have been calculated within a
gradient calculation, and can be reused. Only need to find the diagonal blocks.
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Efficient Gradient Calculation SOthﬁgﬁBt%n

Augmented Exponentials
» Among the many complicated functions encountered in magnetic resonance
simulation context, chained exponential integrals involving square matrices Ay
and By occur particularly often:

t tq tn—2
/dtl/dtz .. /dtn,l {eAl(tle) B, ef2(ti-t2) B, ... gArlt-t) g | eAntn,l}
0 0 0

» A method for computing some of the integrals of the general type shown in
Equation of this type was proposed by Van Loan in 19784 (pointed out by
Sophie Schirmerl®)

» Using this augmented exponential technique, we can write an upper-triangular
block matrix exponential as

1
oxp (A B) e fteA(t_s)BeAsds e [eAUTBerds
0 A 0 ’ eAt 0 ’ e®

BIC. F. Van Loan. In: Automatic Control, IEEE Transactions on 23.3 (1978), pp- 395-404.

BIF. F. Floether, P. de Fouquieres and S. G. Schirmer. In: New Journal of Physics 14.7 (2012),
p. 073023.



Efficient Gradient Calculation SOthﬁgﬁBt%n

Augmented Exponentials

» Find the derivative of the control pulse at a specific time point

> set

V/eA(lfs)BeAsds = D., (t) exp (—iiAt) = B =—iHPAL

0
> leading to an efficient calculation of the gradient element

A A _iLA¢ o _—iLAt
exp —i LAt —zHék)At B e acif)e
0 —iLAt

0 —iLAt
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Augmented Exponentials
> second order derivatives can be calculated with a 3 x 3 augmented
exponentiall®

> set

(t) exp(—iiAt) = B, = —iﬁflk)At

€nyCng

1 s
//eA(l*S)Bn1 AR, A drds = D?
0 0

» Giving the efficient Hessian element calculation

—iLAt —iHS AL 0
exp| 0 —iLAt  —iHP AL =
0 0 —iLAt
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1T, F. Havel, | Najfeld and J. X. Yang. In: Proceedings of the National Academy of Sciences 91.17
(1994), pp. 7962-7966, |. Najfeld and T. Havel. In: Advances in Applied Mathematics 16.3
(1995), pp. 321 —375.
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Simulation

T1,0 152
\
» Excite *N from a state 7.0 — Th.o.
» Solid state powder average, with objective
functional weighted over the crystalline orientations A
(rank 17 Lebedev grid - 110 points). \

v

Nuclear quadrupolar interaction.
400 time points for total pulse duration of 40us

v
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Comparison of BFGS and Newton-Raphson p
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Problems Southampton

Singularities everywhere!

» BFGS (using the DFP formula) is guaranteed to produce a positive definite
Hessian update

» The Newton-Raphson method does not:
p = -H;'Vf;

» Properties of the Hessian matrix:

9?2 .
= 9c@ o)’

. 82 :
1. Must be symmetric: FROREE) not if control operators commute
2. Must be sufficiently positive definite; non-singular; invertible.

3. The Hessian is diagonally dominant.
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Avoiding Singularities

» Common when we have negative eigenvalues, regularise the Hessian to be
positive definitel”).

> Check eigenvalues performing an eigendecomposition of the Hessian matrix:
H=QAQ™"
» Add the smallest negative eigenvalue to all eigenvalues, then reform the
Hessian with initial eigenvectors:
Amin = max [0, — min(A)]
Hreg :Q(A + >\min[A)Q_1
TRM Introduce a constant d; region of a radius we trust to give a sufficiently positive
definite Hessian.
Hreg = Q(A arF (SAmin-[)Cgi1
However, if ¢ is too small, the Hessian will become ill-conditioned.

RFO The method proceeds to construct an augmented Hessian matrix

_[°H 67] T
Haug— liég 0:| _QAQ

[IX. P. Resina. PhD thesis. Universitat Auténoma de Barcelona, 2004.
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» Controls := { LI LD 1O L@ 1), Lg“} v o
» valid vs. invalid parametrisation of Lie groups. Interaction parameters of a

hydroflourocarbon
molecular group used in
state transfer simulations,
with a magnetic induction
of 9.4 Tesla
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Comparison of BFGS and Newton-Raphson |
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Comparison of BFGS and Newton-Raphson Il
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> Hessian calculation that scales with O(n) computations.

» Efficient directional derivative calculation with augmented exponentials
> better regularisation and conditioning

> infeasible start points?

> Different line search methods?

» forced symmetry of a Hessian



	Introducing Optimal Control
	Newton-Raphson method
	Gradient and Hessian
	Van Loan's Augmented Exponentials
	Regularisation

