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Abstract

The magnetic phases in the complex cobaltates Y1−xSrxCoO3−δ (0.7 ≤ x ≤ 0.95)

and Ca3Co2O6 have been investigated by susceptibility, heat capacity, X-ray and

neutron scattering techniques. These measurements have shown that the super-

structure ordering in the perovskite cobaltate Y1−xSrxCoO3−δ which evolves as a

function of temperature heavily influences the ferrimagnetic behaviour of this mate-

rial. Neutron scattering has also been used to probe the unusual time and magnetic

field dependent behaviour of the spin-chain compound Ca3Co2O6, and to further

our understanding of the magnetic phase diagram of this system.

Both polycrystalline and single crystal samples have been used in this study.

High quality single crystals of the A-site (Sr/Y) and oxygen vacancy ordered form

of the perovskite Y1−xSrxCoO3−δ have been produced using the floating zone tech-

nique and characterised using EDAX and TGA. The single crystals produced were

large enough to perform polarised and inelastic neutron scattering experiments

on this compound for the first time, revealing anisotropic quasi-elastic scattering

above the magnetic transition temperature. In addition, diffraction experiments on

these samples found evidence of coincident structural and magnetic transitions in

Y1−xSrxCoO3−δ at both 370 and 280 K.

Neutron diffraction measurements were also performed on the geometrically

frustrated compound Ca3Co2O6. The low temperature magnetisation process was

found to be accompanied by clearly visible steps in the intensity of the ferromagnetic

and antiferromagnetic Bragg peaks. Detailed measurements have shown that the

presence of short-range correlations cannot account for the reduction in intensity of

the antiferromagnetic Bragg peaks at low temperatures. Instead, the origin of this

drop in intensity was found to be a slow time-dependent magnetic transition from

one long-range ordered antiferromagnetic state to another. This transition occurs

over a timescale of hours and is never complete.

The experimental work detailed in this thesis provides new information about

the phase diagrams of Y1−xSrxCoO3−δ and Ca3Co2O6 and contributes to our overall

understanding of the physics of these complex cobaltate compounds.
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Chapter 1

Cobaltates: Introduction

This thesis details studies of the magnetic behaviour of two cobaltate compounds

Y1−xSrxCoO3−δ and Ca3Co2O6, both of which have a complex relationship between

their structural and magnetic properties. The word Cobalt is derived from the Ger-

man Kobold [1], a mischievous goblin or sprite in Germanic mythology [2]. Kobalds

were thought to frequent underground places such as mines, and their spitefulness

was blamed for the difficultly of extracting metals from certain ores. This was

particularly true of the cobalt ores Cobaltite and Smaltite, both of which release

poisonous arsenic fumes on smelting [1]. When in 1735, Swedish chemist Georg

Brant discovered a new metal he named it ‘Cobalt Rex’ after the infamous sprite

[3]. Compounds containing cobalt ions such as the two discussed in this thesis are

currently of interest to researchers both from a scientific perspective, several new

kinds of physics and magnetic phenomena have been discovered in the cobaltates,

and for their potential applications in solid state devices.

1.1 Applications of Cobaltate Compounds

Figure 1.1: A Ming dynasty blue and

white plate. Taken from reference [4].

Cobalt oxides and ores had been used to

colour jewellery, glass and pottery long be-

fore the pure metal was discovered. The

pigment called ‘Cobalt Blue’ was used ex-

tensively on Chinese blue and white porce-

lain from the 9th century (see figure 1.1)

and other cobalt pigments such as Smalt

have also been found on Egyptian pot-

tery and Iranian glass beads dating to

2500 BC [1]. Cobalt metal is used as a cat-

alyst in petroleum production and chem-

ical synthesis. The cobalt isostope Co-60
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also has medical applications in radiotherapy and is commonly used as a source of

γ-radiation [1]. Additionally, LixCoO2 is the most common material for electrodes

in lithium-ion batteries, widely used to power portable electronic devices such as

laptop computers [5].

The technological importance of cobalt and its oxides has served to motivate

much of the scientific research into cobaltates over the last few years. The high

catalytic activity of cobaltates means one of the most developed of these applications

is as cathodes in solid oxide fuel cells. Currently, the key problems with these devices

are thermal stability, material degradation and high thermal expansion, and these

issues provide one focus for materials research into cobaltates [6]. The same property

of high catalytic activity means cobaltates can be used as gas sensors, and LaCoO3

has been used to measure the concentration of ammonia by oxidising NH3 to NOx [7].

The high oxygen diffusion in many cobaltates has spawned research into uses

as membranes for gas separation. The main contribution to oxygen transport in

ceramics come from diffusion across grain boundaries, and so grain size becomes very

important in manufacturing these materials [6]. One of the most dramatic properties

of cobaltates is their anomalously high thermopower. This property has already

been used to manufacture a thermocouple from the cobaltate La1−xSrxCoO3 [8],

and research continues into practical applications of this effect. Inherent problems

with stability and durability of new materials means there is a constant search for

new systems with good physical and electronic properties.

1.2 Magnetism in the Cobaltates

Cobalt metal is an itinerant ferromagnet, where the electrons at the Fermi surface

split such that there are more electrons with spin-up than with spin-down. Cobalt

compounds, especially cobaltates, are more likely to be insulators where the mag-

netic moments are localised, but many still exhibit ferromagnetic behaviour due to

the spin on the cobalt ions. All ferromagnets have a spontaneous magnetisation

in the absence of an applied magnetic field and a ferromagnetic component to the

magnetisation is essential for all permanent magnets. Ferromagnetism is uniquely

important for technology as it is the only magnetic mechanism strong enough to

have an effect on everyday life. It is integral to modern innovations such as credit

cards and hard drives. Although cobalt itself is a relatively strong ferromagnet, it is

more commonly used as a constituent in permanent magnetic alloys such as ‘Alnico’

(aluminium-nickel-cobalt) [1].

Not all cobalt compounds are ferromagnetic, and many cobaltates display

other kinds of magnetic behaviour. Along with many other transition metal oxides,

cobaltates have strong electron correlations which give rise not only to a myriad of
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different magnetic behaviour but superconductivity [9, 10], metal-insulator transi-

tions [11] and substantial magnetoresistance [12]. Interest in the whole transition

metal oxide class of strongly correlated electron systems can be traced back to

the discovery of high temperature superconductivity in La2−xBaxCuO4 [13] and

YBa2Cu3O7 in 1987 [14]. La2−xBaxCuO4 has a perovskite structure with a transi-

tion metal element in the middle of an oxygen face-centred cube with a rare-earth

in each of the corners, shown in figure 1.2. This structure is very important in

materials which have strongly correlated electrons such as the cuprates, manganites

and cobaltates.

1.3 Perovskite Cobaltates

A

B

O

Figure 1.2: The perovskite crystal structure

ABO3, where A is a rare earth, B is a transition

metal and O is oxygen. The oxygen ions form

octahedra surrounding the B transition metal

ion.

Perovskite cobaltates tend to be

oxygen deficient, and this means

the CoO6 octahedra are often dis-

torted, forming structures with

lower crystal symmetry than a

simple perovskite. Due to the

oxygen deficiency, some of the

polyhedra can form pyramidal

complexes, which are also typ-

ical of the layered cobaltates

LnMCo2O5+δ (where Ln stands

for a lanthanide, lanthanum or

yttrium and M is one of the

alkali-earth elements). The ex-

tent of the structural distortion in

the perovskite cobaltates changes

quite markedly with temperature

and often non-monotomically, a feature which first attracted researchers to this

family of compounds [6].

Typically, the perovskite-structured cobaltates have the chemical formula

LnCoO3. The parent compound of this series of perovskite cobaltates is LaCoO3.

This material has been well studied because of the discovery of a spin state transition

at a temperature of around 100 K [15, 16]. The spin state transition in LaCoO3 is

from the non-magnetic low spin to the paramagnetic state (either intermediate or

high spin) state [17]). There is also some discussion of a further spin state transition

at the higher temperature of 500 K [18]. Spin state transitions have been detected in

other cobaltate compounds, but all at much higher temperatures than 100 K [6]. The
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addition of a spin state degree of freedom in the cobaltates increases the possibility

of unusual magnetic behaviour compared to the cuprates and manganites, which

both have charge and orbital degrees of freedom but usually only a single possible

spin state in perovskite compounds. The theory of spin state transitions is discussed

in more depth in Section 2.1.2.

The intermediate spin state Co3+ ion in LaCoO3 is Jahn-Teller active, this

means it is associated with a lattice distortion. This is a very similar situation to that

found in the manganites, and the classic compound LaMnO3. An enormous research

effort has been directed at the manganites because of the colossal magnetoresistance

effect they exhibit, which has potential applications in read-write magnetic memory

devices [19]. Cobaltates have a smaller magnetoresistance than manganites although

they exhibit much of the same behaviour, such as charge and orbital ordering.

However, in cobaltates the Jahn-Teller distortions are predominately dynamic rather

than the static distortions found in manganites [6].

Experiments have shown the most promising cobaltates for practical applica-

tions are the substituted systems with a general formula Ln1−xMxCoO3. The intro-

duction of a bivalent alkali-earth ion can lead to the formation of Co4+ ions. In high

concentrations, the introduction of alkali-earth atoms can lead to magnetic phase

separation of ferromagnetic and non-ferromagnetic regions. When the percolation

threshold is reached, the clustering manifests itself as a metal-insulator transition

coupled to a paramagnet-to-ferromagnet transition [20]. Y1−xSrxCoO3−δ is an ex-

ample of this family of doped-perovskite cobaltates. The structural and magnetic

properties of this compound have an unusual sensitivity to oxygen concentration

which results in a complex superstructure [21], a metal-to-insulator transition [11]

and significant magnetoresistance. Y1−xSrxCoO3−δ is also a room-temperature fer-

romagnet [22]. The source of this ferromagnetic signal is the matter of some debate,

and clustering [23], ferrimagnetism [24] and spin canting [25] have all been discussed

in the context of this compound. The structure and magnetism respectively have

been studied in this thesis using magnetometry, X-ray and neutron scattering on

powders and single crystals, discussed in chapters 5 and 6. A literature review dis-

cussing the details of the research into Y1−xSrxCoO3−δ is included in this thesis as

chapter 4.

1.4 Low-Dimensional Cobaltates

Not all the cobaltates of scientific interest have a 3D perovskite crystal structure.

Layered cobaltates of the LnMCo2O5+δ type can show some of the most dramatic

manifestations of the interplay of the spin, charge and orbital degrees of freedom.

The key feature of this class of materials is the CoO2 plane. Various cuprates, man-
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ganites and ruthenates have this layered structure and features of their behaviour

include striped structural ordering in the cuprates [26] and unconventional super-

conductivity in Sr2RuO4 [27]. Unconventional superconductivity has also manifest

itself in the cobaltates in the layered compound NaxCoO2 · yH2O [9]. Supercon-

ductivity only appears in this compound on the intercalation of water, and it is

hoped that understanding this unusual behaviour may provide some insight into the

mechanisms of superconductivity in other layered transition metal oxides [6].

Such is the richness of the physics of the cobaltate family of materials, both

quasi-2D layered systems and quasi-1D systems display interesting phase diagrams.

One of the most important and most studied of the quasi-1D cobaltates is Ca3Co2O6.

Not only is this compound quasi-1D but the strong anisotropy of the magnetic inter-

actions and crystal fields means the spins are Ising-like, exciting much interest from

researchers [28]. Doped Ca3CoXO6 (X =Rh [29], Ir [30], Fe [31] and Mn [32, 33]),

versions of this compound are also 1D magnetic materials and have also generated

significant recent scientific interest. The research literature on Ca3Co2O6 is sum-

marised in chapter 7.

Ca3Co2O6 itself is a bulk antiferromagnet below 25 K [34, 35, 36]. How-

ever, the feature of its magnetic behaviour that has caused the most interest is the

appearance of regularly-spaced steps in the magnetisation on the application of a

magnetic field [37], and our research into this phenomenon and the behaviour of

Ca3Co2O6 as a function of magnetic field is presented in chapter 9. The appearance

of these steps varies with sweep rate [38], and this time dependent behaviour has

led to some researchers describing the system as glassy [39]. Our neutron scattering

investigations into the temperature and time dependence of the magnetic behaviour

in Ca3Co2O6 are described in chapter 8.

1.5 Discussion

Strongly correlated electron systems such as the cobaltates, ruthenates, manganites

and cuprates have complex phase diagrams and showcase a plethora of interesting

phenomena. These materials have provided condensed matter researchers with a

rich playground over the past 25 years, and have dramatically changed our view of

interactions in solids. Despite all this research, the microscopic mechanisms operat-

ing in many of these compounds are still poorly understood. Competing magnetic

phases in these materials often lead to spatial inhomogeneity on a nanometre scale

and there may be several coexisting magnetic phases within a single sample. Many

of these materials exhibit giant responses to small perturbations, such as changes

in temperature and doping, and behaviour such as superconductivity and ferromag-

netism may be considered to be emergent phenomena [40].
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The interplay of the charge, orbital and spin degrees of freedom in the cobal-

tates means these systems are particularly sensitive to environmental conditions and

doping levels. These different degrees of freedom are defined in chapter 2 which also

outlines the other theoretical considerations relevant to the study of Y1−xSrxCoO3−δ

and Ca3Co2O6. Understanding these complex systems requires detailed and system-

atic measurement, and the techniques employed to carry out the measurements in

this thesis are outlined in chapter 3. The experimental work on the compounds

Y1−xSrxCoO3−δ and Ca3Co2O6 on which this thesis is based is described in chap-

ters 5, 6, 8 and 9. Finally, the broader implications of the research described in this

thesis are discussed in chapter 10.
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Chapter 2

Theory

Cobalt is a transition metal element with a 3d electronic structure (Sc-Zn). These

3d transition metals, and in particular their oxides, are one of the most important

groups of elements in the study of magnetism. The wide variety of different electronic

interactions possible in these materials will be discussed in this chapter. Section 2.1

covers the theory of magnetism, beginning with a description of the behaviour of

isolated magnetic moments and mean field theory and then discussing the exchange

interactions between magnetic atoms and the crystal field environments they inhabit.

The formalism for describing crystalline solids in terms of crystal and magnetic

structures will be outlined in section 2.2. Section 2.3 outlines some of the phase

transitions most likely to be found in the cobaltates, as the study of phase transitions

is central to research into bulk magnetic materials. Finally, the role of quantized

excitations in this class of materials is introduced in section 2.5.

2.1 Magnetism in Solids

2.1.1 Magnetic Moments

The magnetic moment µ on an atom is associated with its total angular momentum

J. For a single atom with only one electron, J is given by equation 2.1, where the

quantum number L describes the orbital angular momentum and S is the quantum

number associated with the intrinsic spin on the electron.

J = L+ S (2.1)

For a material with a linear magnetic response in a small applied magnetic field,

the relationship between the magnetic moment µ and total angular momentum J is

given by:

µ = gJµB

√

J(J + 1) (2.2)
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In this equation, µB is the Bohr magneton, µB = eh̄/2me, and gJ is the Landé

g-factor, which can be expressed in terms of the quantum numbers J, L and S as

follows:

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(2.3)

The magnetic susceptibility χ, the magnetic response of a material to an ex-

ternal stimulus, can be expressed in terms of the magnetic moment per unit volume,

known as the magnetisation M , and the magnetic field strength H. The magnetic

flux density B is related to the magnetic field strength H by B = µ0(H +M). As

above, for a material with a linear magnetic susceptibility in a small magnetic field

the following expression is true (µ0 and kB are the permeability of free space and

Boltzmann constants respectively):

χ =
M

H
≈ µ0M

B
=

µ0µ
2

3kBT
(2.4)

In fact, equation 2.4 is a statement of Curie’s law, which states that magnetic

susceptibility of a material is proportional to the inverse of the temperature. A

system in which Curie’s law is valid, where the moments tend to align with any

applied magnetic field, is known as paramagnetic. The magnetic moments associated

with unpaired electrons in paramagnetic systems can be considered independent and

are therefore randomly aligned in zero magnetic field. Applying a magnetic field

causes the spins to align parallel to the field direction, depending on the strength of

the applied field, until in a high enough field all the moments are aligned and the

magnetisation becomes saturated. An example of a paramagnet in a small applied

magnetic field is illustrated in figure 2.1.

The other kind of magnetic order which may occur when a magnetic field is

applied is diamagnetism. Diamagnetism is usually a weak effect, and most materials

are diamagnetic to some degree. Unlike paramagnetism, the magnetic response of

diamagnets is also largely temperature independent, and equation 2.4 is no longer

valid in these materials. The magnetic moments in a diamagnetic material tend to

oppose any applied magnetic field, and this is illustrated in figure 2.1.

In most systems, the orbital angular momentum L and intrinsic spin S in-

Figure 2.1: Paramagnetic and dia-
magnetic materials at finite temper-
atures in a small applied magnetic
field. Both systems require an ap-
plied field to produce a finite magneti-
sation.

T>0

B>0

Paramagnetism Diamagnetism

B
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teract, albeit weakly, splitting into a number of levels with different J known as the

fine structure. The total angular momentum J, given in equation 2.1, is conserved

through this process. The values of S, L and J for a particular atom which minimise

the energy can be estimated using Hund’s rules, which give an empirical prediction

of the ground state of an ion.

Hund’s Rules

(1) Maximise S

(2) Maximise L

(3) If the shell is less than half full J =| L− S |
If the shell is more than half full J =| L+ S |

T=0

B=0

Antiferromagnetism Antiferrimagnetism

Ferromagnetism Ferrimagnetism

T<Tc

T<T

T=0

B=0

N

Figure 2.2: Some possible types of long-range mag-

netic order. Ferromagnetism, ferrimagnetism, anti-

ferromagnetism and antiferrimagnetism are all va-

rieties of spontenous magnetic ordering in zero ap-

plied field.

It is also necessary to

consider how the magnetic mo-

ments on neighbouring atoms

interact with each other. This

is via an exchange interac-

tion, which will be discussed

in detail in section 2.1.3.

These interactions can result

in a variety of different kinds

of long-range magnetic or-

der such as ferromagnetism,

ferrimagnetism, antiferromag-

netism, spiral order, helical or-

der and spin glasses. Some

of these are illustrated in fig-

ure 2.2. Ferromagnetic sys-

tems have a Curie tempera-

ture Tc below which ferromag-

netism onsets. It is related to

the susceptibility by the Curie-

Weiss law:

χ ∝ 1

T − Tc
(2.5)

Cobalt metal is an itinerant ferromagnet, it has a spontaneous magnetisation with-

out an applied magnetic field due to the splitting of the electron energy bands at

the Fermi level. The Curie temperature for cobalt metal Tc = 1394 K with magnetic

moment of µ = 1.715 µB/f.u.

In an antiferromagnet, the critical temperature is known as the Néel temper-
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ature TN , and in this case Tc = −Θ in equation 2.5. We therefore expect Θ = −TN .

Below TN , the magnetic moments lie antiparallel to their nearest neighbours. In a

crystal lattice the situation is further complicated as these are several possible ways

of arranging an equal number of antiparallel spins on a cubic lattice, discussed in

section 2.2.2.

2.1.2 Crystal Fields

The d orbitals in 3d compounds have a pronounced angular dependence as shown

in figure 2.3. The five d orbitals can be grouped into the two eg orbitals which

point along the crystallographic axes and the t2g orbitals which point between the

crystallographic axes. The local environment can split these two groups of orbitals

in energy. If the environment is octahedral, as in a perovskite where a transition

metal ion is surrounded by 6 oxygens at the centre of each face of the cube, the t2g

levels will be lowered and the eg levels will be raised in energy. The reverse is true

in a tetrahedral configuration [42]. This raising or lowering of the energy levels is

known as crystal field splitting.

Cobalt can exist in several oxidation states (valencies), the most common

being Co2+ and Co3+, with Co4+ also possible. These give electronic configurations

of 3d7, 3d6 and 3d5 respectively. Using Hund’s rules, these give ground state con-

figurations of 4F9/2,
5D4 and 6S5/2 for these three cobalt oxidation states. Hund’s

rules maximise the value of the quantum number S, however in 3d transition metals

crystal field effects compete with the Coulomb pairing energy allowing other possi-

ble configurations. The case predicted by Hund’s rules is known as high spin (HS)

because S is maximised and the crystal field energy is lower than the pairing energy.

When the crystal field energy is much greater than the pairing energy then the

electrons doubly occupy the lower energy states (t2g in an octahedral environment)

before they start to fill the higher energy states. This leads to a lower value of S and

is know as the low spin (LS) case. An intermediate spin (IS) state is also possible

for Co3+ and Co4+ (see also section 2.3.4).

For 3d ions the crystal field interaction is much stronger than the spin-orbit

interaction and this interaction becomes unimportant, an effect known as orbital

quenching. In this case Hund’s third rule is no longer applicable and the ground

state is that where the quantum number L = 0 and J = S. These results have

shown much better agreement with experiment than the predictions of Hund’s rules

for these atoms [42]. However, the spin-orbit interaction can never entirely be

ignored, and some states with non-zero angular momentum may be mixed in, so

an assumption of L = 0 must always be considered an approximation.
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Figure 2.3: The angular distribution of the d orbitals. The eg orbitals are the dz2
and dx2

−y2 levels which lie along the crystallographic axes and the t2g orbitals are
the dxy, dxz and dyz levels which lie between the crystallographic axes. Figure taken
from reference [41].
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2.1.3 Exchange Interactions

Exchange interactions are the mechanism for the formation of long-range magnetic

order, and describe the interplay between the electrons on neighbouring magnetic

ions. For the exchange mechanism to be direct the electron orbitals of neighbouring

atoms must overlap, which is rare in real systems.

e

t

g

2g

Valency N Valency N-1

Oxygen

Figure 2.4: Double exchange in mixed va-

lency materials.

