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Introduction to Optimal Control



Liouville-von Neumann equation
Solution from the Schrödinger equation

I The Schrödinger equation:

∂

∂t
|ψ(t)〉 = −Ĥ |ψ(t)〉

I solved in the static and dynamic case:

Static:⇒

|ψ(t)〉 = exp
[
−iĤt

]
|ψ(0)〉

Dynamic:⇒

|ψ(t)〉 = exp(o)

−i t∫
0

Ĥ(t) dt

|ψ(0)〉

I Density operator ρ̂ = |ψ〉〈ψ|
I Liouville-von Neumann equation:

∂

∂t
ρ̂ =

∂

∂t
(|ψ〉〈ψ|)

=
(
∂

∂t
|ψ〉
)
|ψ〉〈ψ|

(
∂

∂t
〈ψ|
)

=− iĤ |ψ〉〈ψ|+ i |ψ〉〈ψ| Ĥ

=− i
(
Ĥρ̂− ρ̂Ĥ

)
=− i

[
Ĥ, ρ̂

]
=− i ˆ̂Hρ̂

Dynamic solution to the Liouville-von Neumann equation with the superoperator
formalism:

ρ̂(t) = exp(o)

−i t∫
0

ˆ̂H(t) dt

ρ̂(0)



The Hamiltonian
Control Channels

I The solution to the Liouville-von
Neumann equation can be written with
vector representation of the density
operator

|ρ̂(t)〉 = exp(o)

−i t∫
0

ˆ̂H(t) dt

|ρ̂(0)〉

I The Hamiltonian split into
uncontrollable and controllable parts:

ˆ̂H(t) = ˆ̂H0 + ˆ̂H1(t) + i ˆ̂R

I Controllable part consists of control
channels:

ˆ̂H1(t) =
K∑
k=1

ck(t) ˆ̂Hk

I Control channels are time-independent,
and their associated coefficients, control
amplitudes, are time-dependant.

I Control amplitudes are discretized on a
finite grid of time points to obtain
control sequences:

ck(t) −→
~ck =

[
ck(t1) ck(t2) · · · ck(tN )

]
I The time-ordered exponential in the

solution to the Liouville-von Neumann
equation becomes

∏
n

exp
[
−i
(

ˆ̂H0 +
K∑
k=1

ck,n
ˆ̂Hk + i ˆ̂R

)
∆t
]

I where propagation over a single time
slice is (ignoring relaxation)

ˆ̂Pn = exp
[
−i
(

ˆ̂H0 +
K∑
k=1

ck,n
ˆ̂Hk

)
∆t
]



Optimal Control
Gradient assisted pulse engineering (GRAPE)

I The aim of quantum optimal control is to maximise the fidelity measure, being
the overlap between two states:

J = 〈δ| exp(0)

−i T∫
0

ˆ̂H0 +
K∑
k=1

ck(t) ˆ̂Hk + i ˆ̂R (t) dt

|ρ0〉

Piecewise constant approximation in a GRAPE simulation

t

c
(k)
n

∆t
t1 tn tN

〈
desired state

∣∣∣ ˆ̂PN ˆ̂PN−1 · · · ˆ̂P2
ˆ̂P1

∣∣∣initial state
〉

[1] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen and S. J. Glaser. In: Journal of Magnetic Resonance 172.2 (2005), pp. 296 –305.



Introduction to Numerical
Optimisation



Numerical Optimisation
What should I minimise?

I We always minimise a number (or
minimise the negative of a number -
maximising).

I This number can be created in any way -
it is only a metric (although it can have
a physical significance).

I Minimising many variables can be
equivalent to minimising the sum of
those elements (usually with
normalisation i.e an average).

I Usually, we minimise this metric as the
output of a function.

I These functions can be “physics” or even
“a black-box machine”.

I Essentially - we can treat any well
behaved function as a “black-box” - with
only inputs and outputs seen by the
optimisation algorithm.



Newton Methods
Finding a minimum

I A condition for minimisation is the ∆J = J(cs+1)− J(cs) > 0
I Taylor series approximated to second order.