In most magnetic materials, the

exchange mechanism is indirect. The

indirect exchange interaction mediated

by a non-magnetic ion is know as su-

perexchange, as it extends beyond the

orbital ligands of the magnetic atoms.

The classic example is two transition

metal ions separated by an oxygen

atom. The arrangement of the over-

lapping half-filled d orbitals and the

p orbitals of the oxygen ions favours

long-range antiferromagnetic ordering

according to the first Goodenough-

Kanamori rule. The second of these rules states that ferromagnetic ordering may

also occur in such systems where the d orbitals are full and empty respectively [43].

Ferromagnetic ordering in mixed valency materials such as Y1−xSrxCoO3−δ

is more likely to be mediated by double exchange. This occurs in materials where the

magnetic ions have mixed valency. This is because having neighbouring atoms of dif-

ferent valency allows electron hopping between the atoms. Ferromagnetic alignment

is therefore favourable because hopping can only occur between ferromagnetically

aligned spins [42], as shown in figure 2.4.

Charge ordering in mixed valency materials promotes ferromagnetism due to

double exchange as charge ordering means ions of different valency alternate. This

is another phenomenon frequently found in the colossal magnetoresistive mangan-

ites. An example of charge ordering for mixed valency Mn3+/Mn4+ is shown in

figure 2.5. The Mn3+ and Mn4+ ions alternate in a square lattice with manganese

ions with different charges as nearest neighbours. The nearest neighbours can then

ferromagnetically align via the double exchange interaction.

Additionally the anisotropy and, depending on the system, the degeneracy of

the d electron orbitals in such transition metal oxides mean the different orbitals can

also order. This orbital ordering is also illustrated in figure 2.5 for the Mn3+ ions.

The orbital ordering scheme can either favour ferromagnetism or antiferromagnetism

depending on whether the orientation of the orbitals gives rise to double exchange

or superexchange, and several orbital ordering configurations are possible. The
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Figure 2.5: Charge and orbital ordering in the manganites. Figure taken from
reference [44]).
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ordering scheme depicted in the figure is the CE-type orbital ordering (see figure 2.6)

commonly found in the manganites, where the Mn3+ and Mn4+ ions alternate and

charge and orbital ordering coexist. The complex superstructure in Y1−xSrxCoO3−δ

has led to recent suggestions that orbital ordering may also occur in this compound

[45].

2.2 Structures of Solids

2.2.1 Space Group Symmetry

Crystalline materials are defined by their fully ordered, periodic structure known as

the crystal lattice. The formalism for describing these structures involves defining

the unit cell of the lattice, which is the smallest parallelepiped which will fully repli-

cate the lattice, filling all space, using only appropriate translation operations [46].

The vectors defining the sides of this parallelepiped are the lattice parameters and

their relationship to each other defines the 7 crystal systems; cubic, tetragonal, or-

thorhombic, monoclinic, triclinic, trigonal and hexagonal. These crystal systems

can then be either primitive (P), face-centred (F), body-centred (I) or side-centred

(A, B or C), giving the 14 Bravais lattices.

The overall symmetry of a crystal structure is described by a combination of

the translational and point symmetry of the atoms, known as the space group. There

are four point symmetry operators: rotation, mirror planes, centre symmetry and

rotoinversion. The number of rotational axes is denoted by a number between 1 and

6, and the number of mirror planes by the letter m such that a system with 4 rota-

tional axes and 2 mirror planes will have the point group 4mm. A centrosymmetric

structure has inversion symmetry, denoted 1̄, rotoinversion symmetry is therefore

the combination of a rotation and inversion operation such that the notation 2̄ is a

two-fold rotation plus inversion symmetry. The situation is somewhat complicated

by the frequent combination of these symmetry elements, such as the combination

of a 2-fold rotational axis normal to a mirror plane, which would be written 2/m.

The combination of the 32 possible point groups and the 14 Bravais lattices gives

61 of the 230 possible space groups [47].

The other 169 space groups are given by the addition of translational symme-

try given by screw axis and glide planes. Screw axis are the combination of rotation

and translation operations, with notation nm where n is the order of the rotation

and m is the translation as a fraction of the lattice vector 1/m. Glide planes are the

combination of a reflection in a given plane and a translation parallel to it, denoted

a, b or c depending on the direction of the translation [47]. The combination of

the space group and the Wyckoff positions of the atoms within the unit cell should

entirely describe the crystal structure of a material.
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A structure whose periodicity does not match the periodicity of the crystal

lattice is known as incommensurate. Incommensurability is usually associated with

a phase transition, and may only be present across a small temperature range (see

section 2.3). A system whose incommensurability is a finite fraction of the crystal

lattice is known as modulated, and involves a periodic distortion [48]. This distortion

will give rise to satellite reflections which could also be described by a unit cell of

lower symmetry, so called superstructure, where the original unit cell is the parent

structure [49]. Such commensurate and incommensurate structural modulations are

often associated with Jahn-Teller lattice distortions (section 2.3.2) and charge and

orbital ordering (see figure 2.5) and have been intensely studied in the context of the

combination of ferroelectricity and antiferromagnetism in the manganites [50]. Such

structural modulations are discussed in the context of the cobaltate Y1−xSrxCoO3−δ

in chapter 5 of this thesis.

2.2.2 Magnetic Structures

The arrangements of spins in a crystal lattice can be described by defining its mag-

netic structure. As with a crystal structure, a space group must be given and

symmetry operators defined in order to generate atoms at all symmetry equivalent

positions in the magnetic unit cell. There are 1651 magnetic space groups, the extra

number compared to the crystallographic space groups being due to the need for a

time reversal operator. Obviously, the magnitude and direction of the spin on each

magnetic atom site must be specified. As magnetism is a dynamic process involving

spin waves (see section 2.5.2) the magnetic structure is a static approximation of

the configuration of magnetic moments in the lattice. Magnetic structures may also

be described using group theory [51].

The key parameter when defining a magnetic structure is the propagation

vector. This parameter describes the relationship between the unit cell of the mag-

netic structure and the unit cell of the crystal structure. In a commensurate mag-

netic structure, the magnetic and crystallographic unit cells are the same and the

propagation vector is (0,0,0). The magnetic unit cell may also be larger than the

crystallographic unit cell, such as in the case of a single antiferromagnetic spin per

crystallographic unit cell, where the magnetic unit cell will be doubled. Addition-

ally the magnetic unit cell can be completely incommensurate, and the propagation

vector may have no relationship to the lattice parameter in any direction. This

would imply a spin density wave propagating through the lattice in the direction

of the incommensuration, and at least one of the terms in the propagation vector

would be non-integer. This is the case in Ca3Co2O6 and will be discussed in detail

in chapter 7.

The magnetic structure describes the arrangement of spins on a lattice. This
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Figure 2.6: The four types of
antiferromagnetic order which
can occur on simple cubic lat-
tices. In perovskite struc-
tures, G-type ordering is com-
mon because nearest neighbour
superexchange interactions are
mediated by the oxygen octa-
hedra. Adapted from reference
[42].

Type A

Type G

Type C

Type E

is especially important for antiferromagnetic materials, as there are several ways

of arranging an equal number of up and down spins on a lattice. The four types

of antiferromagnetic order possible for a simple cubic structure are shown in figure

2.6. In perovskite structures such as that of Y1−xSrxCoO3−δ, G-type antiferro-

magnetism is common because superexchange interactions mediated by the oxygen

atoms force all nearest neighbour spins to be antiferromagnetically aligned. An ex-

ception is LaMnO3, whose magnetic ordering scheme is A-type [42]. Ferrimagnetic

and antiferrimagnetic structures may have even more complex configurations, as

the unequal magnetic moments on different crystallographic sites arrange to form

long-range magnetic order in the lattice.

2.2.3 Dimensionality

The magnetic interactions in a solid may be described using one of several micro-

scopic models. The choice of model depends on the dimensionality of the magnetic

order. This is distinct from the dimensionality of the crystal lattice, which may be

1, 2 or 3D depending on the atom positions. The dimensionality of the magnetic

structure describes how the spins are correlated within the lattice. 3D magnetic

correlations can be described using the nearest-neighbour Heisenberg model, equa-

tion 2.6, where J is the nearest neighbour exchange integral and the spins Si and

Sj are 3D vectors. The dimensionality of the lattice for the 3D nearest neighbour

Heisenberg model may be 1, 2 or 3D.

H = −
∑

ij

J ijSi·Sj (2.6)

If the dimensionality of the magnetic order is 1D, as with the spin chains in

Ca3Co2O6, the appropriate magnetic model is the Ising model. In this model we

only consider the z component of the spin in equation 2.6 and the spins can only

align exactly parallel or antiparallel with the z axis. For a system with perfectly
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Ising spins on a 1D lattice, it can be shown that the critical temperature Tc = 0 and

there is no phase transition to long-range order [42].

2.3 Phase Transitions

2.3.1 Orders of Phase Transitions

Phase transitions can be structural, magnetic, superconducting or ferroelectric, to

name a few. The nature of phase transitions can be studied using Landau theory.

Landau theory states that the free energy can be written as a function of the order

parameter of the system, and this function can be expressed as a Taylor expansion:

F (ξ) = a+ a0(T ) + a2(T )ξ
2 + a3(T )ξ

4 (2.7)

If a3(T ) is positive, the phase transition is known as second-order, and the order

parameter goes continuously to zero at the transition temperature (T0), shown in the

left panel of figure 2.7 [46]. First-order phase transitions occur when the coefficient

a3(T ) is negative. First-order phase transitions involve a latent heat, and there

is a discontinuity in the order parameter at the transition temperature, shown in

the right panel of figure 2.7. An example of a first-order phase transition is the

ferroelectric transition in BaTiO3 as a function of temperature [46]. Most of the

phase transitions discussed in this thesis are second-order.

2.3.2 Structural Transitions

The perovskite ABO3 structure, described in the introduction and shown in figure

1.2, is cubic with space group Pm3̄m. Although many systems have this structure,

even more common are its derivatives which are related to the Pm3̄m structure by
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Figure 2.7: Orders of phase transitions (adapted from reference [46]). First-order
transitions are discontinuous at the phase boundary, whereas for second-order phase
transitions the order parameter goes continuously to zero.

17



the suppression of one or more symmetry operators. This structural phase transition

to a lower or higher symmetry state may take place as a function of temperature,

pressure or chemical doping. The loss of symmetry can be due to; tilting of the

polyhedra surrounding the B cations, displacement of B cations from the centre

of the structure or distortion of the polyhedra due to the Jahn-Teller effect [52].

Increased covalency of A-O or B-O bonds, incomplete occupancy of one or more

the lattice sites or ordering of the atoms on either the A or B sites, such as in the

(A’A”)BO3 or A(B’B”)O3 double perovskites, can also result in change in structural

symmetry [53].

The most common type of distortion in a perovskite lattice is the tilting

of the BO6 octahedra. The rotation of successive layers in the same direction is

known as an in-phase tilt, denoted by a positive superscript (a+ is a rotation about

the x axis), the rotation of successive layers in opposing directions is known as an

anti-phase tilt, denoted by a negative superscript (b− is a rotation about the y axis

which has a different magnitude to the rotation about x) [53]. The notation for an

axis with no tilting is a0. The tilting from the simple perovskite structure which

leads to the R3̄c space group of Ca3Co2O6 is a
−a−a− and the I4/mmm space group

proposed for Y1−xSrxCoO3−δ is formed through an a0b+b+ tilt. This tilt leads to

so called tilt peaks in the X-ray or neutron diffraction pattern, small peaks to the

side of one of the main Bragg peaks belonging to the simple perovskite phase, the

side on which the peaks appear depending on the phase of the distortion.

The loss of centrosymmetry of a perovskite due to the displacement of the B

cation from the centre of the structure is common in ferroelectric materials, as the

induction of a dipole moment in the unit cell means a net polarization is generated.

The classic example of this is BaTiO3. These displacive phase transitions are often

associated with the distortion of the octahedra in perovskites [52], which in turn

can also be driven by electronic interactions such as the Jahn-Teller effect. This

effect occurs when the local crystal field environment causes it to be energetically

favourable for the perovskite ocathedra to distort. This distortion results in the

splitting of the levels of the d orbital, and can be either static or dynamic in nature.

This type of lattice distortion is common in the manganites, and can also be coupled

to an octahedral tilt.

From empirical evidence and group theory considerations, a sequence of

structural phase transitions for a perovskite might be Pm3̄m to I4/mcm to Cmcm

to Pnma, seen in SrTiO3, SrRuO3 and CaTiO3 [53]. In terms of crystal systems,

this is cubic to tetragonal to octahedral to (pseudo)monoclinic. The number of

transitions and distortions possible in perovskites can make it difficult to assign a

space group, and mistakes and incorrect space group assignment are prevalent in

the literature.
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It should be noted that at finite temperatures, some thermal expansion of

the lattice parameter is expected, as the thermal motion of the atoms means they

have a greater average separation when the temperature is increased. For solids,

the coefficient of thermal expansion α has lattice, magnetic, electronic and Schottky

contributions, as expressed below:

α = αlattice + αmagnetic + αSchottky + αelectronic (2.8)

The lattice contribution may be affected by the crystalline anisotropy of the material,

and identifying structural transitions from changes in the thermal expansion of the

lattice parameter is non-trivial.

2.3.3 Magnetic Phase Transitions

Magnetic phase transitions come in many forms, and like structural phase transitions

can also be induced as a function of temperature, pressure, composition, or applied

magnetic field. Some classic examples include the paramagnetic-to-ferromagnetic

transition and the superconducting phase transition. The experimental signature

of a paramagnetic-to-ferromagnetic phase transition is a spontaneous magnetisation

which can manifest itself as the opening up of the hysteresis loop in a measurement

of the magnetisation as a function of applied magnetic field strength. This effect is

due to the increasing alignment of the domains in the sample as the applied field

is increased. At some applied magnetic field, a ferromagnet will reach a saturation

magnetisation Ms when the whole sample consists of a single domain aligned with

the applied field.

The magnetic phase diagram for a material such as Y1−xSrxCoO3−δ or

Ca3Co2O6 in which several magnetic phase transitions occur may be very complex,

with mixed phase regions possible, particularly when the sample is only partially

ordered, such as a frustrated system or a spin glass (section 2.4). A complete phase

diagram as a function of temperature, composition and magnetic field for a material

of interest is one of the goals of solid state science.

2.3.4 Spin State Transitions

The fact the electrons in cobalt atoms can exist in three different spin states de-

pending on the crystal field environment has already been discussed in section 2.1.2.

This should be emphasised, as spin state transitions are not usually possible in per-

ovskite manganites or cuprates, although they are possible in compounds containing

Fe2+ [42]. Figure 2.8 illustrates the possible spin states for each of the three cobalt

valencies.

In a perovskite, it would be expected that the cobalt valency is Co3+, as it
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Figure 2.8: The electronic configuration for Co2+, Co3+ and Co4+ in an octahedral
environment in the high spin (HS), intermediate spin (IS) and low spin (IS) cases
[57].
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is in an environment surrounded by six oxygen atoms at the centre of a face-centred

unit cell (oxygen has valency O2−). The classic material which exhibits a spin state

transition, LaCoO3, is a rhombohedrally-distorted perovskite, so looking at figure

2.8 and assuming orbital quenching, µ = 2
√

S(S + 1) µB and the expected sizes of

the moments for the possible spin states are µ = 0 µB for LS, µ = 2.83 µB for IS

and µ = 4.90 µB for HS.

Cobalt atoms have different ionic radii in different spin states [6]. For Co3+,

the ionic radii are 0.545 Å, 0.560 Å and 0.610 Å for LS, IS and HS respectively.

This means a spin state transition is accompanied by a corresponding change in the

lattice parameter, with an expansion coinciding with a transition to a higher spin

state. Other experimental evidence of spin state transitions comes from polarised

neutron scattering [15] and NMR measurements [54]. As with other structural and

magnetic transitions, the temperature at which a spin state transition occurs may

be altered by pressure, illumination and composition, and the transition is shifted

to a higher temperature when lanthanum is replaced by a larger lanthanide ion [6].

2.4 Novel Magnetic Behaviour

2.4.1 Frustration

In some magnetic systems, competing interactions mean there is no unique ground

state. The term for a system with such degenerate ground states is frustrated.

Probably the most common example is geometric frustration arising from triangular

arrangements of spins which are antiferromagnetically coupled [55], shown in figure

2.9.

The effects of frustration mean some frustrated magnets will never reach a

long-range ordered state. Spin-liquids are frustrated systems which have a high

degree of correlation, but still retain fluctuations at the lowest temperatures [56].

Spin-ice materials are 3D spin-liquids where Ising spins sit on the apexes of corner-

sharing tetrahedra, the so called pyrochlore lattice with chemical formula A2B2O7.

These systems have caused particular interest because of the discovery of ‘magnetic

monopoles’, a semi-infinite string of spins with a magnetic charge, in spin-ice [56].

? Figure 2.9: Antiferromagnetic nearest neighbour
interactions on a 2D triangular lattice. It is not
possible to orientate the three spins in such a way
that the antiferromagnetic interactions between the
three spins are satisfied [42].
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2.4.2 Glassiness

Frustration can also be induced by site or bond-randomness, such as in the man-

ganese substituted alloy Cu1−xMnx [42]. These materials are also known as dilute

spin glasses because of the disorder such a substitution causes. Spin glasses are dis-

ordered magnetic systems which nevertheless exhibit a distinct magnetic transition

at some well-defined temperature. Below the transition, the spins are frozen in a

metastable magnetic state. The randomness may be chemical, such as the site or

bond randomness discussed above, or due to competing interactions or magnetic

anisotropy [42].

At temperatures well above the transition, the moments in a spin glass will

be independent and uncorrelated. However, as the transition is approached the spins

can become locally correlated, forming clusters. The magnetic ground state of such

a material would be ‘glassy’ and usually displays time dependent behaviour. This

would be signaled by a divergence in the dc-susceptibility and a sharp peak in the

ac-susceptibility at the transition temperature. This behaviour has been seen in the

perovskite La1−xSrxCoO3, where a model of short-range clustered ferromagnetism

and intrinsic phase separation has been proposed [57].

2.4.3 Time Dependent Magnetic Behaviour

Although all transitions in real systems are to some extent time dependent, notably

compounds in a ‘glassy’ regime, some correlated electron systems change state over

much longer timescales. For magnetic systems, the measured value of τ can vary

from 10−12 seconds to geological timescales.

The simplest mathematical description of a perturbed system returning to

equilibrium is an exponential decay or Arrhenius equation, used to describe the

dynamics of an activated process, typically a chemical reaction. This assumes that

an energy barrier hinders the forward progress of a transition to a new state, and is

given in equation 2.9 where Ea is the activation energy, T is the temperature and k

is the rate coefficient:

k = Ae
−

Ea
kBT (2.9)

This equation was recently used to describe the long-time variation of the magnetic

structure in CeIr3Si2 [58]. In this material, there is a transition between magnetic

phases at 1 K as a function of time with an activation energy Ea/kB = 4 K.

If a system has a range of activation energies, it may be necessary to use a

stretched exponential to describe the time dependence. The stretched exponential

can be used to provide a phenomenological description of relaxation in disordered

systems. Traditionally, it has been used to describe the discharge of a capacitor,

where it is known as the Kohlrausch function. The stretched exponential is defined
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in equation 2.10,

P (t) = Peq + [P (0)− Peq]e
−(t/τ))β (2.10)

where P is some order parameter with P (0) and Peq the initial and equilibrium

values of the order parameter respectively, and τ is the characteristic relaxation

time. The parameter β can take values satisfying 0 ≤ β ≤ 1.

Time dependence plays a crucial role in the behaviour of many magnetic

systems. An example of a family of magnetic materials where this is the case would

be the systems of ferromagnetic nanoparticles known as superparamagnets. The

magnetisation in these systems can flip direction, and the energy at which this hap-

pens is known as the activation energy, and the time dependence of this behaviour

changes as a function of temperature. The magnetic particles cease to fluctuate and

become ‘locked-in’ to some energy minima at some defined temperature [42]. A dis-

cussion of the role of time dependence in the magnetic behaviour of the compound

Ca3Co2O6 forms the core of chapter 8 of this thesis.

2.5 Excitations

2.5.1 Phonons
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Figure 2.10: The phonon dis-

persion relation in the first

Brillouin zone for a diatomic

lattice.

Lattice vibrations, quantized as phonons, are char-

acterised by their dispersion relation which express

the angular frequency ω(k) as a function of wavevec-

tor k (or energy h̄ω and momentum h̄q). The dis-

persion relation for 1D phonons is given in equation

2.11 [47], where m is the mass of the atoms and J

is the force constant:

ω(k) =

√

2J

m
(1− cos(ka)) (2.11)

Where there is more than one atom per cell, the

dispersion relation has multiple branches, and in a

diatomic lattice the optical branch is formed when

atoms move together in-phase and the acoustic

branch when the vibrations are out-of-phase. The

key characteristics of these two branches are shown

in figure 2.10, the acoustic phonons are gapless and the optical phonons are flatter

and gapped at k = 0. Generally, for N atoms per unit cell there will be three

acoustic branches, of which one will be longitudinal and two will be transverse, and

3N − 3 optical branches.
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Phonons are an important factor in measurements of the specific heat, and

various models are used to describe their contribution. The empirical Dulong-Petit

law states that the specific heat of a material is a constant 3R per mole of atoms

as a function of temperature, where R is the gas constant. It was later shown that

this is only valid in the high temperature limit, as the low temperature behaviour

of the specific heat is a quantum phenomenon. The phonon contribution to the

specific heat at constant volume (Cv) at low temperatures can then be modelled

using equation 2.12:

Cv =
12

5
π4NkB

(

T

θD

)3

(2.12)

Where N is the number of atoms, kB is the Boltzmann constant, T is the temper-

ature and θD is the Debye temperature. The Debye temperature can be expressed

as a function of β as θD =
(

12
5 π

4pR/β
)1/3

where p is the number of atoms in each

molecule and β is the quantity measured.

The Debye model is derived from the assumption of the propagation of an

acoustic wave through an isotropic solid, and the Debye temperature is therefore

temperature at which all the vibration modes are excited. The model predicts the

heat capacity to vary as T 3, but the other contributions must be considered in any

real measurement. A derivation of the electronic contribution to the specific heat

for a free electron gas is given in reference [46], and it is predicted to vary as Cv ∝ T .

The combination of electronic and phonon contributions will therefore give a low

temperature heat capacity as a function of temperature according to equation 2.13.

Cv(T ) = γT + βT 3 (2.13)

There may also be Schottky and magnetic contributions, and the latter of these will

be discussed in the next section.

2.5.2 Magnons

While lattice vibrations are quantised as phonons, fluctuations of the magnetic struc-

ture are quantised as magnons. Magnon spin waves can be described by a dispersion

relation, given in equation 2.14 for a linear ferromagnetic chain, in the same vein as

phonon lattice vibrations:

h̄ω(k) = 4JS(1 − cos(ka)) (2.14)

It can be shown that for an isotropic ferromagnet these spin waves are gap-

less at q = 0 [42], although gaps may appear due to anisotropy. For ferromagnets,

equation 2.14 can be simplified to ω(k) ∝ q2 in the low q region. For antiferromag-

nets, the dispersion relation for a spin wave on a linear antiferromagnetic chain is
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ω(k) ∝ | sin(qa)|, where a is the separation between spins [59]. This means for an-

tiferromagnets in the low q region, ω(k) ∝ q, where the constant of proportionality

is the spin wave speed.

Magnon vibrations will contribute to the heat capacity just as the phonons

do. Bloch derived the reduction in the spontaneous magnetisation at low tempera-

ture due to the thermal excitation of ferromagnetic magnon modes to be ∆M ∝ T 3/2

which implies the heat capacity is also proportional to T 3/2. For antiferromagnetic

magnons, Cv ∝ T 3, so antiferromagnetic spin waves can be difficult to distinguish

from ordinary phonon modes in a heat capacity measurement.

2.6 Discussion

Both Y1−xSrxCoO3−δ and Ca3Co2O6 are complex magnetic system in which many

competing physical processes act in combination. The magnetic moments in these

compounds are influenced by the crystal field environments, the neighbouring atoms

and the shape of the d electron orbitals. These in turn may be altered as a function

of temperature, pressure, chemical composition or applied magnetic field, resulting

in a phase transition. Magnetic and structural phase transitions between the differ-

ent states in these systems will be investigated as part of this thesis and the precise

nature of the magnetic state in each regime will be studied. Various experimental

methods will be used to make these investigations, including susceptibility and heat

capacity measurements to examine the macroscopic properties of these two cobal-

tates and neutron scattering to probe the microscopic behaviour of the magnetic mo-

ments. Both powder and single crystal samples of Ca3Co2O6 and Y1−xSrxCoO3−δ

will be employed. The next chapter details the experimental techniques utilised in

these studies.
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Chapter 3

Experimental Techniques

This chapter details the four key experimental techniques which have been part of

this study of the magnetic phases in Y1−xSrxCoO3−δ and Ca3Co2O6; sample prepa-

ration, laboratory measurements of their physical and magnetic properties, X-ray

diffraction and neutron scattering. These techniques are described in sections 3.1,

3.2, 3.3 and 3.4 respectively. Both polycrystalline and single crystal samples were

used in this investigation, and the precise composition of each of the Y1−xSrxCoO3−δ

samples was characterised using EDAX, TGA and X-ray diffraction. A substantial

portion of this thesis concerns the diffraction, spin-polarised and inelastic neutron

scattering measurements used to study the magnetic properties of Y1−xSrxCoO3−δ

and Ca3Co2O6, and the theoretical considerations behind these techniques are dis-

cussed in the latter part of this chapter.

3.1 Sample Preparation and Characterisation

3.1.1 Crystal Growth Techniques

The advantage of using single crystals in the study of strongly correlated electron

systems is clear. Not only can the magnetocrystalline anisotropy of a material be

measured but the uncertainty associated with the powder average is also eliminated.

Single crystals of both Y1−xSrxCoO3−δ and Ca3Co2O6 were investigated as part

of work included in this thesis, and the preparation of the Y1−xSrxCoO3−δ single

crystals using the floating zone technique forms a portion of the experimental work.

Ca3Co2O6 single crystals were prepared using a flux method by another researcher

prior to the start of the work described [154].

Flux Growth

Flux growth is a solution method for growing single crystals where the appropriate

reactants are dissolved in a solvent or flux to make a homogeneous solution and
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then cooled slowly to promote spontaneous nucleation. The main advantages of this

method are that the equipment required is simple, the timescale for the preparation

of samples is relatively short, both congruently and incongruently melting materials

can be grown and only small amounts of starting materials are needed.

The disadvantages of the flux growth method mean that it is not always the

first choice of technique for the production of single crystals. The crystals formed

using flux growth are usually small, and unsuitable for experiments requiring large

sample volume. Furthermore, using this method can make the crystals difficult to

extract from the crucible or flux, risking contamination, which means the outcome

of such a growth can be unpredictable and several attempts may be required to

successfully produce crystals.

The Floating Zone Method

In 1953 Siemens were granted a patent for the floating zone method for producing

large single crystals of silicon. However, this technique has only been used for

the growth of single crystals of magnetic materials and superconductors since the

1980’s. Figure 3.1 shows a photograph and diagram of a two mirror NEC image

furnace used for the production of single crystals using the floating zone method. A

polycrystalline feed rod is suspended in the furnace above a polycrystalline or single

crystal seed. The light from two halogen bulbs is focused onto the feed rod using

two ellipsoidal mirrors. When the tip of the feed rod melts a molten zone is formed

between the feed and seed rods, held by surface tension. The polycrystalline feed

rod is slowly drawn through the molten zone and solidifies on the seed rod. The

feed and seed rods are counter-rotated to ensure homogeneity of composition and

temperature. Small adjustments to the rate of shaft movement, the shaft rotation

speed and the power to the bulbs help to maintain the zone over the timeline of the

growth, anywhere between hours and weeks.

The floating zone method ensures the solid crystal forms without contam-

ination. The facilities at Warwick allow growth in an atmosphere of air, oxygen,

nitrogen or argon up to 9 bars, according the compound, and the floating zone

method has been found particularly useful for the growth of crystals of oxide ma-

terials. Suitable polycrystalline rods are produced by compacting the precursor

powder into a waterproof membrane (a balloon!) and applying isostatic pressure.

The rod is then sintered to preserve the shape. The seed may be the same com-

position or a different composition with the same lattice structure. The crystals

produced are usually much larger than those made by a flux growth method, with

a diameter of around 1 cm and lengths of several cm. This size makes them useful

for experiments requiring a large volume, such as neutron scattering.

27



Figure 3.1: The key features of a floating zone image furnace. Ellipsoidal mirrors
are used to form a molten floating zone which the polycrystalline feed rod is slowly
drawn through.

3.1.2 Energy Dispersive Analysis using X-rays

EDAX (Energy Dispersive Analysis using X-rays) measurements to determine the

final stoichiometry of the polycrystalline and single crystal samples were made using

a JEOL 6100 scanning electron microscope with optional energy analysis. The beam

of electrons interacts with the sample and an electron from an inner atomic shell may

be excited to an outer shell. A higher energy electron then fills the hole and energy

is given off in the form of an X-ray. The energy of that X-ray will be characteristic

of the energy difference between the two energy levels, and so characteristic of the

electronic structure of the element involved. From the resulting energy spectrum,

peaks can be identified which are associated with particular elements. An example

of the energy spectrum from a sample of Ca3CoMnO6 is shown in figure 3.2. The

peaks corresponding to each of the elements are labelled, and their relative sizes can

be used to calculate the population of these species in the sample.

Figure 3.2: The EDAX
spectrum of Ca3CoMnO6

taken on JEOL 6100 scan-
ning electron microscope
with optional energy anal-
ysis. The Kα peaks for
the elements present are
labelled.
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The accuracy of EDAX as an analysis technique is known to be limited by

several factors. Light elements are more difficult to detect as windows in front of the

detector absorb low energy X-rays. Incorrect settings can alter the relative intensi-

28



ties of the peaks. Peaks may also overlap. Most importantly for the bulk samples

studied in this thesis, EDAX is surface sensitive technique, and imperfections on

the surface of a sample such as roughness or impurities can adversely affect the

measurement.

3.1.3 Thermogravimetic Analysis

The oxygen content of perovskite cobalt oxides can be evaluated using a variety of

methods. The two most commonly used of these are thermogravimetric analysis

(TGA) and iodometric titration [60]. Both of these are redox processes where the

cobalt species are reduced to those of lower valency, in the case of TGA to cobalt

metal and in the case of iodometric titration to Co2+. Thermogravimetric analysis

involves heating the sample in a reducing atmosphere (3.5 % H2 in Ar) and equation

3.1 shows the reduction process for a LnCoO3−δ perovskite. Assuming the reduction

is complete, the oxygen content can be derived from precise measurement of the

change in mass.

LnCoO3−δ(s) + H2(g) → LnO(s) + Co(s) + (3− δ)H2O(g) (3.1)

TGA measurements are often carried out in conjunction with heat flow mea-

surements such as differential thermal analysis (DTA) and differential scanning

calorimetry (DSC). This is because it allows differentiation between thermal pro-

cesses involving no change in mass (e.g. melting) and those where the mass changes.

The main advantages of TGA for oxygen content analysis are its relative simplicity

and the extra thermal information gained during the measurement. Studies [60, 61]

have shown that TGA and titration methods give the same result, but TGA is less

precise, with the results showing greater scatter.

3.2 Physical and Magnetic Properties Measurements

3.2.1 dc-Susceptibility

dc-susceptibility measurements were made using a SQuID (Superconducting Quan-

tum Interference Device) magnetometer, part of Quantum Design’s Magnetic Prop-

erty Measurement System (MPMS) [62]. The magnetometer consists of a second-

order gradiometer (counter-wound pick-up coils) connected to two parallel Josephson

junctions in a superconducting ring. The sample is mounted in a non-magnetic sam-

ple holder on a sample rod, shown in figure 3.3, and moved through the gradiometer

so that a current is induced in the coils by electromagnetic induction. The SQuID

then functions as an extremely sensitive current to voltage converter, outputting

the change in magnetic flux measured by the pick-up coils as a dipole voltage re-
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sponse. When calibrated to a sample of known mass and magnetic susceptibility,

this response can be fitted to obtain the magnetic moment of the sample in electro-

magnetic units (emu). The sensitivity of the SQuID means signals of 5x10−8 emu

can be measured with this system.

A superconducting magnet is incorporated into the MPMS system, enabling

measurements to be made in applied magnetic fields (µ0H) of up to 7 T, with a

field uniformity of 0.01% over 4 cm. Magnetisation measurements can be made as a

function of both temperature and applied magnetic field over a temperature range

of 2 to 400 K. Temperatures up to 800 K can be achieved by using an optional

furnace insert, but the sample must be mounted in an alumina sample holder to

withstand the higher temperatures, which increases distortion of the dipole signal

and therefore the background noise on the measurement.
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Figure 3.3: Schematic diagram of the MPMS system, showing the sample rod in-
side the pick-up coils connected to the SQuID device. The dipole voltage response
recorded by the SQuID is shown on the right of the figure.

3.2.2 ac-Susceptibility

An ac-susceptibility option available for use with the MPMS was also utilised. While

dc-susceptibility measurements record the equilibrium value for the magnetisation,

ac-measurements yield information about the magnetisation dynamics in a material.

A small ac drive field Hac with frequency ω is applied to the sample in addition to

any larger applied dc field, inducing a time dependent moment. The quantity mea-

sured Mac = (dM/dH) · Hac sin(ωt) is sensitive to the susceptibility χ = dM/dH,
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and features will be observed in the data where there are changes in the slope of

the magnetisation. This means small changes in the magnetisation behaviour can

be detected. When the sample response lags behind the driving field, and a phase

shift is introduced into the equation above. This means the ac-susceptibility can be

interpreted as having two components, the real χ′ and imaginary χ′′ parts, which

probe dM/dH and dissipative processes in the sample respectively. For example,

the irreversibly in spin-glasses leads to a non-zero χ′′ which has a frequency depen-

dence [63].

3.2.3 Specific Heat

Specific heat measurements were performed using a two-tau relaxation method in

a Quantum Design Physical Properties Measurement System (PPMS). The sample

is mounted on a stage which is suspended in the centre of the puck [64] to provide

a controlled heat leak to the sample. The sample is attached to the stage using

Apiezon H or N grease to ensure good thermal contact. The puck is then inserted

into the PPMS, which is equipped with a 9 T magnet and capable of a temperature

range of 1.9 to 400 K [64]. The heat capacity at a particular temperature is measured

by inducing a small increase in temperature, around 2 % of the temperature of the

sample, and recording the differences in temperature between the sample, sample

stage and puck on warming and cooling.

The two-tau model for measuring heat capacity assumes the sample is not in

good thermal contact with its surroundings [65]. Two time constants are taken from

the relaxation times between the sample and sample stage and the sample stage and

puck. This is then compared to a model involving perfect thermal contact between

the sample and stage to give the relaxation model. An addenda measurement of

the heat capacity of the sample stage and the heat capacity of the grease is also

subtracted from the measured signal to give the sample heat capacity [65].

As discussed in section 2.5, there are may be phonon, electronic, Schottky

and magnetic contributions to the heat capacity. In order to deconvolve these con-

tributions, a phonon blank measurement is often made of a compound with the same

crystal structure and molecular weight as the system of interest, but with no mag-

netic ordering. The phonon and electronic contributions of the two systems should

then be the same, and then the phonon blank measurement can be subtracted to

give the magnetic contribution to the heat capacity. The difference between the

molecular weights of the sample and phonon blank may also be corrected for.

Heat capacity can also provide quantitative information about the entropy

(S) of the system, the relationship between the two is given in equation 3.2.

CV = T

(

dS

dT

)

V
(3.2)
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This can then be compared with expected entropy per mole of a saturated param-

agnetic substance with total angular momentum J , S = R ln(2J + 1), where R is

the molar gas constant and Cv is the heat capacity at constant volume [66].

3.3 X-ray Scattering

3.3.1 Diffraction

Diffraction of X-rays, neutrons and electrons is the most important method of study-

ing the crystal and magnetic structure of materials. The wavevectors k and k′ of the

incoming and outgoing beams in the diffraction experiment respectively are defined

in figure 3.4. The scattering vector is then ∆k = k′ − k [46]. For elastic scattering

the magnitudes of k and k′ are equal, and for the special case of Bragg diffraction

∆k = G, where G a reciprocal lattice vector of the crystal structure under inves-

tigation. Diffraction is coherent elastic scattering from a crystal structure and is

governed by Bragg’s law, nλ = 2d sin θ, where n is the order of the reflection, λ

is the wavelength of the incoming radiation, d is the lattice spacing and θ is the

incident angle of the radiation. When the energy of scattered beam is allowed to

change, the magnitudes of k and k′ are not constrained to be equal and this is

known as spectroscopy, discussed in detail later in the chapter.

Figure 3.4: The Ewald
sphere construction where
k and k’ are the wavevec-
tors of the incoming and
outgoing beams respectively.
∆k = k′ − k = G, where G
is a reciprocal lattice vector
of the sample, d is the lattice
spacing, θ is the incident
angle of the wavevector
and the Bragg condition is
λ = 2d sin θ (n =1).
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3.3.2 Powder X-ray Diffraction

Powder X-ray diffraction is an extremely versatile technique which was used in this

thesis both to assess the composition of compounds of interest by matching recorded

patterns to those in a large database and for detailed analysis of the material struc-

ture. Rietveld refinement, described in section 3.3.5, was used to analyse the crystal

structure and subtle structural changes in a material. However, this kind of analysis

is non-trivial, as when we make a diffraction measurement no phase information is
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incorporated into the measurement of the intensity I = |F (hkl)|2. This is known as

the phase problem. Many methods and assumptions are used to try and deal with

this problem, for example in most crystalline materials we can assume centrosym-

metry and the associated reduction in degrees of freedom that can be made from

this assumption is known as Friedel’s law.

Powder diffractometers may be set up in several geometries. In a tradi-

tional Debye-Scherrer geometry, the detector moves in a circle around the sample.

More common in modern diffractometers is the Bragg-Brentano geometry, where

the detector and sample are moved so that the detector is always at an angle of

2θ and the sample surface is always an angle of θ to the incident X-ray beam. In

Bragg-Brentano geometry there is a sensitivity to errors in the sample height which

are corrected by the addition of an offset. The X-ray sources used for the powder

diffraction experiments described in this thesis were all copper-based, and some were

monochromated to improve the resolution.

3.3.3 Laue Diffraction

The Laue method is used to determine the orientation of single crystals and align

them along particular directions. The beam is not monchromated, so a range of

wavelengths, a white beam, is used. This means many diffraction events happen

simultaneously and a whole plane of reciprocal space can be probed in a single

measurement. The recorded images can then be compared to those predicted from

the knowledge of the crystal structure of the material, this was done using the

OrientExpress software package.

The X-ray Laue camera used in this work is operated in backscatter geometry,

and the incident X-ray is fired through the centre of the scintillator screen and then

backscattered towards the screen by the crystal. The peak emission of the (terbium-

doped gadolinium oxysulfide) scintillator screen is at 500 nm, which matches the

quantum efficiency response of the charge-coupled device (CCD) used to detect the

diffracted X-rays.

The Laue system is remotely controlled from a computer, which means mul-

tiple images can be recorded in sequence. The voltage and current of the X-ray tube

can be altered, although there is an overall limit on the output power. The expo-

sure times and number of images recorded can also be manipulated. The computer

system is also used to remotely control a triple-axis xyz goniometer which allows

both rotation and translation about the three axes.
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3.3.4 Single Crystal X-ray Diffraction

Figure 3.5: An Oxford

Diffraction CCD single

crystal diffractometer.

The figure shows the

sample on a four-circle

goniometer, the cryo-jet,

X-ray source, CCD and

beam stop.

Monochromated X-rays can be used to improve the res-

olution of powder and single crystal diffraction exper-

iments. As part of this thesis they were used to map

the intensities of the single crystal Bragg peaks using

a single crystal diffractometer. A significant percent-

age of the Ewald sphere can be collected by collecting

multiple frames using a large area CCD detector. A

kappa-geometry goniometer moves the sample so that

the majority of reciprocal space can be accessed. The

parameters for a run, including the step size and X-

ray voltage are optimised for a particular sample by

performing a pre-experiment. Measurements at tem-

peratures from 77 to 400 K are possible through use

of a cryo-jet and either molybdenum or copper X-ray

sources can be used.

Post-experiment outlier rejection is performed

by selecting a particular Laue group under which to

perform the integration. This means any reflections

which break the Laue symmetry are discarded. A cor-

rection for X-ray absorption by the sample is also im-

plemented post-experiment by fitting using a Gaussian-

grid method and adjusting for the shape of the sample.

3.3.5 Rietveld Refinement

Various methods have been developed to account for the phase problem discussed

in section 3.3.2. One of these is the Rietveld method, an algorithm for fitting

diffraction patterns which minimises the difference between the experimental data

and a model based on the profile information, crystallographic parameters and atom

positions. The space group, lattice parameters, Wyckoff positions and Debye-Waller

factors (isotropic thermal parameters, B) are all specified in the model. The atomic

form factor (discussed in section 3.4.3) is internally accounted for by specifying

the element positioned on each lattice site. The background is fitted with either a

polynomial or by specifying a series of interpolated points. Additional parameters

can also be specified including; the peak broadening, detector zero error, absorption,

preferred orientation or anisotropic temperature factors. The difference between the

observed and calculated profiles is minimised based on a least-squares regression.

The profile functions used in this thesis are specified in table 3.1. The Gaus-

sian function implies a normal distribution, and would be the expected peak shape
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for a perfect crystal with a single long-range ordering or only instrumental line

broadening. The Lorentzian function implies homogeneous broadening by some

physical mechanism. The combination of the two broadening mechanisms is a Voigt

function, approximated to a Pseudo-Voigt for computational purposes. More com-

plicated functions are possible, including those that allow for asymmetric line broad-

ening. Peak broadening may also be due to strain in the sample, which can also be

incorporated in the refinement model.

Peak Shape Function

Gaussian G(x) y = y0 +
A

ω
√

π/2
e−2

(x−xc)
2

ω2

Lorentzian L(x) y = y0 +
2A

π

w

4(x− xc)2 +w2

Pseudo-Voigt y = (1− η)G(x) + (η)L(x)

Table 3.1: The mathematical
definitions of the Gaussian,
Lorentzian, Pseudo-Voigt
peak profile functions. The
peaks are described by the
offset y0, peak area A, peak
centre xc, full width half
maximum w and mixing
coefficient η. The FWHM
w is related to the Gaussian
width ω by ω =w/

√

ln(4).

Rietveld refinement should not be used to determine the space group as

the method imposes conditions which might not be valid for an unknown space

group [53]. Rather, profile matching, simulated annealing or symmetry consider-

ations should be used to determine a space group, and refinement can then be

employed to get a full description of the details of the crystal structure.