I If J is continuously differentiable

∆J = J(cs+1)− J(cs) ≈ 〈∇Js|cs〉

I If J is twice continuously differentiable

∆J = J(cs+1)− J(cs) ≈ 〈∇Js|cs〉+ 1
2 〈cs|∇

2Js |cs〉

I 1st order necessary condition: ∇Js
∣∣∣
min

= 0

I 2nd order necessary condition: ∇2Js
∣∣∣
min

is positive semidefinite

Finding a minimum to the function using tangents of the gradient
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Newton Methods
Optimisation Algorithms

I Gradient Descent Step in direction
opposite to local gradient.

J(cs + ∆c) = J(cs+1) = J(cs) + 〈∇Js|cs〉

I Newton-Raphson Quadratic approximation
of objective function, moving to this
minimum.

J(cs+1) =J(cs) + 〈∇Js|cs〉

+ 1
2 〈cs|∇

2Js |cs〉

I Quasi-Newton BFGS Approximate ∇2Js
with information from the gradient history.

∇2Js+1 =∇2Js +
|∇Js〉〈∇Js|
〈∇Js|cs〉

−
∇2Js |cs〉〈cs|∇2Js

〈cs|∇2Js |cs〉



GRAPE optimisation
Gradient calculations

I Initial publications of the GRAPE algorithm used the steepest descent algorithm
to minimise 1− J .

I The gradient was calculated with finite difference methods
I These algorithms were advanced to Quasi-Newton optimisation, using the gradient

history to find an approximation to the Hessian matrix - giving super-linear
convergence.

I Gradient found from forward and backward propagation:

J = 〈δ| ˆ̂PN ˆ̂PN−1
ˆ̂PN−2

ˆ̂PN−3
ˆ̂PN−4 . . .

ˆ̂P3
ˆ̂P2

ˆ̂P1 |ρ0〉︸ ︷︷ ︸
(I) propagate forwards from source

∂

∂ck,N−3

ˆ̂PN−3 (III) compute expectation
of the derivative

J =

(II) propagate backwards from target︷ ︸︸ ︷
〈δ| ˆ̂PN ˆ̂PN−1

ˆ̂PN−2
ˆ̂PN−3

ˆ̂PN−4 . . .
ˆ̂P3

ˆ̂P2
ˆ̂P1 |ρ0〉

[2] N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen and S. J. Glaser. In: Journal of Magnetic Resonance 172.2 (2005), pp. 296 –305.
[3] P. de Fouquieres, S. Schirmer, S. Glaser and I. Kuprov. In: Journal of Magnetic Resonance 212.2 (2011), pp. 412 –417.



Auxiliary Matrix Formalism



Efficient Gradient Calculation
Auxiliary Matrix Formalism

I Among the many complicated functions encountered in magnetic resonance
simulation context, chained exponential integrals involving square matrices Ak

and Bk occur particularly often:

t∫
0

dt1

t1∫
0

dt2 · · ·

tn−2∫
0

dtn−1
{

eA1(t−t1) B1 eA2(t1−t2) B2 · · · eA1(t−t1) Bn−1 eAntn−1
}

I A method for computing some of the integrals of the general type shown in
Equation of this type was proposed by Van Loan in 1978 (pointed out by Sophie
Schirmer)

I Using this augmented exponential technique, we can write an upper-triangular
block matrix exponential as

exp
(

A B
0 A

)
=

eAt
t∫
0
eA(t−s)BeAsds

0 eAt

 =

eA
1∫
0
eA(1−s)BeAsds

0 eA



[4] C. F. Van Loan. In: Automatic Control, IEEE Transactions on 23.3 (1978), pp. 395–404.
[5] F. F. Floether, P. de Fouquieres and S. G. Schirmer. In: New Journal of Physics 14.7 (2012), p. 073023.



Efficient Gradient Calculation
Auxiliary Matrix Formalism

I Find the derivative of the control pulse at a specific time point
I set

1∫
0

eA(1−s)BeAsds = Dcn (t) exp
(
−i ˆ̂L∆t

)
⇒ B = −i ˆ̂Hk∆t

I where ˆ̂L = ˆ̂H0 +
∑
k
ck,n

ˆ̂Hk.