3.4 Neutron Scattering

3.4.1 Properties of Neutrons

X-ray and neutron scattering serve as complementary techniques due to their differ-

ent atomic scattering mechanisms. While X-rays respond according to the number

of electrons in an atom and can have limited penetration into the bulk of a material,

neutrons scatter from the nucleus and have a much higher penetrating capacity. This

means neutrons are sensitive to different isotopes of a material and the scattering

is not proportional to the atomic number, which means unlike X-rays, neutrons can

be used to probe materials containing the lightest elements. Neutrons are a natural

technique for the study of magnetism, as the neutron has spin-1/2 and will interact

with the magnetic moments present in the compound. Additionally, neutrons can

be used to study both magnetic and non-magnetic excitations in materials, as the

energy of thermal neutrons is comparable to the energy of lattice vibrations and the

neutron wavelength is comparable with typical interatomic distances in solids.
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Peak Shape Function

Profile Factor Rp = 100
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Expected Weighted Profile Factor Rexp = 100
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Bragg Factor RBragg = 100
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|IObs,i − ICalc,i|
∑
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Reduced Chi-Squared χ2 =

(

Rwp

Rexp

)2

Table 3.2: The conventional agreement factors for any refinement, where wi is the
variance of the observation yi and yc,i is the calculated value of y at the position i.
IObs and ICalc are the observed and calculated integrated peak intensities. Finally,
n− p is the number of degrees of freedom where n is the total number of points in
the refinement and p is the number of refined parameters.
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Figure 3.6: The geometry of a scatter-

ing experiment

The quantity measured in a neu-

tron scattering experiment is the cross-

section σ, where the total scattering cross-

section is the number of neutrons scattered

in all directions per second per unit of in-

cident neutron flux. The number of neu-

trons scattered per second into a solid an-

gle dΩ per unit incident flux per solid an-

gle dΩ is known as the differential cross

section dσ/dΩ, which is the quantity mea-

sured in a diffraction experiment. If there

is an energy change, such as in a neu-

tron spectroscopy experiment, the quantity

measured is the double differential cross-section d2σ/dΩdEf , where the final energy

of the scattered neutrons is between Ef and Ef + dEf . The geometry of a neutron

scattering experiment is illustrated in figure 3.6.

The strength of the scattering from the nucleus of a particular element is

described by the scattering length b, which is usually independent of wavelength but

dependent on spin and isotope. This quantity is usually determined experimentally

and recorded in look-up tables. The relationship between scattering length and the

total scattering cross-section is given in equation 3.3.

σTot =
Scattered flux

Incident flux
= 4πb2 (3.3)

The spherical wave ψf scattered by an isolated nucleus can be expressed

in terms of the scattering length ψf = −beikr/r, where r is the the radius of the

scattered wave. By convention the nomenclature for the neutron scattering vector

ki − kf is Q, as opposed to the ∆k used in the X-ray case. The differential and

double differential cross-sections can then be expressed in terms of these quantities,

and the differential cross-section as a function of b and is given in equation 3.4 (for

a derivation see reference [67]).

dσ

dΩ
=
dσCoh

dΩ
+
dσIncoh
dΩ

=
∑

j,j′

〈b〉2eiQ·(rj−rj′ ) +
∑

j

(〈b2〉 − 〈b〉2) (3.4)

This equation can be separated into the coherent and incoherent scattering terms,

where the coherent scattering assumes an average value of b for each nucleus and

gives information about interference effects, and the incoherent term gives the mean-

square deviation of the scattering length from the average value. In a powder ex-

periment, the recorded pattern will consist of two components, the Bragg peaks

associated with the coherent scattering and an incoherent background.
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3.4.2 Sources of Neutrons

For quantitative studies of condensed matter using neutrons, large fluxes are re-

quired. These can be generated using either a fission reactor or a spallation source.

Of the sources used for the work in this thesis, the Institute Laue-Langevin (ILL)

in Grenoble, France houses a reactor source, ISIS at the Rutherford-Appleton Lab-

oratories in Oxfordshire is a spallation source and Orphee at the Laboratoire Leon

Brillouin, Saclay, Paris, France is also a reactor source.

Both ILL and Orphee use uranium 235 as the fission fuel with heavy water

at a temperature of 300 K as a moderator producing thermal neutrons, which are

used for most of the instruments. Hot and cold neutrons are produced using 2400 K

graphite and 25 K liquid hydrogen respectively. Water used as a coolant also serves

as an additional moderator. Reflecting neutron guide tubes can be used to direct

the neutron flux to the experimental halls where the instruments are installed.

Spallation occurs when high energy particles are accelerated into the nuclei

of heavy atoms, igniting a chain reaction which results in the emission of a selection

of nucleons including neutrons. At ISIS, protons are accelerated into a tungsten

target. The high energy protons are produced in a linear accelerator (linac) and

are accelerated to above the threshold energy for spallation in a synchrotron. The

neutrons produced by the spallation process are moderated by 300 K water, 105 K

liquid methane or 25 K liquid hydrogen before use on the beamlines.

Spallation and reactor neutron sources each have their own advantages and

disadvantages. Reactor sources are intrinsically more reliable, partially because of

their relative simplicity and partially because their components are usually manu-

factured with more inherent fail safes because of the safety implications of using a

fission source. However, as the power levels needed to run a spallation source are

far lower, the problem of cooling is much less critical. Time of flight at ISIS benefits

from it being a pulsed source, giving a time structure to the beam, which is par-

ticularly advantageous when carrying out inelastic experiments as a complete data

set can be collected in one measurement. In addition, higher resolution is possible

when short pulses are used, such as at the spallation source ISIS, because of the

high resolution over a wide Q range.

3.4.3 Neutron Diffraction

Neutron diffraction can be performed on both pulsed and continuous sources using

fixed-angle or fixed-wavelength methods respectively. A fixed-wavelength powder

diffractometer will have a pair of collimators to reduce the angular divergence of the

incident and scattered beams. A crystal monochromator is sited before the sample to

select a single wavelength. For a fixed-angle technique, a white beam of neutrons is

incident on the sample. The wavelength is determined by measuring the time of flight
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from source to detector. The resolution can therefore be improved by increasing the

flight path of the neutrons, for example the HRPD powder diffractometer at ISIS is

located approximately 100 m from the target.

Neutrons are detected by neutron capture, usually by the nuclei of 3He,
10B, 6Li and 235U, depending on the detector. Beam monitors for recording the

incident flux detect neutrons by the ionisation of uranium hexafluoride UF6. Most

instruments use 3He and BF3 gas detectors, where the capture of a neutron causes an

exothermic nuclear reaction and ionisation in the gas. This ionisation is collected

by an anode wire at high voltage. In most modern instruments, many of these

gas detectors are collected together in banks or modified gas detectors are used as

proportional counters, both of which are built into large position sensitive arrays of

detectors.

Like any other kind of diffraction, both powder and single crystal neutron

diffraction obey Bragg’s law, equation 3.5. However, corrections must be made in

the process of taking both these measurements for preferred orientation in the case

of powder diffractions and for absorption, extinction and multiple scattering in the

case of single crystals. Absorption has already been discussed, as it is generally

a larger effect for X-rays than for neutrons. Extinction is a problem for larger

samples and is due to the reflection of some of the incident radiation by the surface

of the sample so that the bulk of crystal has less probability of scattering. Multiple

diffraction arises when more than one family of planes satisfies the Bragg condition.

Q =
4π sin 2θ

λ
(3.5)

The way an incident beam is scattered by the atoms in a unit cell is described

by the structure factor, which is the Fourier transform of the unit cell. The measured

intensity is then proportional to the square of the structure factor, I = |F (hkl)|2.
For neutron diffraction, there will be both nuclear FN and magnetic components

FM , given in equation 3.6 [47, 68, 67] for phase angle iQ · ri.

|Fhkl|2 = |FN |2 + |FM |2 = |
∑

j

b̄je
iQ·rje−Wj |2 + |

∑

j

pjqje
iQ·rje−Wj |2 (3.6)

The factor e−Wj is the Debye-Waller temperature contribution and b̄ is the mean nu-

clear scattering length. Analogously, p is the magnetic scattering length and q is the

magnetic scattering vector, introduced because only the component of the moment

perpendicular to the scattering vector will result in magnetic scattering. As with

the nuclear structure factor, the magnetic structure factor gives the Fourier trans-

form of the magnetisation distribution in the lattice. Unlike the nuclear scattering

length, the magnetic scattering length p can be defined in terms of the properties
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of the scattering nucleus:

p =

(

e2µn
mec2

)

SfM (Q) (3.7)

Equation 3.7, where µn and S are the neutron magnetic moment and spin

quantum number respectively, introduces the magnetic form factor fM(Q). This

quantity describes how the magnetic scattering depends on Q. It is necessary be-

cause the magnetisation distribution in a crystal is much more diffuse than the

nuclear one and so scattering takes place across a much larger spatial volume. An

analytical approximation to the magnetic form factor exists, and can be expressed

in terms of functions which describe the distribution of spin and current densities,

〈j0(Q)〉 and 〈j2(Q)〉 [69], equation 3.8.

fM(Q) = 〈j0(Q)〉+
(

1− 2

gJ

)

〈j2(Q)〉 (3.8)

These are available in look-up tables for particular elements. In 3d ions such as

cobalt we can assume orbital quenching, so gJ = gS = 2. The calculated form factor

for Co3+ is shown in figure 3.7 and shows the strong Q dependence of this function,

which explains the necessity of measuring magnetic Bragg peaks at low scattering

angles.

3.4.4 Polarisation Analysis

The instrument D7 at the ILL, results from which are included in chapters 6 and 8, is

equipped with xyz polarisation analysis. This is the only technique which allows the

separation of nuclear and magnetic contributions to the scattering. The polarisation

process requires a high flux, as there are high losses during the polarisation process.

On D7, this high flux is achieved at the expense of Q resolution.

The polarisation process involves the addition of four key components. The

incident neutron beam is first polarised using a Scharpf bender-type supermirror

polariser. The polarisation direction is then manipulated using a Mezei-type flipper

and a set of xyz field coils. The polarisation of the scattered beam is analysed

by a large bank of supermirror analysers. A 20 Gauss guide field exists everywhere

within D7 to maintain the polarisation of the beam. The polarisation of the detected

neutron beam will be either spin flip (SF) or non-spin flip (NSF) with respect to

the polarisation of the incident beam. For spin flip scattering in the z channel,

a neutron will be polarised spin up, be flipped to spin down, rotated along the

z axis and spin flipped in the sample by interaction with any magnetic moments

parallel to the neutron spin. The analyser will then select only those neutrons with

polarisation spin up, which have necessarily been scattered by a magnetic atom

with a component of its spin along z. For a detailed description of the polarisation
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Figure 3.7: The calculated magnetic form factor for Co3+ where fM (Q) = 〈j0(Q)〉+
〈j2(Q)〉. Figure taken from reference [69].
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analysis available on D7 see references [67] and [70].

The scattered neutrons from six different incident spin flip configurations

are recorded to complete a single polarisation measurement. These are
(

dσ
dΩ

)x

SF
,

(

dσ
dΩ

)y

SF
,
(

dσ
dΩ

)z

SF
,
(

dσ
dΩ

)x

NSF
,
(

dσ
dΩ

)y

NSF
and

(

dσ
dΩ

)z

NSF
respectively. The dependence

of each of these differential cross-sections on the coherent, magnetic and spin inco-

herent scattering components for a paramagnetic system can be derived from the

spin-dependent scattering amplitudes, shown in references [68] and [70]. Dependence

of the coherent, magnetic and spin incoherent scattering on these six individual mea-

surements can then be easily calculated, and these are given in equations 3.9, 3.10

and 3.11 respectively.

(

dσ

dΩ

)

Coh
=

1

6

[

2

(

dσ

dΩ

)xyz

NSF
−
(

dσ

dΩ

)xyz

SF

]

(3.9)

(

dσ

dΩ

)

Mag
= 2

(

dσ

dΩ

)x

SF
+ 2

(

dσ

dΩ

)y

SF
− 4

(

dσ

dΩ

)z

SF
(3.10)

(

dσ

dΩ

)

Incoh
=

1

2

(

dσ

dΩ

)xyz

SF
−
(

dσ

dΩ

)

Mag
(3.11)

There are limitations to the applicability of the xyz polarisation technique

and the above equations are only valid for magnetic materials with collinear mag-

netisation and a randomly ordered magnetic moment. This excludes ferromagnetic

systems which by definition have spontaneously ordered spins and will depolarise the

beam, which in itself can be used as a test for the presence of ferromagnetic correla-

tions. Care must also be taken when measuring single crystals of antiferromagnetic

materials, where then can be a possible change of sign of the moment direction if

the crystal is not aligned such that the angle between M and Q is known.

3.4.5 Magnetic Refinement

Several methods exist for the quantitative analysis of neutron diffraction data from

magnetic systems. The most accurate method is that of representational theory,

which a detailed symmetry analysis of the system is carried out. The method in-

volves a high level of group theory, and hence has not been used in this thesis. The

formalism employed here is an extension of the process involved with the refine-

ment of nuclear structures, where the magnetic structure, see 2.2.2, is also defined.

Magnetic and nuclear structures are not usually refined simultaneously. Rather,

the nuclear structure is refined at a temperature where the sample is paramagnetic

or using X-ray data and then fixed during the refinement of the data taken in the

magnetic regime.
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3.4.6 Inelastic Neutron Scattering

Phonons and magnons in magnetic materials are studied by measuring the double

differential cross-section using inelastic neutron scattering. On a reactor source,

the instrument used is usually a triple-axis spectrometer and on a pulsed source a

time-of-flight spectrometer is used which may employ a monochromated or white

incident beam where the final energies of the neutrons are analysed.

A triple-axis spectrometer uses a monochromating crystal to select the inci-

dent energy of the beam, which will then have incident wavevector ki and defines

the first axis of rotation. The crystal is orientated on a second rotation axis so that

the neutrons scatter off the Bragg plane of interest. An analyser crystal on a third

rotation axis then selects the final wavevector kf . For coherent inelastic scatter-

ing from a single excitation, the neutron scattering vector is directly related to the

wavevector transfer, stated in equation 3.12.

Q = ki − kf (3.12)

The relationship between ki, kf and Q in a reciprocal lattice is illustrated in figure

3.8, where φ and ψ are angles that can be varied. During a measurement, either ki,

kf or both can be varied. The effect of modifying φ and ψ while keeping ki and Q

constant is to make a scan as a function of energy transfer. Conversely, the effect of

keeping ki and kf the same while varying their direction, and therefore varying Q,

is to make a scan as a function of Q at constant energy transfer. Both these kinds

of measurement can be made on a triple-axis spectrometer.

A
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C

Q

k

k

i

f

φ

ψ
P

Figure 3.8: The relationship between Q,
ki and kf in a reciprocal lattice for an in-
elastic neutron scattering experiment. φ
and ψ are angles of the sample and anal-
yser respectively that can be varied, and
A, B and C are reciprocal lattice points
with origin O, with P the point being
probed. Adapted from reference [67].

3.5 Discussion

A range of techniques have been used to study the structure and magnetism in

the complex cobaltates Y1−xSrxCoO3−δ and Ca3Co2O6. Polycrystalline and single

crystal samples have been prepared and characterised using EDAX, TGA and X-
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ray diffraction. The physical and magnetic properties of the prepared samples have

then been measured using magnetometry and heat capacity respectively. A variety

of X-ray and neutron scattering measurements have also been made. The structure

and magnetism in Y1−xSrxCoO3−δ are discussed in chapters 5 and 6 respectively.

Chapters 8 and 9 then detail neutron scattering measurements on Ca3Co2O6 mea-

surements first made as a function of time and temperature and then as a function

of applied magnetic field. The experimental work on each of these compounds is

preceded by a literature review chapter.
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Part II

Y1−xSrxCoO3−δ
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Chapter 4

Y1−xSrxCoO3−δ: Introduction

Y1−xSrxCoO3−δ is a member of the family of the doped perovskite cobaltates with

general formula Ln1−xSrxCoO3−δ, where Ln is a lanthanide ion. The archetype

perovskite cobaltate is LaCoO3 [71], which exhibits at least one spin state transition

as a function of temperature. The initial attempts to control the properties of

LaCoO3 focused on doping with strontium, and the compound La1−xSrxCoO3(0 <

x < 0.5) has been found to be a spin glass in the region 0 < x < 0.18 [72]. At higher

doping (0.18 ≤ x ≤ 0.5) the behaviour has been characterised as that of a cluster

glass, and intrinsic magnetic phase separation is believed to be the mechanism for

the observed weak ferromagnetism in this system [57, 73].

Research has implied that Y1−xSrxCoO3−δ is also a weak room temperature

ferromagnet. The source of the ferromagnetic signal in Y1−xSrxCoO3−δ is a matter

of some debate. Early work [23] suggested magnetic phase separation, with ferro-

magnetic regions existing within a long-range ordered antiferromagnetic matrix was

the mechanism for the observed weak ferromagnetism in Y1−xSrxCoO3−δ as well

as La1−xSrxCoO3 (0.18 ≤ x ≤ 0.5). However, most reports [22, 25] have implied

spin canting is responsible for the ferromagnetic signal, and papers contemporary

with the work in this thesis have suggested ferrimagnetic order in Y1−xSrxCoO3−δ

[24, 45].

4.1 SrCoO3−δ

The cobaltate SrCoO3−δ has a cubic perovskite crystal structure with space group

Pm3̄m [74]. The strontium ions sit on the A-site of the general perovskite cell with

formula ABO3, and the cobalt ions sit on the B-site (figure 1.2). The compound

can form in such a way that it is oxygen deficient from the ABO3 perovskite by a

factor of δ resulting in oxygen vacancies in the structure.

The magnetic properties of SrCoO3−δ have been studied for more than 50

years [75]. Early studies [75, 76] highlighted the features of the magnetic behaviour
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of these materials that still dominate discussion today, ferromagnetic behaviour and

the sensitivity to changes in oxygen concentration. Magnetisation measurements

showed evidence of both ferromagnetic and antiferromagnetic behaviour depending

on the preparation conditions, originally discussed in terms of double exchange which

had only recently been postulated [77, 78]. The Curie temperature was found to

vary with oxygen concentration, with an increase in oxygen content (and therefore

an increase in the percentage Co4+) leading to an observed increase in Tc. The Tc

for SrCoO3 was found to be 222 K [76].

Single crystals of SrCoO3−δ have previously been prepared using the floating

zone method [74, 80] and characterised using magnetic measurements and neutron

diffraction [79]. The magnetocrystalline anisotropy of both oxygenated and oxygen

deficient SrCoO3−δ was measured. This anisotropy was found to be greatest for the

fully oxygenated compound, whereas the most oxygen deficient compound, declared

to be SrCoO2.70, was virtually isotropic. By synthesizing the compound under high

oxygen pressure, the oxygen deficiency was substantially reduced, which raised the

Tc above room temperature [81]. The same research postulated the existence of a

magnetovolume effect in this compound, a correlation between changes in the unit

cell volume and the magnetic transition.

Instead of using complex synthesis conditions, the pure perovskite form

of SrCoO3−δ can be stabilised by doping with around 5% of rare earth (Sm3+-

Yb3+) [82]. Examination of the different Ln0.05Sr0.95CoO3−δ compounds revealed

different phase behaviour depending on the ionic radius of the rare earth species.

Only rare earth ions smaller than neodymium form phase pure perovskite struc-

tures. In fact, all these compounds were found to form tetragonal superstructures

when stabilised in the perovskite form. The magnetic measurements showed the

yttrium-doped form of Ln0.05Sr0.95CoO3−δ had the lowest Tc (99 K) and χ of the

compounds studied, and the dysprosium and holmium-doped forms had highest χ.

This highlighted the importance of the magnetic coupling between the cobalt and

the rare earth moments [82], as both holmium and dysprosium are magnetic ions,

whereas yttrium is non-magnetic.

4.2 Crystal Structure of Y1−xSrxCoO3−δ

The recent interest in yttrium-doped SrCoO3−δ was ignited when a detailed struc-

tural study of Sr0.7Y0.3CoO2.62 was published in 2003 [83]. The study focuses on the

role of oxygen vacancies in determining the superstructure of this and similar per-

ovskite compounds. For example the oxygen deficient compound SrCoO2.5 adopts

a brownmillerite (Ca2FeAlO5 [84]) type structure [85] with layers of CoO6 octahe-

dra and CoO4 tetrahedra alternating along the a axis of the Ima2 space group.
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Sr0.7Y0.3CoO2.62 was found to have a similar structure, with oxygen vacancies oc-

cupying alternating layers of the tetragonal I4/mmm crystal structure. Additional

superstructure peaks indicating an orthorhombic distortion were also observed for

some crystallites using electron microscopy, but as these peaks were not observed

in the synchrotron or neutron diffraction patterns, they were not included in the

structural analysis. It was suggested the driving force behind the formation of this

structural phase may be the ordering of the Y3+ and Sr2+ ions on the A-site of the

perovskite substructure.

Later structural studies of this compound investigated the complex arrange-

ment of the atoms in Y1−xSrxCoO3−δ in more detail. A series of investigations

used electron diffraction and X-ray diffraction to image a selection of superstructure

peaks which have been assigned to a range of different space groups; some tetrago-

nal (I4/mmm) [83, 86], some orthorhombic (Cmcm, Cmma) [21, 87, 88] and even

monoclinic (A2/m) [89, 90]. The complication is due to the potential for A-site,

oxygen vacancy [91, 92] and orbital ordering [45, 93], giving an unusual number of

structural degrees of freedom. The largest and most complex superstructures have

been reported in the solid solution range (0.750 ≤ x ≤ 0.850) [21] for the yttrium-

doped compound. The details of the structure of Y1−xSrxCoO3−δ will be discussed

in further detail in Chapter 5.

4.3 Magnetism in Y1−xSrxCoO3−δ

It has been claimed that Y1−xSrxCoO3−δ has the highest ferromagnetic ordering

temperature, Tc = 335 K for powder [22], 370 K for single crystals [94], of any of

the perovskite cobaltates and much of the research on this compound has focused

on understanding the competition between the ferromagnetic and the antiferromag-

netic exchange interactions in the material [22]. Early neutron diffraction mea-

surements characterised Y1−xSrxCoO3−δ as a G-type antiferromagnet (figure 2.6)

and found no evidence for long-range ferromagnetic ordering [23]. However, labo-

ratory magnetisation measurements on Y1−xSrxCoO3−δ have consistently detected

a weak ferromagnetic signal, suggesting some short-range or weak ferromagnetic

ordering [22, 23, 91] which is still of unknown origin. The nature of the magnetic

order in Y1−xSrxCoO3−δ is highly dependent on oxygen stoichiometry, and a change

in oxygen content of ∆δ = 0.04 can result in a change from an insulating antiferro-

magnet to a metallic ferromagnet [11].

The relationship between structure and magnetism in this compound has

also been discussed in depth by a number of authors, and appears to be key to un-

derstanding the behaviour of this material. This is clear, as the valency of the cobalt

impacts on the possible exchange mechanisms and therefore the magnetic ordering.
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Three forms of Y1−xSrxCoO3−δ exist depending on the arrangement of the A-site

(Y/Sr) ions and oxygen vacancies. The A-site and oxygen vacancy ordered form of

the compound (AO/OO), with the complex superstructure, also has a Tc = 335 K,

more than twice that of the fully (AD/OD) and partially (AD/OO) structurally

disordered compounds (Tc = 100− 150 K) [91, 92]. Knowledge of the structure and

the different cobalt environments in the unit cell has also given insight into the mag-

netism of this compound, as it has been found that there is a correlation between

the chemical coordination of the cobalt ions and the magnitude of the magnetic mo-

ment, and that cobalt atoms in different layers have moments differing by a factor

∼2 [25]. The most recent research has extended this concept to the orthorhombic

structure, suggesting cobalt atoms with different chemical coordination each have

different magnitudes for their magnetic moments [24]. This will be further discussed

in Chapter 6.

The presence of cobalt sites with different magnetic moments means it is

likely these cobalts have different spin states. It has been suggested that the four-

fold coordinated cobalt ions are in a high spin state while the six-fold coordinated

cobalt ions are in an intermediate spin state [95]. This allows for the possibility

of spin state transitions which have been observed for Y1−xSrxCoO3−δ under high

pressures (∼ 10 GPa) [95], calcium substitution [96] and in high magnetic fields

(∼ 53 T) [97]. In the case of high pressures, it has been suggested this leads to a

transition from G-type antiferromagnetism to a new antiferromagnetic phase with

mixed ferromagnetic and antiferromagnetic nearest neighbour coupling [95].

4.4 Other Doped Strontium Cobaltates

Although the yttrium-doped compound is the most studied of the doped strontium

cobaltates, larger lanthanide ions such as holmium [98, 99], erbium [89], dyspro-

sium [100], cerium [101], europium [102] and gadolinium [103] have also been the

subject of investigations. Unlike yttrium, many of these ions are magnetic, resulting

in different Curie temperatures and measured magnitudes of their magnetisation.

However, like Y1−xSrxCoO3−δ, the formation of complex superstructures is believed

to play a key role in the peculiar weak ferromagnetism recorded in all these com-

pounds at doping levels close to x = 0.2. Other features of the magnetic behaviour of

this family of materials discussed to date include glassiness [99], short-range charge

ordering [104] and ferromagnetic clustering [102].
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4.5 Discussion

In many cases doped systems such as Y1−xSrxCoO3−δ have properties that make

them particularly suitable for applications compared to their undoped counterparts.

Technologically relevant properties such as high thermopower [11] and increased

oxygen diffusion [105] have been reported in Y1−xSrxCoO3−δ and have potential

applications in solid oxide fuel cells [106] or as membranes for gas separation [105].

It is therefore most important to fully characterise the structural, magnetic and

transport properties of this class of materials.

The doped strontium cobaltates have also been investigated in order to bet-

ter understand the physics of these and similar systems. The magnetic ordering

schemes in this class of materials can be very complex and they can have multi-

ple magnetic phases in their phase diagrams. The following two chapters discuss

the structure and magnetism respectively of the complex cobaltate Y1−xSrxCoO3−δ.

Chapter 5 outlines the procedure adopted for the preparation of powders and single

crystals of Y1−xSrxCoO3−δ. The composition and crystal structure of these samples

were then analysed using Laue diffraction, EDAX, TGA, X-ray and neutron diffrac-

tion. The magnetic ordering in Y1−xSrxCoO3−δ is discussed in detail in chapter 6.

This chapter is divided into four sections, focussing on magnetometry, powder neu-

tron diffraction, single crystal neutron diffraction and inelastic neutron spectroscopy

measurements respectively.
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Chapter 5

Y1−xSrxCoO3−δ: Crystal

Growth and Structure

The initial aim of our experimental work on Y1−xSrxCoO3−δ was to produce large

single crystals suitable for further study. Y1−xSrxCoO3−δ is a complex system and

single crystals offer a significant advantage over polycrystalline samples in that they

afford the opportunity to measure the magnetocrystalline anisotropy and make more

precise measurements of the crystal and magnetic structures of the material. The

only previous work on either the growth or properties of such single crystals consisted

of a single brief conference report [94]. The synthesis procedure adopted and charac-

terisation measurements used on these crystals are described in sections 5.1 and 5.2

of this chapter respectively. The process of characterising these crystals allowed us

to understand in more detail the complex crystal structure of this compound, and

powder and single crystals diffraction measurements, outlined in section 5.3, were

made using both X-rays and neutrons. These measurements meant the suggested

charge and orbital ordering in Y1−xSrxCoO3−δ could be probed and the formation

of the complex superstructure as a function of temperature in this compound could

be studied.

5.1 Sample Preparation

5.1.1 Powder Synthesis

As there are two different ions on the A-site of the ABO3 perovskite unit cell of

Y1−xSrxCoO3−δ, it is possible for them to lie in an ordered arrangement, so called

A-site ordering (AO). It is also possible for the oxygen vacancies to order (OO),

and this means polycrystalline samples of Y1−xSrxCoO3−δ can be synthesized in

three different forms: (i) A-site and oxygen vacancy disordered (AD/OD), (ii) A-

site disordered and oxygen vacancy ordered (AD/OO) and (iii) A-site and oxygen
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vacancy ordered (AO/OO) [91, 92]. A-site and oxygen vacancy disordered (AD/OD)

Y1−xSrxCoO3−δ is a simple perovskite, the AD/OO material has a brownmillerite

structure and fully ordered (AO/OO) Y1−xSrxCoO3−δ has a complex superstructure

with tetragonal or lower symmetry [83]. It is not possible to prepare an AO/OD

version of the compound. Samples of each of these three structural variants of

Y1−xSrxCoO3−δ with x = 0.85 were prepared using an established solid state reac-

tion process described below [91, 92].

High purity powders of SrCO3 (≥99.9 %), Y2O3 (99.99 %), and Co3O4

(99.9985 %) were mixed together in stoichiometric ratios and heated in an 0.5 bar

(gauge pressure) oxygen atmosphere at 1100◦C for 24 hrs. All three samples were

then reground and sintered. The AD/OD and AD/OO samples were sintered in air

at 1100◦C for 24 hrs and then quenched in liquid nitrogen. The AO/OO sample

was sintered in an 0.5 bar oxygen atmosphere at 1100◦C for 24 hrs. To enhance the

A-site ordering the AO/OO sample was then post-annealed at 900◦C in a 0.5 bar ar-

gon atmosphere for 24 hrs. After quenching, the AD/OO sample was post-annealed

in a reducing 3.5 % H2 in Ar atmosphere at 300◦C for 6 hrs to control the oxygen

levels and the AD/OD sample was post-annealed at 500◦C in O2 for 2 hrs to ensure

oxygen stoichiometry.

All three samples were measured using X-ray diffraction to investigate if they

had formed the correct structural variants and were fully reacted. The AO/OO

powder was then reground and isostatically pressed into rods. The rods were then

further annealed for 24 hrs in an oxygen atmosphere at 600◦C ready to be used in

the preparation of single crystals.

5.1.2 Single Crystal Growth

At the time of undertaking this research, only one previous report [94] existed which

described the preparation of single crystals of Y1−xSrxCoO3−δ, and in this report

x = 0.75. The relative brevity of this report and the absence of any detail about the

preparation methods adopted led us to develop our growth strategy independently

and across a range of compositions [107].

Single crystals of AO/OO Y1−xSrxCoO3−δ, with x = 0.92, 0.85, 0.8, 0.75

and 0.7, were produced using the floating-zone technique in either a Nippon Elec-

tric Company (NEC) SC-N35HD two mirror image furnace or a Crystal Systems

Incorporated (CSI) F-ZT-10000-H-IV-VPS four mirror infra-red image furnace. The

growths were performed in an oxygen atmosphere of 3 bars with a small flow of gas.

Initially the seed rod was a polycrystalline rod of the same composition as the feed

rod but, for subsequent growths, a seed crystal obtained from the previous growths

was used. For the first set of trials, growth speeds of 1-2 mm/h and a rotation rate

of 25-30 rpm for both the feed and seed rods were used. For the later experiments,
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the growth speeds were reduced to 0.5-1 mm/h as it was found that lower growth

speeds improved the crystal quality. Crystal facets were visible during the growths.

The as-grown crystals were annealed for 24 hrs at 900◦C in an oxygen atmosphere

in order to increase their oxygen content, and the resulting varieties of crystal are

hereafter referred to as ‘O2-annealed’ or ‘as-grown’, as appropriate.

The crystals obtained were around 8 mm in diameter and 30-40 mm in

length. Figure 5.1 shows the as-grown crystal boules of Y0.15Sr0.85CoO3−δ and

Y0.2Sr0.8CoO3−δ. These are typical of the crystals grown. The exterior of the as-

grown crystals were a dull grey and X-ray Laue diffraction later showed that this is

due to a thin polycrystalline coating on the exterior of the crystals, the interior of

the crystals were clearly shinier and a paler grey. When cutting through the boule,

this polycrystalline coating can be easily distinguished and is usually no more than

0.5 mm thick, although it was observed that increased yttrium content resulted in

a slightly thicker polycrystalline layer.

5.2 Sample Characterisation

5.2.1 Crystal Quality

The X-ray Laue method was used to investigate the crystal quality and to align the

samples for other experiments. The quality of the X-ray Laue images taken was

limited to some extent by the fluorescence of the cobalt in the samples. Neutron

Laue experiments were performed on the OrientExpress Laue diffractometer [108]

at the ILL, Grenoble. A Philips PW 1720 X-ray diffraction set with a CuKα source

and a monochromating crystal mounted before the detector was used for the powder

X-ray diffraction measurements.

An X-ray Laue image taken along the c axis of one of the x = 0.85 crystals

is shown in figure 5.3 (centre). Clear diffraction patterns were visible from the cut

Figure 5.1: As-grown boules of Y0.15Sr0.85CoO3−δ (left panel) and Y0.2Sr0.8CoO3−δ

(right panel) grown at speeds of 0.5-1 mm/hr using the floating-zone method.
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ends of all the samples produced, indicating that there were indeed single crystals.

However, there was evidence from some splitting of the spots that the boules with

a higher yttrium content (x ≤ 0.75) may contain several smaller crystal grains.

An example of one of the neutron Laue images collected on the OrientExpress

neutron Laue diffractometer is shown in figure 5.3 (lower). These measurements

confirmed that for 0.8 ≤ x ≤ 0.92 the quality of the crystals was good, and suitable

for further experiments. A 20 mm long, 8 mm diameter section was cut from one

crystal boule and found to be a single grain (a later neutron diffraction measurement

using a triple-axis spectrometer showed the mosaic spread of this crystal was ∼
0.7◦). A crystal of this volume and quality would be sufficient for experiments

requiring large samples, such as inelastic neutron scattering. In contrast, neutron

Laue data showed that the samples of a similar volume with x ≤ 0.75 contained

several crystal grains. These measurements support the conclusions made from X-

ray Laue measurements, that the boules of Y1−xSrxCoO3−δ with x = 0.92, 0.85,

and 0.8 are each made up of a large single crystal, while the boules with x = 0.7

and 0.75 consist of several smaller crystal grains.
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Figure 5.2: X-ray diffraction pattern

showing the characteristic peak of the

AO/OO phase as measured on a pow-

dered piece of an Y1−xSrxCoO3−δ sin-

gle crystal.

X-ray diffraction measurements on

powdered sections of each boule confirmed

the as-grown crystals were the AO/OO

variant of Y1−xSrxCoO3−δ, with a peak

at 11.5◦ characteristic of this phase [92]

clearly visible in the diffraction patterns

(see figure 5.2). There was no evidence of

any additional peaks in the X-ray diffrac-

tion patterns, indicating that the crystals

are single phase.

5.2.2 Y/Sr Ratio

Most studies of AO/OO Y1−xSrxCoO3−δ

have focused on either the x = 0.75 or the

x = 0.67 compound as these yttrium con-

tents ensure exactly 1/4 or 1/3 respectively

of the A-sites of the perovskite cell contain

an yttrium ion. However, powder X-ray and neutron diffraction studies [21] have

shown that all the compounds with 0.75 ≤ x ≤ 0.875 have the same structural and

magnetic behaviour. In this case, an Y1−xSrxCoO3−δ single crystal with x = 0.85

was chosen for a more in-depth study, as the quality of the crystal was good and

this value of x is within the range necessary for observing a room temperature

ferromagnetic response from the sample [22].
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Figure 5.3: The top panel shows a typical X-ray Laue back-diffraction image ob-
tained from a crystal of Y0.15Sr0.85CoO3−δ with the crystal oriented so that the
X-rays are directed parallel to the a axis of the I4/mmm unit cell, and the middle
panel shows a similar image with the crystal oriented so that the X-rays are directed
parallel to the c axis. The X-ray images were taken on a low voltage setting to avoid
excessive cobalt fluorescence. The lower panel shows a neutron Laue image with
the crystal oriented so that the neutrons are directed parallel to the c axis of the
Y0.15Sr0.85CoO3−δ crystal.
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The Y/Sr ratios in the crystals were obtained using EDAX measurements,

described in section 3.1.2, and agree reasonably well with the initial stoichiometries

(see table 5.1). It should be noted that the error in the experimentally determined

value of x is the predominant source of error in calculating the oxygen content of

each of the crystals. The results indicate that for compounds with x ≥ 0.75 there

is no significant or systematic loss of either strontium or yttrium during the crystal

growth process. For compounds with lower strontium content than x = 0.75, the

EDAX data shows that it is more difficult to introduce yttrium into the system, as

both the x = 0.75 and x = 0.7 sample were found to have the same Y/Sr ratio.

Y/Sr Ratio Oxygen Content Cobalt Valency
Nominal Starting EDAX (3− δ)

0.15/0.85 0.17(1)/0.83(1) 2.59(1) 3.03(4)
0.20/0.80 0.22(1)/0.78(2) 2.61(1) 3.02(4)
0.25/0.75 0.26(1)/0.74(1) 2.57(2) 2.90(6)
0.30/0.70 0.26(1)/0.74(1) 2.53(2) 2.77(6)

Table 5.1: Values of x for Y1−xSrxCoO3−δ from both for the nominal starting stoi-
chiometry and from the EDAX measurements. The oxygen content 3− δ of various
members of the as-grown Y1−xSrxCoO3−δ (0.7 ≤ x ≤ 0.85) series determined using
TGA is also given. The cobalt valency has been calculated using charge balance by
assuming valencies of Y3+, Sr2+ and O2− respectively.

5.2.3 Oxygen Content

Thermogravimetric analysis (TGA, described in section 3.1.3) was carried out using

a Mettler-Toledo thermal analysis apparatus in order to evaluate the oxygen content

of the crystals. Powdered samples of approximately 30 mg were heated from 30◦C

to 900◦C at 10◦C/min in alumina crucibles in a reducing 3% H2/Ar atmosphere.

An example of one of the reduction curves obtained using TGA is shown in figure

5.4. The stepwise form of the data with two intermediate plateaux is typical of

the reduction curves for this family of cobalt oxides, and reflects the subsequent

reduction of the cobalt from a valency of 3+, to 2+ then to cobalt metal [60, 86].

The reduction of Y1−xSrxCoO3−δ to a mixture of yttrium oxide, strontium oxide and

cobalt metal is completed around 800◦C. The change in mass gives us the oxygen

lost during the process via conservation of the molar mass, expressed in equation

5.1.

MInitial

MF inal
=

MY1−xSrxCoO3−δ

MSrO +MY2O3 +MCo
(5.1)

Table 5.2 shows the oxygen content of the AD/OD, AD/OO and AO/OO
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powders as well as a comparison between the oxygen content of as-grown and O2-

annealed crystals as determined from the TGA measurements. From the value for δ

found, and assuming the valencies of Sr, Y and O to be 2+, 3+ and 2− respectively,

the cobalt valencies were calculated and are given in both table 5.1 and table 5.2.

The values in table 5.1 show a decrease in oxygen content for crystals with higher

yttrium content, which is likely to be related to the decrease in quality of the x = 0.75

and x = 0.7 crystals compared to those with lower yttrium content.

The oxygen contents of the powders of the three different structural variants

of Y0.15Sr0.85CoO3−δ were also analysed. The results generally agree with those

previously reported, with some small variation [91, 92]. For the AD/OD sample

prepared using the same annealing conditions, the previous work had measured an

oxygen content of 2.778, which is slightly higher than ours, probably due to the

slightly higher hydrogen content of their reducing gas. The same report measured a

value of δ for the AD/OO sample identical to ours, the difference in cobalt valence

reported being due to the difference in yttrium content between their compound,

where x = 0.75, and ours. Intuitively, the oxygen content of the AO/OO powder

is lower than might be expected, 2.67 is stoichiometric, but the measurements were

made prior to any oxygen annealing, so the difference is understandable [91, 92].

Table 5.1 shows an increase in oxygen content of δ = 0.04 for the O2-annealed

crystal compared to the as-grown crystal. The cobalt valency was found to be very

close to pure trivalent cobalt for the as-grown crystal, but for the annealed crystal

these measurements imply the presence of a small amount of tetravalent cobalt. It

has been shown [11] that a change in oxygen content of δ = 0.04 is enough to turn

Y1−xSrxCoO3−δ from an insulating antiferromagnet to a metallic ferromagnet, so

this small difference in oxygen content could prove significant when studying the

magnetic properties of these materials.
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Figure 5.4: A typical
TGA curve for the re-
duction of a powdered
Y0.15Sr0.85CoO3−δ crys-
tal in a 3% H2/Ar
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ticular measurement
was for the O2-annealed
Y0.15Sr0.85CoO3−δ crys-
tal, but all the measure-
ments for the crystals
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Compound Oxygen Content (3− δ) Co Valency

AD/OD Powder 2.70(1) 3.25(4)
AD/OO Powder 2.53(1) 2.91(4)
AO/OO Powder 2.50(1)∗ 2.85(4)∗

‘As-Grown’ Crystal 2.59(1)∗ 3.03(4)∗

‘O2-Annealed’ Crystal 2.63(1) 3.11(4)

Table 5.2: The oxygen content 3 − δ of each of the forms of Y0.15Sr0.85CoO3−δ

(0.7 ≤ x ≤ 0.85) prepared. The cobalt valency has been calculated using charge
balance. The values marked with a ∗ correspond to those for the AO/OO powder
prior to the final oxygen annealing.

5.3 Crystal Structure

5.3.1 Experimental Details: X-ray Diffraction and D1B and D10

Neutron Diffractometers

Preliminary measurements to confirm the published crystal structures of the three

different Y0.15Sr0.85CoO3−δ powders were made using both X-ray and neutron diffrac-

tometers. The X-ray diffraction measurements were made using a Panalytical X-Pert

Pro MPD Kα1 machine [109] and the neutron measurements were made on the high

intensity powder diffractometer D1B at the ILL in Grenoble. For the X-ray experi-

ments, Y1−xSrxCoO3−δ powder was mounted in an aluminium sample holder which

was spun at 4 s per revolution with a Nickel filter placed before the detector. The

scan was made from 5−100◦ at room temperature. The data was noisier than might

be expected due to the cobalt fluorescence in the CuKα1 range.

The instrument used for powder neutron diffraction measurements, D1B,

is a two-axis spectrometer with a high neutron flux. At small angles where the

magnetic peaks are expected, a high spatial resolution can be achieved. The incident

wavelength is 2.52 Å. Large area detectors mean large sections of the diffraction

pattern can be measured simultaneously, and so fast data collection is possible [110].

Samples of the three Y1−xSrxCoO3−δ powders were mounted in vanadium cans. The

AD/OD and AD/OO samples filled the sample cans, and the AO/OO sample filled

the can to a depth of 4 cm. Measurements to probe the crystal structure were made

at 500 K using a furnace to achieve temperatures higher than ambient levels. Six

10 minute scans were made for each sample at this temperature.

Single crystal X-ray diffraction experiments were performed at Warwick on

an Oxford Diffraction Gemini R diffractometer. The Gemini R is a 4-axis goniometer

equipped with dual wavelength (Cu/Mo) fine focus X-ray sources. The detector is a

Ruby CCD area detector, which allows for extremely fast data collection of the entire

Ewald sphere [109]. Measurements at temperatures between 77-400 K are possible
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using a liquid nitrogen cryosystem. The use of the molybdenum source meant the

fluorescence of the cobalt was not present, meaning the quality of the data was

much improved from the powder X-ray diffraction measurements. A single crystal

fragment < 1 mm3 of Y0.15Sr0.85CoO3−δ was mounted on a glass fibre attached to

a goniometer head.