I This leads to an efficient calculation of a gradient element

exp
(
−i ˆ̂L∆t −i ˆ̂Hk,n∆t

0 −i ˆ̂L∆t

)
=

e−i ˆ̂L∆t ∂
∂c

k,n
e−i

ˆ̂L∆t

0 e−i
ˆ̂L∆t


I This auxiliary matrix formalism can also be applied to other areas of magnetic

resonance:
I average Hamiltonian theory following interaction representation

transformations
I Bloch-Redfield-Wangsness theory of nuclear and electron relaxation

[6] F. F. Floether, P. de Fouquieres and S. G. Schirmer. In: New Journal of Physics 14.7 (2012), p. 073023.
[7] D. L. Goodwin and I. Kuprov. In: The Journal of Chemical Physics 143.8 (2015), p. 084113.



Efficient Gradient Calculation
Krylov propagation

I Can use augmented exponential with Krylov propagation

exp
(
−i ˆ̂L∆t −i ˆ̂Hk,n∆t

0 −i ˆ̂L∆t

)(
0

ρn

)
⇒
(

∂
∂c

k,n
e−i

ˆ̂L∆t

0

)

I We need n of these Krylov propagations, plus 2n Krylov propagations from the
fidelity calculation (forwards and backwards to each n) to calculate the gradient
element

∇J(ck,n) =
(
ρn+1 0

)( ∂
∂c

k,n
e−i

ˆ̂L∆t

0

)

I If Krylov propagation is not appropriate, Spinach will calculate the explicit
propagators with the matrix exponential of our auxiliary matrix.

I Particularly, we use the Taylor method (with gpu calculation if available), and
preserve sparsity with a matrix cleanup during the iterative algorithm (remove
any elements < 10−14)



Quadratic convergence



The Hessian Matrix

The Newton step: pNs = −H−1
s ∇Js

I Hs = ∇2Js is the Hessian matrix, one of second order partial derivatives:

H =



∂2J
∂c2

1

∂2J
∂c1∂c2

· · · ∂2J
∂c1∂cm

∂2J
∂c2∂c1

∂2J
∂c2

2
· · · ∂2J

∂c2∂cm

...
...

. . .
...

∂2J
∂cm∂c1

∂2J
∂cm∂c2

· · · ∂2J
∂c2

m


I The steepest descent method results from the same equation when we set H to

the identity matrix.
I Quasi-Newton methods initialise H to the identity matrix, then to approximate it

from an update formula using a gradient history.
I The Hessian proper must be positive definite (and quite well conditioned) to make

an inverse; an indefinte Hessian results in non-descent search directions.



GRAPE Hessian

I (block) off-diagonal elements:

∂2J

∂ck,n2
∂ck,n1

= 〈δ| ˆ̂PN ˆ̂PN−1 · · ·
∂

∂ck,n2

ˆ̂Pn2 · · ·
∂

∂ck,n1

ˆ̂Pn1 · · · ˆ̂P2
ˆ̂P1 |ρ0〉

I All propagators of the non-diagonal blocks have
been calculated within a gradient calculation, and
can be reused.

I Only need to find the diagonal blocks.
I (block) diagonal elements:

∂2J

∂ck,n
2 = 〈δ| ˆ̂PN ˆ̂PN−1 · · ·

∂2

∂ck,n
2

ˆ̂Pn · · · ˆ̂P2
ˆ̂P1 |ρ0〉

[8] D. Goodwin and I. Kuprov. In: The Journal of Chemical Physics 144.20 (2016), p. 204107.