Finally, single crystal neutron diffraction measurements were made on the

four-circle diffractometer D10, the layout of which is shown in figure 5.5. The inci-

dent wavelength is either 2.36 Å using a PG-monochromator and filter or 1.26 Å us-

ing a Cu-monochromator. The diffraction peaks are measured using an 80 x 80 mm2

area detector or a single He3 detector which allows improved statistics. The offset

C-shaped Eulerian cradle accommodates a cryostat with a temperature range from

1.6 K to 450 K [110].

Figure 5.5: The layout of the four-circle single crystal diffractometer D10 with offset
C-shaped Eulerian cradle and optional energy analyser. Taken from reference [110].

A section was cut from the boule of the O2-annealed Y0.15Sr0.85CoO3−δ sin-

gle crystal and oriented using the OrientExpress neutron Laue. The sample was

mounted on a pin and placed inside the Eulerian cradle cryostat allowing the in-

strument to access most of reciprocal space. The sample selected had a twin which

was found to be randomly oriented, so should not have any significant impact on

our measurements.

5.3.2 AD/OD and AD/OO Powder

The AD/OD and AD/OO phases of Y1−xSrxCoO3−δ were investigated using powder

X-ray and neutron diffraction. The aim was to confirm the published structures, and

assess the quality of the samples so that the magnetic structure of both compounds
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could be characterised. The X-ray scans were 12 hrs and the neutron scans were

15 mins, but using an instrument with a much larger flux. The diffraction patterns

recorded by both measurements are shown in figures 5.6 and 5.7 for the AD/OD

and AD/OO compounds respectively. All the patterns were fitted with a calculated

structural profile using the refinement program FULLPROF [111].

AD/OD AD/OO

Crystal System Cubic Orthorhombic
Space Group Pm3̄m Ima2

a (Å) 3.8279(5) 15.712(2)
b (Å) 3.8279(5) 5.5027(9)
c (Å) 3.8279(5) 5.387(1)
Volume 56.09(3) 465.6(2)

Impurity AO/OO (%) 0.05596(5) 0.660(2)
Impurity CoO(%) N/A 0.660(2)

χ2 16.3 10.7
RBragg 0.25 3.50
Rp 6.61 9.63
Rwp 6.00 8.27

Table 5.3: Rietveld refinement details for the AD/OD and AD/OO forms of
Y1−xSrxCoO3−δ measured using powder neutron diffraction at 500 K.

Both the diffraction patterns from the AD/OD powder were fitted using

a cubic perovskite model, space group Pm3̄m, as previously suggested, with the

details of the refinement of the neutron diffraction data given in table 5.3 and the

atom positions given in appendix A. The details of the fit to the X-ray data are

not given because the noise due to the cobalt fluorescence gave an artificially good

fit that was not representative of the goodness of fit of the model to the pattern,

although the data could still clearly be fitted with the same model as the neutron

diffraction data, as is shown in the first panel of figure 5.6.

The quality of the fit to the neutron data is also limited due to the fact that

only four peaks corresponding to the AD/OD phase were fitted, and this accounts

for the high value of χ2. This is because the D1B instrument is optimised for the

study of magnetic, not crystal structures. A small impurity phase was detected in the

pattern, and this was indexed as being 0.06 % of the sample belonging to the AO/OO

phase of the compound, whose presence was also indicated in the magnetisation

measurements, discussed in section 6.1.1.

The simple perovskite structure of the AD/OD powder implies both the Y/Sr

atoms and oxygen vacancies are randomly distributed through the lattice, and the

single cobalt atom is situated in an oxygen octahedra, shown in figure 5.9(a). The

oxygen content was fixed to be that determined using TGA, in this case δ = 0.30, and
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Figure 5.6: Powder diffraction patterns and calculated profiles for the AD/OD struc-
tural variant of Y1−xSrxCoO3−δ. The upper panel shows the X-ray diffraction pat-
tern taken at room temperature. The lower panel shows the neutron diffraction
pattern, taken at a temperature of 500 K to eliminate any magnetic contribution.
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Figure 5.7: Powder diffraction patterns and calculated profiles for the AD/OO struc-
tural variant of Y1−xSrxCoO3−δ. The upper panel shows the X-ray diffraction pat-
tern taken at room temperature. The lower panel shows the neutron diffraction
pattern, taken at a temperature of 500 K to eliminate any magnetic contribution.
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Figure 5.8: Powder diffraction patterns and calculated profiles for the AO/OO struc-
tural variant of Y1−xSrxCoO3−δ. The upper panel shows the X-ray diffraction pat-
tern taken at room temperature. The lower panel shows the neutron diffraction
pattern, taken at a temperature of 500 K to eliminate any magnetic contribution.
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Figure 5.9: Crystal structures of the AD/OD (space group Pm3̄m) and AD/OO
(space group Ibm2) forms of Y1−xSrxCoO3−δ respectively [92]. Figure drawn us-
ing [113].

this fitted the diffraction pattern well. It should be noted that all the later structures

discussed for the AD/OO and AO/OO structural variants of Y1−xSrxCoO3−δ are

just distortions of this simple perovskite structure with lattice parameter 3.83 Å.

The X-ray and neutron diffraction patterns for the AD/OO phase are shown

in figure 5.7. The AD/OO compound is oxygen deficient, with a value of 3 − δ

of 2.5, whose brownmillerite [84] crystal structure was described by previous re-

searchers [85]. The (2,0,0) peak of the crystal structure (space group Ibm2) is

clearly identifiable at 2θ = 11.2◦ in the X-ray diffraction pattern and at a q-spacing

of 0.8 Å−1 in the neutron diffraction pattern. This characteristic peak indicates oxy-

gen vacancy ordering and means there are layers of corner-sharing cobalt octahedra,

as in the simple perovskite structure, alternating with layers of cobalt tetrahedra

and oxygen vacancies. This crystal structure is shown in figure 5.9(b).

Refinement of the structure of the AD/OO sample from the neutron diffrac-

tion data revealed a small AO/OO impurity, as with the AD/OD sample. The

calculated atom positions from the refinement are given in appendix A. In this

case, the percentage was slightly higher, but still only 0.66 % of the sample. For

the AD/OO refinement, the χ2 was lower than for the AD/OD sample, but the

RBragg was higher. This reflects the fact that the fit to the data involves more

peaks, so there is less uncertainty, but the pattern is more difficult to reproduce.

However, considering the fit in figure 5.7 and the refinement parameters (table 5.3)

the brownmillerite model (figure 5.7) seems to be appropriate, in agreement with

previous results [85, 91, 92].

Figures 5.10 and 5.11 show the temperature dependence of the lattice param-

eters for AD/OD and AD/OO forms of Y0.15Sr0.85CoO3−δ respectively. The lattice

parameter of the AD/OO structure showing the largest expansion is the a lattice

parameter of the brownmillerite unit cell. The expansion profile is very similar to

that of the lattice parameter of the cubic AD/OD compound, with a change in the
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Figure 5.10: The temperature depen-
dence of the lattice parameter for the
cubic AD/OD form of Y1−xSrxCoO3−δ.

rate of expansion between 100 and 150 K and linear expansion at higher temper-

atures. In contrast, the b and c lattice parameters of the brownmillerite structure

contract as the temperature is increased. A change in the rate of expansion between

100 and 150 K was also observed for the b and c lattice parameters. Translating this

to the change in volume as a function of temperature, there is a ∼ 0.4 % increase

in volume of the AD/OO unit cell between 10 and 300 K.

5.3.3 AO/OO Powder

The AO/OO phase was also studied using X-ray and neutron diffraction. To im-

prove the statistics of the X-ray scans, the measurement was made over a timescale of

55 hrs, with the other parameters the same as for the AD/OD and AD/OO struc-

tures. However, the cobalt fluorescence is still present in the CuKα range, again

limiting the quality of the data. Neutron diffraction measurements were also made

on D1B, but it must be noted that this instrument is optimised for magnetism as op-

posed to structural studies. Therefore we used models based on published structures

to analyse the data as opposed to trying to solve the structure ab− initio.

The crystal structure of Y1−xSrxCoO3−δ was originally reported to be space

group I4/mmm with a 7.62 x 7.62 x 15.31 Å unit cell [83]. Although these initial

powder diffraction measurements showed no evidence of an orthorhombic distortion,

another study was made in 2009 [25] using the same space group but with a split

site for the 8i(x,0,0) Wyckoff position, which is partially occupied with oxygen.

Splitting a crystallographic site directly implies the true crystallographic symmetry

is lower than I4/mmm, giving reason to investigate space groups with lower crystal

symmetry. [83]. Electron microscopy measurements also suggested the existence of

a superstructure with lower symmetry than the tetragonal I4/mmm space group.

A peak with index (0.25,0.25,0) was observed using synchrotron X-ray diffraction

on the isostructural compound Er0.78Sr0.22CoO2.63 [89] and the same small peak

at ∼ 8◦ was identified more recently in X-ray diffraction [92], implying a larger

superstructure than the I4/mmm tetragonal structure utilised by most researchers.
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Figure 5.11: The temperature dependence of the a, b and c lattice parameters for
the brownmillerite AD/OO form of Y1−xSrxCoO3−δ. The size of the error bars is
due to the systematic errors involved in refining the data, as the random errors in
the data are small.
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The electron diffraction suggested a (2
√
2ap x 4ap x 2

√
2ap) supercell, where

ap is the simple perovskite cell, although it was suggested this was a local structure

present in some crystallites. This modulated structure was initially proposed to be

space group C1c1 or Cmcm [87] based on the presence of a c glide perpendicular to

the b axis. This was later revised to give an orthorhombic Cmma space group in the

solid solution range 0.750 ≤ x ≤ 0.850 Y1−xSrxCoO3−δ, outside of this range only

peaks corresponding to the I4/mmm space group were observed [21]. More recently,

it was suggested that at a temperature of around 360 K there is a transition from an

orthorhombic to monoclinic unit cell with space group A2/m [89]. The temperature

dependence of the crystal structure of Y1−xSrxCoO3−δ will be discussed later in

section 5.3.5 on structural transitions.

Initially, the powder diffraction data for the AO/OO compound was refined

in this I4/mmm space group (details given in appendix A). The fit was good for

both the neutron and the X-ray diffraction data, both of which are shown in figure

5.8. The type of oxygen vacancy ordering reported for the I4/mmm structure of

Y1−xSrxCoO3−δ was unreported prior to 2003. As with the AD/OO brownmillerite

crystal structure, fully oxygenated and oxygen deficient layers alternate along the

unique axis of the tetragonal unit cell. The fully oxygenated layers contain tilted

CoO6 octahedra. In the oxygen deficient layers, there is one extra oxygen atom per

layer compared to the brownmillerite structure, with all the cobalt atoms sitting

in oxygen tetrahedra. This implies charge ordering, as the Co3+ and Co4+ form a

regular arrangement in the lattice. This unit cell is illustrated in figure 5.12. There

is no scattering contrast between Sr2+ and Y3+ using either X-rays or neutrons, so

the positions of the yttrium ions were fixed according to those in the literature [83].

A comparison of the diffraction patterns for the three variants of the com-

Figure 5.12: Crys-
tal structure of the
AO/OO (space group
I4/mmm) form of
Y1−xSrxCoO3−δ [92].
The cobalt polyhedra
are shown in blue and
the A-site strontium and
yttrium atoms are shown
in green. The figure
clearly shows that fully-
oxygenated and oxygen
deficient layers alternate
along the c axis of the
unit cell. Figure drawn
using [113].
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pound is interesting. The peak at 2θ = 11.2◦ in the X-ray diffraction pattern and

at a q-spacing of 0.8 Å−1 in the neutron diffraction pattern of the AD/OO com-

pound is also present for the AO/OO compound, clearly demonstrating this peak

is related oxygen vacancy ordering. Comparing the diffraction patterns from the

AO/OO and simple perovskite AD/OD materials, we can see they are similar, re-

flecting the fact the AO/OO crystal structure is a distorted perovskite. The most

notable difference between the two structures is the addition of oxygen tilt peaks

flanking the perovskite structural peaks in the AO/OO patterns. The I4/mmm

unit cell is equivalent to a doubling of the simple perovskite cell along the a and b

axes and a quadrupling along the unique axis c (2ap x 2ap x 4ap).

Space Group I4/mmm Cmma A2/m

a (Å) X-ray 7.749(1) 15.4271(3) 21.938(6)
Neutron 7.728(1) 15.397(3) 21.815(6)∗

b (Å) X-ray 7.749(1) 10.9551(1) 10.950(3)
Neutron 7.728(1) 10.944(3) 10.934(3)∗

c (Å) X-ray 15.428(3) 10.9646(3) 15.427(4)
Neutron 15.410(3) 10.910(3) 15.385(3)∗

Volume X-ray 926.4(2) 1853.08(6) 3706(2)
Neutron 920.3(2) 1838.4(6) 3670(2)∗

Z 16 32 64

χ2 X-ray 3.93 3.89 3.91
Neutron 14.7 12.0 13.5∗

RBragg X-ray 24.1 23.2 26.4
Neutron 1.29 1.88 1.83∗

Rp X-ray 66.6 59.6 58.9
Neutron 6.79 6.47 6.25∗

Rwp X-ray 23.6 23.4 23.9
Neutron 6.50 5.95 6.00∗

Table 5.4: Refinement details for AO/OO Y0.15Sr0.85CoO3−δ powder in the
I4/mmm, Cmma and A2/m space groups. ∗Some parameters had to be fixed dur-
ing the refinement in the A2/m space group because the quantity of free parameters
caused the refinement to become unstable.

No impurities were detected in the AO/OO powder samples, and hence in

figure 5.8 there is a single set of Bragg positions indicated. The χ2 value of 14.7

for the neutron refinement is comparable to the value for the AD/OO sample given

in table 5.3. However, the R-factors for this refinement, given in table 5.4, are

significantly improved compared to the AD/OD and AD/OO compounds. This

suggests the model is a good fit to the data, and hence the conclusion that the

structure of our sample can be fitted adequately with the parent I4/mmm space

group.
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Figure 5.13: Orthorhombic crystal structure of AO/OO Y1−xSrxCoO3−δ with space
group Cmma. The upper panel shows the three dimensional crystal structure with
atom positions corresponding to those from the analysis of single crystal neutron
diffraction data. The lower panel shows a schematic representation of the oxygen
deficient layer in this structure, with the atoms in their ideal positions. The Y/Sr
are shown in green, the cobalt polyhedra in blue, the oxygens in red and the oxygen
vacancies in brown.
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The AO/OO X-ray and powder neutron diffraction data were also refined in

the Cmma and A2/m cells. These cells consist of a doubling and a quadrupling of

the parent I4/mmm unit cell respectively, and their respective lattice parameters,

as refined from the neutron and X-ray diffraction data, are given in table 5.4. The

translation matrix for moving from the I4/mmm to the Cmma space groups is:

M =









0 0 1

1 1 0

−1 1 0









A centring translation of (0,+0.5,0) must also be applied to get the correct Wyckoff

positions for the atoms. This means the unique axis c in the I4/mmm space group

is the a axis in the Cmma space group.

As with the I4/mmm space group, the Cmma crystal structure, shown in

figure 5.13, consists of alternating fully-oxygenated and oxygen deficient layers. In

the fully-oxygenated layers all the cobalt species are in octahedral environments.

However, in the oxygen deficient CoO4+δ layers there are three different cobalt

environments, octahedral, square pyramidal and tetrahedral, shown in the lower

panel of the figure. These different environments form as a result of the ordering of

the oxygen vacancies in zig-zag stripes in the bc plane.

Increasing the number of free parameters will always improve the refinement,

with small improvements with the refinements in the lower symmetry space groups

in table 5.4 as would be expected. Generally, the χ2 values for each of the three

space groups in table 5.4 are comparable, with the best values obtained for the

Cmma space group.

In this section, X-ray and neutron diffraction measurements on polycrys-

talline samples of Y0.15Sr0.85CoO3−δ have been described. It has been shown that

the data collected can all be fitted satisfactorily with published models for the crys-

tal structure. However, there is some debate about the exact crystal structure of

Y1−xSrxCoO3−δ and we have made single crystal diffraction measurements in the

hope of shedding some light on this issue

5.3.4 Single Crystals

Prior to the work described in this thesis, diffraction measurements had never been

performed on single crystals of any Y1−xSrxCoO3−δ compound. It was therefore

important to carry out a general survey of the diffraction peaks as well as evaluat-

ing the changes in the structure as a function of temperature. Figure 5.14 shows

unwarped images of the (0kl), (h0l) and (hk0) planes of the I4/mmm crystal struc-

tures, as measured using single crystal X-ray diffraction at room temperature, de-

scribed in section 5.3.1. The shape of the peaks, with a tail directed away from
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0kl

h0l

hk0

Figure 5.14: Single crystal X-ray diffraction data for Y0.15Sr0.85CoO3−δ collected on
an Oxford Diffraction Gemini R diffractometer at room temperature. The unwarped
planes shown are 0kl, h0l and hk0 planes in the parent I4/mmm structure.
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the centre of the image, is a characteristic of the measurement. Closer inspection

of one of these peaks shows the shape is a Maxwell-Bolzmann distribution due to

the Bremsstrahlung continuum convolved with the positions of the Kα and Kβ lines

of the molybdenum source. The use of a molybdenum rather than a copper source

meant the fluorescence which hampered the powder X-ray diffraction measurements

was not an issue here.

Various qualitative conclusions can be drawn from the data in figure 5.14.

The largest peaks correspond to those of the cubic perovskite base structure, at a

lattice spacing of 3.84 Å. Along the c axis (the top and bottom panels), this cubic

structure is 4-times modulated, in agreement with the 15.4 Å lattice parameter

along this axis in the I4/mmm, Cmma and A2/m space groups. There is also clear

diffuse scattering along this axis, indicating some structural disorder. This diffuse

scattering is weak, many times weaker than the main structural peaks, and hence we

would not expect to observe it in powder data. Diffuse scattering will usually serve

to reduce the accuracy of any refinement of this data and lead to an anomalously

high agreement factor. In a system such as this, the diffuse scattering may indicate

that any proposed structure is an average of the true z positions of the atoms.

The diffraction data taken in the ab plane of the I4/mmm crystal structure is

shown in the central panel of figure 5.14. Careful study of this figure shows that the

cubic perovskite structure is 8-times modulated along both the a and b axes. This

would potentially indicate a lattice parameter of up to 30.8 Å, which is extremely

large. The image confirms using single crystal measurements the existence of a

complex superstructure postulated by several researchers from powder diffraction

measurements.

The possibility of twinning in our single crystals was considered, as twinning

is known to be a problem in tetragonal and orthorhombic systems when the system

has formed from one with higher symmetry, which commonly happens in perovskite

systems such as this when the sample cools, see section 2.3.2. The most common

form of twinning in this case is merohedral twinning, where the system has a sym-

metry element which is not a symmetry element of the space group but that is a

symmetry element of the crystal system. However, by comparing the intensities of

equivalent peaks no clear sign of twinning was observed, and although models in-

corporating merohedral twinning were tested no improvement in the quality of the

refinement was observed.

Attempts were made to solve this structure ab − initio using the GRAL

applet of the Oxford Diffraction CrysAlisPro software and the SIR − 92 solution

and Shelx97 refinement program. However, the challenges involved with such a

solution: this data set contains modulation, diffuse scattering and the potential

for twinning, meant that we were unable to solve the structure using this method.
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Expert analysis may make finding such a solution possible but is beyond the scope

of this work, which is motivated by the magnetic order rather than crystallographic

properties of Y1−xSrxCoO3−δ.

Parameter X-rays Neutrons

a (Å) 15.3981 N/A

b (Å) 10.9525 N/A

c (Å) 10.9165 N/A

Rp 0.0818 13.3

Rwp 0.0796 15.8

χ2 1.888 6.97

λ 0.7107 1.26

Temperature (K) 300 420

Table 5.5: Refinement details
for single crystals of AO/OO
Y0.15Sr0.85CoO3−δ in the Cmma
space group. The lattice parameters
for the neutron diffraction refinement
are not given as this refinement is
done on the basis of matching the
intensities of set peaks, without
considering their positions.

As a complete structural solution is unavailable, we should consider how

the previously proposed I4/mmm, Cmma and A2/m structures fit with the ob-

served diffraction pattern in figure 5.14 to enable quantitative analysis of this data.

The tetragonal I4/mmm parent structure only involves a doubling of the simple

perovskite structure in the ab plane, so accounts for little of this complex super-

structure. Therefore, the fit of this data to the previously proposed [21] Cmma

space group was tested. A comparison of the observed and calculated intensities of

the peaks measured at a wavelength of 1.26 Å is shown in figure 5.15. Although

this space group clearly does not account for all the peaks shown in figure 5.14,

as it only involves a 4-fold modulation in the ab plane rather than the 8-fold one

observed, it accounts for all bar a single set of peaks which appear nearest to the

large perovskite peaks.
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Figure 5.15: Comparison of
the observed and calculated
squares of the intensities of
the diffraction peaks measured
with an incident wavelength of
1.26 Å at 420 K on the single
crystal diffractometer D10. The
extent to which the peaks lie
on the plotted x = y line gives
a visual measure of the quality
of the fit to the Cmma space
group used for the fit.

The lattice parameters and fit details for the X-ray and neutron refinements

in the Cmma space group are given in table 5.5. The lattice parameters for the
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Atom Site x y z B Occ.