Efficient Hessian Calculation
Augmented Exponentials

I second order derivatives can be calculated with a 3× 3 augmented exponential
I set

1∫
0

s∫
0

e
A(1−s)Bn1 e

A(s−r)Bn2 e
Ar

drds = D
2
cn1 cn2

(t) exp
(
−i ˆ̂L∆t

)
⇒ Bn = −i ˆ̂Hk,n∆t

I Giving the efficient Hessian element calculation

exp

−i
ˆ̂L∆t −i ˆ̂Hk1,n1

∆t 0
0 −i ˆ̂L∆t −i ˆ̂Hk2,n2

∆t
0 0 −i ˆ̂L∆t

 =


e−i

ˆ̂L∆t ∂

∂ck1,n1

e−i
ˆ̂L∆t 1

2
∂2

∂ck1,n1
∂ck2,n2

e−i
ˆ̂L∆t

0 e−i
ˆ̂L∆t ∂

∂ck2,n2

e−i
ˆ̂L∆t

0 0 e−i
ˆ̂L∆t



[9] I. Najfeld and T. F. Havel. In: Advances in Applied Mathematics 16.3 (1995), pp. 321–375.
[10] D. L. Goodwin and I. Kuprov. In: The Journal of Chemical Physics 143.8 (2015), p. 084113.



Parallelisation
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I Amdahl’s law: parallelisation efficiency analysis for the Hessian calculation
compared to the gradient calculation within Spinach implementation of GRAPE.
The optimal control problem involves 24 time slices and 6 control channels,
yielding a fidelity functional gradient with 144 elements and a 144× 144 Hessian.

[11] D. Goodwin and I. Kuprov. In: The Journal of Chemical Physics 144.20 (2016), p. 204107.



Hessian Regularisation



Regularisation
Avoiding Singularities

I Common when we have negative eigenvalues, regularise the Hessian to be positive
definite.

I Check if positive definite by attempting a Cholesky factorisation of the Hessian
matrix:

H = LLT ⇒ H−1 = (L−1)TL−1

I More sophisticated to add the smallest negative eigenvalue to all eigenvalues, then
reform the Hessian with initial eigenvectors:

H =QΛQ−1

λmin = max [0,−min(Λ)]

Hreg =Q(Λ + λmin1)Q−1

I TRM Introduce a constant δ; region of a radius we trust to give a sufficiently
positive definite Hessian.

Hreg = Q(Λ + δλmin1)Q−1

However, if δ is too small, the Hessian will become ill-conditioned.
I RFO The method proceeds to construct an augmented Hessian matrix

Haug =
[
α2H α~g
α~g 0

]
= QΛQ−1

[12] D. Goodwin and I. Kuprov. In: The Journal of Chemical Physics 144.20 (2016), p. 204107.



State transfer
Comparison of BFGS and Newton-Raphson I
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I State transfer in an H–C–F group in a 9.4 Tesla magnet with 1H isotope for
hydrogen, 13C isotope for carbon and 19F isotope for fluorine, with the 1H-13C
J-coupling of 140 Hz, 13C-19F J-coupling of –160 Hz and all three signals assumed
to be on resonance with the transmitters on the corresponding NMR spectrometer
channels. A six-channel {HX , HY , CX , CY , FX , FY } shaped pulse with a duration
of 100 ms, a quadratic penalty for excursions outside the 10 kHz power envelope
and 50 time discretisation points was optimized to perform longitudinal
magnetization transfer from 1H to 19F .

[13] D. Goodwin and I. Kuprov. In: The Journal of Chemical Physics 144.20 (2016), p. 204107.



State transfer
Comparison of BFGS and Newton-Raphson II
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I State transfer from longitudinal polarization into a two-spin singlet state, while
allowing for up to 20% miscalibration of the control channel power level. The spin
system contains two 13C spins in a 14.1 Tesla magnet with chemical shifts of 0.00
and 0.25 ppm and a J-coupling of 60 Hz. The system is prepared in the
C

(1)
Z + C

(2)
Z state and a two-channel control sequence on C

(1)
X + C

(2)
X and

C
(1)
X + C

(2)
X control operators with 50 time discretization points, the nominal

power of 60 Hz and the duration of 50 milliseconds is optimized simultaneously for
ten different power levels spaced equally between 80

[14] D. Goodwin and I. Kuprov. In: The Journal of Chemical Physics 144.20 (2016), p. 204107.



Feedback Control in ESR



Optimising an Experiment
Using PulseSPEL variables

I matlab function forms the objective function of an
optimisation algorithm

I python scripts are invoked by matlab, using data saved by
matlab

I commands sent to modify PulseSPEL files from python a
script

I send new PulseSPEL variables to experiment and run the
experiment with another python script

I read the signal produced from these new variables

I Simple, 2-pulse
echo experiment.