Sr1 8a 0.36971(4) 0.5 0 0.0103(1) 1.0
0.3704(6) 0.5 0 1.52(8) 1.0

Sr2 8a 0.35576(3) 0.25 0.25644(4) 0.0128(1) 0.4
0.3649(4) 0.25 0.250(1) 1.31(6) 0.4

Y1 8a 0.35576(3) 0.25 0.25644(4) 0.0128(1) 0.6
0.3649(4) 0.25 0.250(1) 1.31(6) 0.6

Sr3 8a 0.37662(3) 0.25 0.74186(4) 0.0166(1) 1.0
0.3748(4) 0.25 0.7502(7) 1.15(6) 1.0

Sr4 8a 0.36709(4) 0.5 0.5 0.0118(1) 1.0
0.3726(4) 0.5 0.5 0.51(5) 1.0

Co1 8a 0 0.00214(6) 0.25557(6) 0.0148(2) 1.0
0 0.001(2) 0.250(2) 1.4(2) 1.0

Co2 4a 0.5 0.25 -0.00949(8) 0.0116(2) 1.0
0.5 0.25 0.007(6) 3.5(7) 1.0

Co3 4a 0.25 0.25 0 0.0077(2) 1.0
0.25 0.25 0 1.7(4) 1.0

Co4 4a 0.25 0.25 0.5 0.0076(2) 1.0
0.25 0.25 0.5 0.2(2) 1.0

Co5 8a 0.25 0.5 0.24885(5) 0.0070(1) 1.0
0.25 0.5 0.250(2) 1.0(1) 1.0

Co6 4a 0.5 0.25 0.49390(8) 0.0123(2) 1.0
0.5 0.25 0.501(2) 0.0(2) 1.0

O1 16a 0.2392(2) 0.37340(3) 0.12660(2) 0.0156(6) 1.0
0.2479(5) 0.3671(4) 0.1316(4) 0.83(4) 1.0

O2 16a 0.2430(2) 0.37340(3) 0.37360(2) 0.0147(6) 1.0
0.2339(4) 0.3820(6) 0.3810(6) 1.66(7) 1.0

O3 8a 0.5 0.369(3) 0.136(2) 0.005(8) 0.10(1)
0.5 0.394(3) 0.104(3) 1.8(5) 0.24(4)

O4 8a 0 0.1130(4) 0.1176(3) 0.023(1) 1.0
0 0.132(1) 0.124(1) 2.1(1) 1.0

O5 8a 0.5 0.310(1) 0.3268(9) 0.050(4) 0.43(1)
0.5 0.378(2) 0.376(2) 2.6(2) 0.70(4)

O6 8a 0.5 0.3855(4) 0.60790(3) 0.022(1) 1.0
0.5 0.3947(7) 0.6073(8) 1.5(1) 1.0

O7 8a 0.3882(3) 0.25 0.0401(3) 0.0269(9) 1.0
0.3750(6) 0.25 0.003(1) 1.04(8) 1.0

O8 8a 0.3757(3) 0.25 0.4813(3) 0.0223(9) 1.0
0.385(2) 0.25 0.464(1) 3.7(2) 1.0

O9 16a 0.3835(2) 0.4699(3) 0.2504(2) 0.0273(6) 1.0
0.3772(6) 0.4818(5) 0.2499(2) 2.8(1) 1.0

Table 5.6: Table of Wyckoff positions for single crystal Y0.15Sr0.85CoO3−δ refined
in the Cmma space group. The upper values are those from the refinement of the
single crystal X-ray diffraction data taken at a temperature of 300 K. The lower
values are those from the refinement of the single crystal neutron diffraction data
taken at a temperature of 420 K. (see footnote 1 for the errors on the neutron data).
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neutron diffraction refinement are not given as this refinement is done on the basis

of matching the intensities of set peaks, without considering their positions. The

refinements were also performed using different software, FULLPROF and Shelx-

97 for neutrons and X-rays respectively, so the R and χ2 values should not be

considered directly comparable. The X-ray refinement also included anisotropic

thermal parameters, which further improved the refinement. The refined values

generally agree with the structure proposed in reference [21]. The refined Wyckoff

positions, given in table 5.6, of the partially occupied O3 and O5 sites are quite

different, and this could be for one of several reasons. Either the difficulty in refining

the positions of vacancies and sites with low occupancy have resulted in an error

or there is some shift in the positions of these atoms at the structural transition at

370 K.1

Refining in a twinned A2/m space group was considered, particularly as a

version of this structure twinned in the ab plane would account would account for

all the observed peaks. However, no evidence of twinning was found in the diffrac-

tion data, and such a structure was too complex to use without prior knowledge of

some parameters, as too many free parameters tended to cause the refinement to be-

come unstable. Quantitative analysis of the magnetic structure of Y1−xSrxCoO3−δ

will therefore be done by using either the tetragonal I4/mmm parent structure or

the orthorhombic Cmma structure, and the implications of using a simplified crys-

tallographic structure for the interpretation of the magnetic data will need to be

considered.

5.3.5 Structural Transitions

Previous work has established there are at least three structural phase transitions

in the AO/OO phase of Y1−xSrxCoO3−δ as a function of temperature at ∼509,

∼360 [89] and ∼300 K [92]. The measurements described above were made at tem-

peratures of 420 K for the neutron diffraction and 300 K for the X-ray diffraction.

These are both below the first phase transition, which is believed to be from an

I4/mmm unit cell to a lower symmetry phase [89], hence the observation of a com-

plex orthorhombic or monoclinic superstructure which could not be fully solved.

This phase transition is generally acknowledged to be due to oxygen vacancy order-

ing [89]. This first structural phase transition will not be discussed any further, as

this study has involved no structural measurements at temperatures above 509 K.

1The large number of free parameters in the Cmma structure caused the refinement of the
neutron data in FULLPROF to be unstable in some cases. For this reason, not all the parameters
were refined simultaneously. This causes a problem when generating the errors on the final values.
Therefore, after the final refinement cycle, the errors were generated by refining each final value
individually, discarding any changes in the atom positions (which were generally negligible) before
the next value was refined.
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100 K 300 K 400 K

Figure 5.16: The (4, 0, 0) peak in the I4/mmm space group of AO/OO
Y1−xSrxCoO3−δ measured using single crystal X-ray diffraction at 400, 300 and
100 K. Additional peaks appear at positions corresponding to (3.5, 0.5, 0) and
(3.75, 0.25, 0) as the crystal is cooled.

The critical temperature of the second structural transition is a matter of

some debate, and this debate is significant as it serves to establish whether the struc-

tural and magnetic transition coincide. This second structural transition is believed

to be first order [89, 45]. Synchrotron X-ray diffraction gave a transition tempera-

ture of 360 K [89], powder neutron diffraction measurements suggested Tc = 330 K

[24] and resonant X-ray scattering experiments gave a transition temperature of

390 K [45]. It should be noted these measurements were all made on different sam-

ples, the latter of which was a single crystal, and so it is conceivable the differences

in oxygen content have affected the Tc. Our single crystal has been measured at

three different temperatures using single crystal X-ray diffraction equipped with a

cryostream, described in section 5.3.1. The (4, 0, 0) peak at each of these temper-

atures is shown in figure 5.16. As the temperature is reduced, additional peaks

appear at positions corresponding to (3.5, 0.5, 0) and (3.75, 0.25, 0) in the I4/mmm

space group. Peaks also appear at the appropriate symmetry equivalent positions to

these. The peaks are strongest at the lowest temperature and appear at a temper-

ature between 300 and 400 K, in keeping with the transition temperatures quoted

by other groups. The presence of these peaks implies the formation of a monoclinic

supercell at low temperatures. The precise temperature of this structural phase

transition will be investigated further in section 6.3.2.

This second structural phase transition has been attributed to orbital order-

ing, described in section 2.1.3. Figure 5.17 has been taken from a recent resonant

X-ray diffraction study on Y1−xSrxCoO3−δ. It shows the proposed orbital ordering

in the fully-oxygenated CoO6 layers. These measurements immediately imply the

existence of the IS state in Y1−xSrxCoO3−δ, as neither the HS or LS spin states are

eg orbitally degenerate [45]. The structure proposed consists of dx2
−y2 and dy2−z2

eg orbitals of the IS Co3+ alternately arranged and separated by HS Co3+ spheres,

a ‘zig-zags and spheres’ ordering [112]. The measurement of this type of antiferro-

magnetic orbital ordering in Y1−xSrxCoO3−δ was the first experimental observation

of this kind of behaviour in any material [112].
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Figure 5.17: The proposed orbital or-
dering in the fully-oxygenated CoO6

layers of Y1−xSrxCoO3−δ. The struc-
ture proposed consists of dx2

−y2 and
dy2−z2 eg orbitals of the IS Co3+ are
alternately arranged and separated by
HS Co3+ spheres, a ‘zig-zags and
spheres’ ordering [112]. Figure taken
from reference [45].

The third structural phase transition in Y1−xSrxCoO3−δ occurs at a temper-

ature of ∼280 K [24]. Although a structural change at this temperature has been

indicated by previous research, little has been established about its nature. Both

the transition at ∼370 K and this one at ∼280 K were investigated by measuring

the changes in the lattice parameters as a function of temperature. Changes in the

lattice parameter at 370 K were observed using the triple-axis spectrometer 2T1 de-

scribed in section 6.4.1 (not shown), and these changes were most prominent along

the a direction of the I4/mmm unit cell. The lattice parameters of the I4/mmm

unit cell as function of temperature measured using neutron diffraction are shown

in figure 5.18. The trend agrees with that observed previously [25], and both a and

c decrease as the temperature is reduced, as would be expected.
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Figure 5.18: Temperature dependence of the lattice parameters a and c of the
AO/OO form of Y1−xSrxCoO3−δ refined in the I4/mmm space group.

At a temperature around 280 K to 300 K, the isotropic thermal expansion

observed at low temperatures becomes more anisotropic, and there is a notable

change in slope of the a lattice parameter as a function of temperature. The same

measurements of the lattice parameters as a function of temperature were also made

in the Cmma space group. Figure 5.19 shows the temperature dependence of a, b

and c lattice parameters as a function of temperature, and the same change in slope

at ∼280 K described above was observed for the c lattice parameter, although there
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are large errors on the measurement.

The transition at 280 K is believed to be of the displacive type. This is

because the transition temperature is believed to be too low for a superstructure

reconstruction [24]. Previous work [25] also suggested that many of the Co-O bond

angles do not change with temperature, which means tilting of the oxygen polyhedra

may not be responsible for this structural transition. This structural change also

coincides with a change in the magnetic behaviour, discussed in the next chapter,

and the relationship between the two has not yet been established.
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Figure 5.19: Temperature dependence of the lattice parameters a, b and c of the
AO/OO form of Y1−xSrxCoO3−δ refined in the Cmma space group. The size of
the error bars is due to the systematic errors involved in refining the data, as the
random errors in the data are small.

5.4 Discussion

High quality single crystals of the A-site and oxygen vacancy ordered variant of

the yttrium-doped strontium cobaltates Y1−xSrxCoO3−δ (0.7 ≤ x ≤ 0.95) have

been produced using the floating zone technique. The yttrium and oxygen contents

of these crystals have been evaluated using EDAX and TGA respectively and a

single crystal with chemical formula Y0.15Sr0.85CoO2.63 has been used for a detailed

study. Powder samples of A-site and oxygen vacancy disordered (AD/OD), A-site
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disordered and oxygen vacancy ordered (AD/OO) and A-site and oxygen vacancy

ordered (AO/OO) forms of Y0.15Sr0.85CoO3−δ were also produced using a standard

solid state synthesis technique.

The crystal structures of both the Y0.15Sr0.85CoO3−δ powders and single

crystals were studied using X-ray and neutron diffraction. Although a full structural

solution for the A-site and oxygen vacancy ordered variant of Y1−xSrxCoO3−δ was

not found, the structure was investigated and evidence of a complex superstructure

with an 8-fold modulation of the basic perovskite cell in the ab plane was recorded.

Diffuse scattering along the unique axis (c axis of the I4/mmm space group) of the

unit cell was also observed suggesting some structural disorder along that axis. The

crystal structure of AO/OO Y0.15Sr0.85CoO3−δ was refined satisfactorily in each

of the I4/mmm, Cmma and A2/m space groups, in agreement with the results

of previous investigations. Transmission electron microscopy and combined X-ray,

neutron and electron studies will be necessary to solve the exceptionally complex

superstructure of this material.

Evidence of structural transitions at 370 K and 280 K was also observed using

single crystal X-ray diffraction data and by studying the thermal expansion profile

of the lattice parameters. The first of these transitions involves at least a doubling

of the unit cell and a transition to a lower symmetry structure. This transition

has been ascribed to orbital ordering of Co3+ ions in the intermediate spin state.

The second of these is likely to be a displacive type structural phase transition.

Both of these phase transitions appear to be linked to the magnetic behaviour of

Y1−xSrxCoO3−δ which will be discussed in the next chapter.
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Chapter 6

Y1−xSrxCoO3−δ: Magnetism

The magnetic ordering in Y1−xSrxCoO3−δ has been of interest to researchers because

of an observed room-temperature ferromagnetic signal [22] and magnetic behaviour

heavily dependent on oxygen content [11]. The work undertaken utilised magneti-

sation, specific heat, powder neutron diffraction, single crystal neutron diffraction

and neutron spectroscopy to study the magnetic behaviour of Y1−xSrxCoO3−δ. The

Y0.15Sr0.85CoO3−δ compound was studied in all cases for consistency and because

of the availability of single crystals of this composition. The aim of these measure-

ments was to characterise the magnetic behaviour of Y1−xSrxCoO3−δ and determine

the magnetic structure in zero field.

6.1 Characterisation Measurements

6.1.1 dc-Susceptibility of Powder

The dc-susceptibility of the powder samples of the three possible structural variants

of Y1−xSrxCoO3−δ, AD/OD, AD/OO and AO/OO, was measured as a function of

temperature using a Quantum Design SQuID MPMS. The samples (masses between

36 and 69 mg) were placed in gel capsules and then put inside a plastic sample

straw. The samples had the compositions Y0.15Sr0.85CoO2.70, Y0.15Sr0.85CoO2.53 and

Y0.15Sr0.85CoO2.50 respectively. All the measurements were carried out in applied

magnetic fields of 0.1 and 1 T. The resulting six curves are shown in figure 6.1.

The magnetisation of the AD/OD compound shows evidence of two transi-

tions as a function of temperature. The first transition on cooling is at 335 K and

the second at 150 K, marked on panels (a) and (b) of figure 6.1. In higher fields

(1 T) the change in the intensity of the magnetic signal at the first transition at

335 K is suppressed and the change in the intensity of the magnetic signal at the

second transition at 150 K is enhanced. The transition at 150 K is believed to re-

flect the onset of ferromagnetic behaviour in this AD/OD compound. Comparing

80



0.00

0.02

0.04

0.06

0.000

0.001

0.002

0 100 200 300
0.000

0.001

0.002

0.0

0.1

0.2

0.000

0.005

0.010

0.015

0 100 200 300 400
0.000

0.005

0.010

0.015

Tc = 250 K
Tc = 250 K

AO/OO

AD/OD

AO/OO AO/OO

Tc = 335 K

Tc = 100 K

Tc = 150 K

Tc = 335 K

Tc = 100 K

(a)

(e)

(d)

(b)

(c)

0.1 T 1 T
 AD/OD

 

 

Tc = 150 K

AO/OO

(f)

 AD/OO

 

 

M
ag

ne
tis

at
io

n 
(

/C
o)

AD/OD

 AO/OO

 

 

Temperature (K)

 

 

 

 

 

 

Figure 6.1: dc-magnetisation as a function of temperature as measured for AD/OD,
AD/OO and AO/OO Y0.15Sr0.85CoO3−δ samples. The measurements were made in
applied magnetic fields of 0.1 (a, c and e) and 1 T (b, d and f) respectively. The
transition temperatures for each of the samples and their suspected impurity phases
are also marked.
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with similar measurements made by other researchers, the recorded low temperature

magnetisation agrees with the magnetisation of the lowest δ compound previously

measured [92]. A similar ferromagnetic signal has been observed for other con-

ventional perovskite cobaltates such as La1−xSrxCoO3 [57, 23, 92], and has been

attributed to the double exchange interaction between neighbouring cobalt atoms

with unequal valencies, which is the suggested mechanism in this AD/OD material.

At first glance, the magnetisation of the brownmillerite AD/OO form of

Y0.15Sr0.85CoO3−δ behaves similarly to the AD/OD compound, with two features

which can be associated with magnetic transitions, one at 335 K and one at 100 K.

However, the magnitude of the low temperature magnetisation is a factor of 20

lower than that measured for the AD/OD material. The transition temperature is

comparable with the 130 K previously reported [91, 92] for the AD/OO material

though lower than the 200 K that also been claimed [85]. The differences are credible

considering the strong influence of oxygen content on the properties of the material

(the AD/OO structure is only stable in the vicinity of δ = 0.5). The origin of this

weak ferromagnetic signal will be discussed in section 6.2.1, but the relative weak-

ness of the signal means the bulk of the sample is unlikely to be ferromagnetically

correlated.

The dc-magnetisation as a function of temperature of the sample of the

AO/OO structural variant of Y0.85Sr0.15CoO3−δ is shown in panels (e) and (f) of

figure 6.1. The transition temperature of 335 K is in agreement with previously

reported values [22, 92]. This is also means the transitions at 335 K for the AD/OD

and AD/OO forms of the compound (panels (a) to (d)) are likely to be due to

some AO/OO impurity phase. The quenching involved with the production of these

structural variants of Y0.85Sr0.15CoO3−δ means it is more likely impurity phases will

be present in the samples than for samples formed without quenching. Conversely,

an increase in the magnitude of the magnetisation of the AO/OO compound at lower

temperatures indicates some phase fraction of disordered material is also present

in this sample. A change in slope in the magnetisation is present at 250 K in

the magnetisation of this AO/OO sample, and this is marked on panels (e) and

(f) of figure 6.1. This cusp is present in the previous measurements done on this

compound, and like the transition temperature, its position depends on the value of

δ.

The magnetisation behaviour recorded for the AD/OD, AD/OO and AO/OO

Y0.85Sr0.15CoO3−δ powders agrees with that previously reported for polycrystalline

samples of the x = 0.75 compound with similar values of δ [22, 91, 92]. However,

very little is known about the magnetic properties of single crystals of any of the

Y1−xSrxCoO3−δ series [94] and the subsequent sections aim to address this disparity.
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6.1.2 dc-Susceptibility of Single Crystals

In order to measure the magnetic properties of single crystals of Y0.15Sr0.85CoO3−δ

small sections were cut from the boules using a low-speed diamond saw. Each boule

was encased in wax before cutting to support the material, as the crystals were found

to be quite brittle. In some instances the samples were aligned using the X-ray Laue

method. dc-magnetisation measurements as a function of temperature were made

between 5 and 400 K in applied magnetic fields of up to 1 T using a magnetometer.

Samples with masses ∼100 mg were affixed to a polyether ether ketone (PEEK)

plastic sample holder using GE varnish and then put inside a plastic sample straw

for the the measurement.
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Figure 6.2: The temperature dependence of the

zero-field cooled warming (ZFCW) and field-cooled

cooling (FCC) dc-magnetisation of a single crys-

tal of Y0.15Sr0.85CoO3−δ. The top panel shows the

magnetisation for the as-grown crystal with a δ

value of 0.41 and the bottom panel shows the mag-

netisation for the O2-annealed crystal (H || c) with
a δ value of 0.37. The measurements were made in

an applied magnetic field µ0H = 0.1 T.

Figure 6.2 shows the

dc-susceptibility versus tem-

perature measurements made

on as-grown and O2 annealed

crystals of Y0.15Sr0.85CoO3−δ.

All the single crystals dis-

cussed in this thesis were

the AO/OO structural vari-

ant of Y1−xSrxCoO3−δ. For

the as-grown crystal the mag-

netic ordering temperature is

around 350 K and the mag-

nitude of the magnetisation

at low temperatures is small,

0.0025 µB/Co. A broad peak

at ∼ 100 K suggests that a

small quantity of the AD/OD

phase is present [92]. For the

O2-annealed crystal a much

more apparent transition oc-

curs at 370 K. The observed

critical temperature for the

transition is at the same as that previously reported for an x = 0.75 single crys-

tal [94]. The magnitude of the dc-magnetisation at low temperatures is substantially

less than would be expected if all the cobalt moments were ferromagnetically aligned,

suggesting again that the measured magnetisation signal does not necessarily imply

bulk ferromagnetism in the sample.

A second transition in the magnetic behaviour is present at 280 K, which is

most clear in the zero-field cooled measurement. This feature has been previously
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Figure 6.3: The temper-
ature dependence of the
zero-field cooled warm-
ing (ZFCW) and field-
cooled cooling (FCC) dc-
magnetisation of a crys-
tal of Y0.15Sr0.85CoO3−δ

in applied magnetic fields
of µ0H = 0.1 (left panel)
and 1 T (right panel)
measured with H || c and
H || ab.
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observed in the dc-magnetisation measurements on Y1−xSrxCoO3−δ powders, at

250 K in figure 6.1, and has been attributed to a smearing out of the ferromagnetic

signal associated with the range of possible oxygen stoichiometries found in this

material [92]. The magnetic response characteristic of the AD/OD material (a

change in slope at ∼ 150 K) is also visible in the data. This result suggests that the

sample contains around 1% of the AD/OD phase. The increase in the transition

temperature of the AD/OD minority phase (as compared to that seen in the as-

grown sample) is consistent with an increase in the oxygen content of this phase

due to the O2-annealing. At low temperatures the magnetisation signal of the O2-

annealed sample is almost two orders of magnitude larger than for the as-grown

sample, showing in the influence of oxygen content on the magnetic behaviour of

Y1−xSrxCoO3−δ. Substantial hysteresis is present between the field cooled and zero-

field cooled measurements implying the presence of domains.