I Aim to find an
optimised echo.

I Maximise the area
under the real
part of the echo
signal.

I Vary the time
between pulses, τ .

2-pulse echo

time[
hard
pulse

] [
hard
pulse

]

(π/2)x (π)x

Echo
Signal

τ τ

; FT-EPR package
;
; PulseSPEL variable
; definitions & conventions
begin defs

; Variables ; Comments:

p0 = 16 ; 90 pulse length
p1 = 32 ; 180 pulse length
p4 = 100 ; laser trigger

d0 = 400 ; Acquisition delay
d1 = 260 ; tau

aa0 = 13 ; amplitude
aa1 = 20 ;

ap11 = 0 ; phase pulse 1
ap12 = 180 ;
ap13 = 90 ;
ap14 = 270 ;

ap21 = 0 ; phase pulse 2
ap22 = 180 ;
ap23 = 90 ;
ap24 = 270 ;

as0 = 0 ; AWG pulse shapes
as1 = 83 ;
end defs



Simplex Optimisation

I Newton based methods have good convergence properties, but all need a gradient.
I Gradient-free optimisation can make an estimate of the gradient through finite

differences - but this is usually expensive with little or no gains from an inexact
gradient.

I Simplex methods find better points at each iterate - but convergence is not
guaranteed.

I Simplex methods do not work well with bounds.
I Most optimisation methods work on smooth function.
I Optimising an integer variable digitises the surface, potentially creating false

stationary points.



Arbitrary Waveform Generator (AWG)

I The AWG can shape the phase and amplitude of a pulse.
I The sent shaped pulse may not be exactly what the experiment sees - may need to

create a response function.

AWG with Feedback Control

AWG
Sample

(Resonator)

pulse shape
distortions

shaped
pulse

Optimization
Algorithm

initial
pulse-set signal

new
pulse-set

[15] P. E. Spindler, Y. Zhang, B. Endeward, N. Gershernzon, T. E. Skinner, S. J. Glaser and T. F. Prisner. In: J. Magn. Reson. 218 (2012),
pp. 49–58.
[16] P. E. Spindler, S. J. Glaser, T. E. Skinner and T. F. Prisner. In: Angewandte Chemie International Edition 52.12 (2013), pp. 3425–3429.
[17] T. Kaufmann, T. J. Keller, J. M. Franck, R. P. Barnes, S. J. Glaser, J. M. Martinis and S. Han. In: J. Magn. Reson. 235 (2013), pp. 95–
108.
[18] A. Doll, S. Pribitzer, R. Tschaggelar and G. Jeschke. In: J. Magn. Reson. 230 (2013), pp. 27–39.
[19] A. Doll and G. Jeschke. In: J. Magn. Reson. 246 (2014), pp. 18–26.
[20] P. Schöps, P. E. Spindler, A. Marko and T. F. Prisner. In: J. Magn. Reson. 250 (2015), pp. 55–62.
[21] G. Jeschke, S. Pribitzer and A. Doll. In: The Journal of Physical Chemistry B 119.43 (2015), pp. 13570–13582.



Optimising an Echo
Using a Shaped Waveform

I Simple, 2-pulse echo experiment.
I Aim to find an optimised echo.
I Maximise the area under the real part of the

echo signal.
I Vary the shape of the soft π-pulse.
I Many pulses take a long time to optimise (as

opposed to a chirped pulse which have only 3
or 4 variables to optimise)
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Optimising an Signal Shape

I Another measure to optimise could be the shape of the signal.
I Requires a reference shape, that which we would like the signal to mimic.
I Optimise: 〈Reference plot|Current plot〉

Reference curve Feedback curve

Diagram of curve matching from an echo signal (signals shown inset with the same
arbitrary scales) - (left) after 1 optimisation iterate, (right) after 50 iterates. The
direct measurement feedback loop is based on a broadband echo experiment using
2 optimised CHIRPS. The Fourier transform of the echo signal is matched to a
reference from a field sweep experiment.

[22] A. Doll and G. Jeschke. In: J. Magn. Reson. 246 (2014), pp. 18–26.
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