Figure 6.3 shows the same dc-magnetisation as a function of temperature

measured with the crystal aligned parallel to the c axis of the I4/mmm unit cell

shown in figure 6.2. In addition, measurements were made with the crystal aligned

parallel to the ab plane and in a 1 T applied magnetic field. The results indicate

that the magnetisation is isotropic, as the same features appear with the similar

magnitudes in both measurements. The slight difference in magnitudes between the

measurements made with the sample aligned parallel to the c axis and parallel to

the ab plane in a field of µ0H = 0.1 T is attributed to the demagnetisation factor

associated with the shape of the sample (which was closer to a cuboid than a sphere)

rather than any anisotropy in the magnetic response of the sample. Anisotropy of

the magnetic response of the sample might have been expected because of the layered

crystal structure of the compound and the possibility of spin canting in the material.

This interpretation agrees with the observed magnetisation in a µ0H = 1 T applied

magnetic field, which is almost perfectly isotropic.
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6.1.3 ac-Susceptibility

The same MPMS system was used to carry out ac-susceptibility measurements on

an O2-annealed sample of single crystal aligned parallel to the c axis. As with the

dc-susceptibility measurements the sample was mounted on plastic PEEK sample

holder using GE varnish and put inside a non-magnetic straw. The sample had

mass m = 28.977 mg. The measurements were made in zero external dc field, with

a 0.0003 T (3 Oe) ac driving field at a frequency of 30 Hz. The results are shown in

figure 6.4.

There are three clear features in the data, marked as Tc1 = 165 K, Tc2 =

284 K and Tc3 = 371 K. These features imply reorientation of the magnetic moments

at these temperatures, and their positions correlate with the temperatures of the

three transitions observed in the equivalent dc-susceptibility data, shown in figure

6.2. This data gives us more exact positions for these transitions in temperature

than the dc equivalent.

The feature at Tc3 correlates with the transition to ferromagnetic behaviour

observed in the dc-susceptibility at 370 K. The peak at Tc1 has a similar character

to the one at Tc3, with a sharp peak in both χ′

ac and χ
′′

ac. The peaks in χ
′′

ac indicate

that the transitions at Tc1 and Tc3 are dissipative. In both cases, the peak in χ′′

ac

lags slightly behind that in χ′

ac. As discussed in the context of the dc-susceptibility

measurements, we attribute the feature at Tc1 to an A-site and oxygen vacancy

disordered impurity in the sample. This interpretation is justified because because

no evidence of a transition at this temperature has been observed either by other

researchers or using the diffraction measurements detailed later in this chapter.

The ac-susceptibility data also contains a third feature at Tc2, identifiable as

a cusp in the dc-susceptibility data at 280 K. The presence of this feature means

there is either some reorientation or change in the magnitude of the moments at this

temperature. The character of this peak in the ac-susceptibility is very different to

the peaks at Tc1 and Tc3; it is much broader, and the process that causes it is much

less dissipative, as the peak in χ′′

ac is relatively much smaller than the peaks in χ′′

ac

at Tc1 and Tc3. The fact this feature has been seen by many other researchers and in

many different samples suggests it is not associated with disorder or some impurity

phase, but some intrinsic property of the material itself. This is reinforced by the

presence of a structural change at this temperature, discussed in section 5.3.5. ac-

susceptibility appears to be a good technique for studying this transition at Tc2, as

it is much more clear than in the dc-measurements and has given new information

about the dynamics of the potential spin reorientation process involved.
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Figure 6.4: In-phase (χ′

ac) and out-of-phase (χ′′

ac) components of the ac-susceptibility
as a function of temperature measured in zero external dc-field with a 0.0003 T
driving field with an alternating current frequency of 30 Hz. The sample was a
single crystal of Y0.15Sr0.85CoO3−δ aligned with the field parallel to the c axis. The
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6.1.4 dc-Susceptibility above Tc

A furnace insert to the Quantum Design MPMS system was used to measure the dc-

susceptibility of Y0.15Sr0.85CoO3−δ single crystals at temperatures between 300 and

700 K. A 5.572 mg sample was put inside an alumina sample holder and measured in

an applied magnetic field of µ0H = 0.1 T. The sample was initially zero-field cooled

and was measured both on zero-field cooled warming and on field cooled cooling,

although we would expect both to be the same in the paramagnetic regime. This

measurement was then repeated three more times without removing the sample.

The mass of the sample after the measurement was 5.256 mg, so there was a ∼6 %

mass loss. Assuming this mass loss is entirely due to the loss of oxygen from the

sample, this gives an oxygen content of approximately 3− δ = 2.0, compared to an

oxygen content of 3− δ = 2.6 before the measurement.
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Figure 6.5: The temperature dependence of the

inverse dc-susceptibility of a field-cooled crystal

of Y0.15Sr0.85CoO3−δ measured between 300 and

700 K in a µ0H = 0.1 T applied magnetic field.

Inset: Linear fit to the data between 450 and

550 K.

Figure 6.5 shows the in-

verse susceptibility 1/χ of a sin-

gle crystal of Y0.15Sr0.85CoO3−δ

as a function of temperature be-

tween 300 and 700 K. If we as-

sume the sample is paramagnetic

above Tc, then the data can be

fitted with a straight line in this

region. At the highest tem-

peratures measured the data be-

comes quite noisy which is a fea-

ture of measurements using the

furnace insert. The data be-

tween 450 and 550 K was fitted

with a straight line with gradient

0.147 ± 0.001 K−1 and y-axis in-

tercept 40.1 ± 0.5. Inspecting the

data χ0, the remnant diamagnetic

susceptibility due to the sample

holder or non-magnetic atoms in the sample, appears to be small and was assumed

negligible in the analysis. The demagnetisation factor of the sample was also not

considered. Accepting these approximations, and using equation 2.5, a Weiss tem-

perature of -273 K is obtained, lower than the observed critical temperature. This

difference between the critical and Weiss temperatures is typical for antiferromag-

netic systems with complex magnetic interactions where next-nearest neighbour

interactions need to be considered.

The gradient 1/C of the inverse susceptibility versus temperature in the
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paramagnetic regime can be related to the effective magnetic moment µ of the

sample using equation 6.1, where NA is Avogadro’s number.

C =
µ2µ2BNA

3kB
(6.1)

From the data in figure 6.5, we can therefore obtain an effective magnetic mo-

ment of µ = 2.33 µB/f.u. for Y0.15Sr0.85CoO3−δ. From our calculations of the

cobalt valencies in section 5.2, it is believed that the valency of the cobalt ions in

Y0.15Sr0.85CoO3−δ is 3+. The expected magnetic moments for orbitally quenched

Co3+ ions in the LS, IS and HS spin states are given in section 2.3.4, and the value

of 2.33 is closest to the µ = 2.83 µB expected for IS Co3+. In the first approxima-

tion, this calculation assumes a single valency and spin state for all the cobalt ions,

it would therefore be expected that most of the cobalt ions in Y0.15Sr0.85CoO3−δ

would be in the intermediate spin state.

The measurement was repeated three more times, and each run changed the

magnitude of the magnetisation at 300 K and the transition temperature. Heating

the sample to 700 K served to increase the magnitude of the magnetisation at

300 K and increase the transition temperature up to a final value of 390 K. These

measurements are shown in figure 6.6, where the data between 300 and 400 K is

shown although the sample was heated to 700 K each time. The mass loss after the

four runs suggests oxygen is lost by heating to 700 K, and the reduction in oxygen

content causes the changes in the magnetisation and transition temperature. The

repeated heating and cooling therefore acts to anneal the sample, although four runs

was not found to saturate the transition temperature.

Figure 6.6: The change in
the magnetisation between 300
and 400 K caused by heating
Y0.15Sr0.85CoO3−δ to 700 K in
a 0.1 T applied magnetic field.
The sample was initially zero-
field cooled (pink) and then
heated and cooled four times in
total, giving the eight different
runs shown. 300 320 340 360 380 400
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6.1.5 Field Dependence of the Magnetisation

dc-magnetisation measurements as function of applied magnetic field were made

in a 7 T Quantum Design SQuID MPMS. The sample was initially aligned with

the field parallel to the c axis of the I4/mmm unit cell and mounted on a plastic

PEEK sample holder using GE varnish and put in a non-magnetic sample straw.

The sample was then rotated so that the field was parallel to the ab plane and

remeasured.

Figure 6.7 shows the dc-magnetisation as a function of applied magnetic

field for the O2-annealed crystal measured across the 370 K transition temperature.

TheseM(H) curves clearly reveal the ferromagnetic character of the magnetic tran-

sition seen at 370 K in theM(T ) data. As the temperature is reduced from 400 K to

270 K there is a rapid increase in the magnitude of magnetisation which is accompa-

nied by the appearance of hysteresis in theM(H) loops below 370 K, shown in figure

6.8. The coercive field is around 0.2 T at 270 K and the non-saturating component

at high fields suggests an antiferromagnetic component to the magnetisation.
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Figure 6.7: The field depen-
dence of the dc-magnetisation
of an O2-annealed crystal of
Y0.15Sr0.85CoO3−δ. The sample
was warmed above Tc between
runs.

Magnetisation measurements made on annealed single crystal samples with

the magnetic field applied parallel and perpendicular to the c axis, shown in figure

6.8, reveal that the magnitude of the magnetisation at 7 T is ∼ 5% higher for H || c,
indicating a possible small net magnetic moment aligned along the c axis, although

this may also be due to a sample shape effect. On the other hand, given the highly

anisotropic crystal structure, the lack of anisotropy in the magnetic response of the

materials again suggests that Y0.15Sr0.85CoO3−δ is not a bulk ferromagnet.

The observation of an isotropic magnetic response should be considered in

the context of the underlying mechanism for the measured ferromagnetic signal.

The TGA measurements for the O2-annealed crystal suggest the presence of a small

amount of Co4+, which would be expected if clustering were the mechanism be-

hind the observed ferromagnetism [23]. An isotropic magnetisation profile would
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Figure 6.8: The field dependence of the dc-magnetisation of an O2-annealed crystal
of Y0.15Sr0.85CoO3−δ at 300, 250, 200, 100 and 10 K. Measurements made parallel
the c axis are shown in black and measurements made perpendicular to c are shown
in red. The sample was warmed above Tc between runs.
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be unlikely if spin canting was occurring in this compound, as the moments would

generally be constrained to lie close to the direction of the overall antiferromagnetic

order. More recent works [24, 45] have suggested the observed magnetisation signal

is due to an overall ferrimagnetic ordering of the magnetic moments. On first con-

sideration these ferrimagnetic moments might be expected to be constrained to lie

close to the direction of the underlying antiferromagnetic order. However, in some

cases such a constraint may not exist, and the remnant ferromagnetic signal due to

spin canting or ferrimagnetism may be free to orientate with the applied field, which

is likely to be the case here, explaining the isotropic magnetisation measurements.

6.1.6 Specific Heat

Specific heat measurements were performed on the O2-annealed crystal using a

two-tau relaxation method in a Quantum Design Physical Properties Measurement

System (PPMS). The heat capacity of the empty sample stage, together with the

Apiezon H grease used to attached the sample to the stage, was subtracted from

the measured signal to give the sample heat capacity.

Figure 6.9 shows the temperature dependence of the specific heat capac-

ity, C(T ), of the O2-annealed Y0.15Sr0.85CoO3−δ crystal and the non-magnetic per-

ovskite LaGaO3 that was used to estimate the lattice contribution to the heat ca-

pacity. A mass correction was found to give no improvement to the data. The heat

capacity of the Y0.15Sr0.85CoO3−δ contains only one significant feature correspond-

ing to a bulk transition at Tc = 370 K. This means that the entropy associated with

the features seen at 150 K and 280 K in the M(T ) data is small and may be linked

with either spin reorientations within an ordered state, or to some magnetic ordering

that occurs in a very small volume fraction of material. The extreme sensitivity of

the magnetic properties of Y0.15Sr0.85CoO3−δ to both oxygen disorder and oxygen

concentration has led previous researchers to conclude the latter is more likely [92].

The total magnetic entropy released between 3 and 420 K [114] is 11.8 J mol−1K−2

which is ∼ 88% of the R ln(2S + 1) = 13.4 J mol−1K−2 expected for a Co3+ ion

with a fully quenched orbital moment, S = 2 (R is the gas constant).

The low temperature (T ≤ 12 K) data, shown in figure 6.9, can be fitted

using the Debye model, as described in equation 2.13. This gives a γ = 0.90 mJ

mol−1K−2, a rather low value that is consistent with previous reports on transition

metal oxides that are close to the boundary between an insulating antiferromagnetic

and a metallic ferromagnet state [115, 116, 117]. Using β we calculate the Debye

temperature θD =
(

12
5 π

4pR/β
)1/3

where p is the number of atoms in each molecule

giving θD = 391 K, a result that is compatible with the data at higher temperatures.

Adding contributions that vary as T n with n = 3/2 or 2 does not improve the quality

of the fits suggesting that any magnetic spin-wave contribution to C varies as T 3,
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Figure 6.9: Upper panel: Temperature dependence of the specific heat of a single
crystal of O2-annealed Y0.15Sr0.85CoO3−δ. LaGaO3, a non-magnetic perovskite,
was also measured and is shown to indicate the lattice contribution to the recorded
signal. The horizontal line indicates the value of 3R per atom for Y0.15Sr0.85CoO3−δ.
Lower panel: C/T vs T 2 for the low temperature specific heat (2 < T < 10 K) of a
single crystal of O2-annealed Y0.15Sr0.85CoO3−δ. The fit is to a model consisting of
the electronic (γT ) and the lattice (βT 3) contributions to the specific heat, which
appears to be a good description of this low temperature data.
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a behaviour that is typical for a bulk antiferrromagnet and consistent with the

arguments presented earlier.

6.2 Powder Neutron Diffraction

6.2.1 AD/OD and AD/OO Powder Measurements

Powder neutron diffraction measurements were carried out on the D1B instrument at

the ILL on the AD/OD, AD/OO and AO/OO structural variants of Y0.15Sr0.85CoO3−δ.

The experimental details are outlined in section 5.3.1. First we discuss the two dis-

ordered forms of the compound. Measurements were made between 8 and 300 K,

with an additional measurement at 500 K for each of the forms of Y0.85Sr0.15CoO3−δ.
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Figure 6.10: The (-1,0,1)/(-1,2,1) and (-

1,1,2)/(1,-1,0) magnetic Bragg peaks (left and

right respectively) of the AD/OO structural

variant of Y0.15Sr0.85CoO3−δ measured on the

neutron diffractometer D1B at temperatures be-

tween 10 and 500 K.

The diffraction pattern

from the AD/OD form of Y0.15Sr0.85CoO3−δ

at 500 K was shown in figure

5.6 of chapter 5. The diffrac-

tion pattern looks identical to

this at 8 K. On closer inspection

there is a small shift in position

between the patterns collected

at 145 and 158 K, coinciding

with the transition temperature

of 150 K obtained from the sus-

ceptibility data, figure 6.1. No an-

tiferromagnetic diffraction peaks

were observed at any tempera-

ture for this AD/OD structural

variant, indicating either a non-

magnetic sample or a magnetic

configuration which contributes

to the peaks in such a way that it

is not easily detectable, such as a

ferromagnetic ordering that con-

tributes equally to all the Bragg peaks. The latter of these explanations fits with

the magnetisation measurements and confirms previous assertions [91, 92] that the

AD/OD form of Y1−xSrxCoO3−δ is a bulk ferromagnet.

A powdered sample of the brownmillerite AD/OO form of Y0.15Sr0.85CoO3−δ

was also studied using D1B. In this case, we observed quite different results to the

AD/OD version. Figure 6.11 shows the refined low temperature (8 K) neutron

diffraction data and the associated magnetic structure of the AD/OO structural
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Figure 6.11: The powder neutron diffraction pattern, calculated profile and refined
magnetic structure for the AD/OO phase of Y0.85Sr0.15CoO3−δ at 8 K. The up-
per panel shows the measured profile (red), calculated profile (black), difference
(blue) and peak positions for the six components of the refinement (peak posi-
tions in green). There were structural and magnetic components for the AD/OO
Y0.15Sr0.85CoO3−δ phase and each of the AO/OO Y0.15Sr0.85CoO3−δ and CoO im-
purity phases implying six contributions to the diffraction pattern. The R-factors
for the refinement were Rp = 13.5 and Rwp = 13.9. The magnetic R-factor for
the AD/OO phase was 5.92. The lower panel shows the refined G-type magnetic
structure of the material.
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variant of Y1−xSrxCoO3−δ. The data and calculated pattern are shown in red and

black respectively, with the difference shown in blue. The refinement involve six

different phases, with their peak positions marked in green. The top two sets of

peak position markers denote the structural and magnetic peaks for the AD/OO

phase, and the lower four mark the structural and magnetic peaks of the AO/OO

and CoO impurity phases.

As explained in section 5.3.2, measurements of AD/OO Y0.85Sr0.15CoO3−δ

were also made as a function of temperature using a furnace and a cryostat. Figure

6.10 shows the temperature dependence of a double magnetic peak in the diffraction

pattern at a 2θ value of 32.5◦. This pair of magnetic peaks do not appear on top

of a known structural peak, indicating the propagation vector is not (0,0,0). This

also implies bulk antiferromagnetism in the powder. Additional magnetic Bragg

peaks are also observable at 26.4, 39.3 and 55.3◦. These peaks could all be indexed

with propagation vector (1,1,1) and the same magnetic structure fitted the data as

proposed for brownmillerite SrCoO2.5 [85], shown in the lower panel of figure 6.11.

The moments on both cobalt sites are oriented along the c axis of the unit cell defined

in section 5.3.2. Additionally, the (1,1,1) propagation vector implies moments sited

with a (1/2,1/2,1/2) translation from each other are antiferromagnetically coupled.

As shown in figure 5.9, CoO4 tetrahedra and CoO6 octahedra alternate along the

a axis of the unit cell and these layers are antiferromagnetically coupled with each

other, forming a G-type antiferromagnetic structure. This means the two magnetic

Bragg peaks shown in figure 6.10 can be indexed as the (-1,0,1)/(-1,2,1) and (-

1,1,2)/(1,-1,0) peaks respectively.

The two cobalt sites were not constrained to have equal moments in the re-

finement, allowing for an overall ferrimagnetic ordering. Instead, the scale factors

of the structural and magnetic phases were constrained to be equal and the magni-

tudes of the moments on the two sites were allowed to vary. The refined moments

as a function of temperature between 0 and 300 K are shown in figure 6.12. Both

moments have similar values across the temperature range measured, decreasing in

value at higher temperatures, as might be expected. The uncertainty in the size of

the magnetic moment on the two sites is large compared to the fluctuations. This

suggests some systematic error in determining the moment magnitudes, and indeed

there were not enough strong magnetic peaks in the diffraction pattern recorded to

determine the sizes of these moments unambiguously.

At low temperatures, the refined moment on the Co1 site (figure 6.12) is

slightly higher than the moment on the Co2 site, even accounting for the error bars,

and this observation of unequal moments agrees with other recent measurements on

the compound [85]. The error bars for the two refined moments begin to overlap

around 80 K and continue to overlap up to 300 K, which means above this temper-
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ature we were not able to ascertain whether the moments on the Co1 and Co2 sites

were equal or not. Neither of the refined moments become zero within the 0-300 K

temperature range, and systematic data was not taken above this temperature, so a

Néel temperature was not ascertained absolutely. However, inspecting figure 6.10,

the magnetic intensity appears to be gone by 500 K. Plotting the integrated in-

tensity of the magnetic Bragg peaks in figure 6.10 (not shown), the trend suggests

TN is not much above 300 K. Previous measurements on SrCoO2.5 found TN was

537 K [85], and the difference may be due to the yttrium-doping of our sample.

This analysis leaves the weak ferromagnetic signal observed in the magneti-

sation data, shown in figure 6.1, somewhat unexplained. Other researchers have

attributed it to an AO/OO or AD/OD impurity phase, both of which are known to

have a ferromagnetic component to the magnetisation [85] or a transition to ferri-

magnetism accompanying charge ordering [91], which seems unlikely given that we

have found no evidence of a transition in the neutron diffraction data at the 100 K

Tc suggested by the magnetisation.

Figure 6.12: The refined magni-
tudes of the magnetic moments on
the Co1 and Co2 lattice sites in
the AD/OO Y1−xSrxCoO3−δ crys-
tal structure as a function of tem-
perature.
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6.2.2 AO/OO Powder Measurements

The magnetic structure of the AO/OO form of Y1−xSrxCoO3−δ was also studied

using powder neutron diffraction. The diffraction pattern from this sample recorded

at 5 K on D1B is shown in the top panel of figure 6.13. The crystal structure of this

variant of the compound was discussed in section 5.3.3, and the 500 K powder data

has been fitted with structures with I4/mmm, Cmma and A2/m space groups. The

data shown in figure 6.13 has been fitted with a structural model in the I4/mmm

space group. A large contribution to the (1,1,2) peak at q = 1.41 Å
−1

is clearly

present, and a contribution to the (1,1,6)/(3,1,2) peak at q = 2.71 Å
−1

is also

noticeable. All the observed magnetic reflections lay in positions occupied by nuclear

peaks, implying the magnetic structure is commensurate.
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Figure 6.13: The powder neutron diffraction pattern, calculated profile and re-
fined magnetic structure for the AO/OO phase of Y1−xSrxCoO3−δ at 5 K in the
I4/mmm unit cell. The upper panel shows the measured profile (red), calculated
profile (black), difference (blue) and peak positions for the two components of the
refinement (green), structural and magnetic. The R-factors for the refinement were
Rp = 10.2 and Rwp = 10.9. The magnetic R-factor for the AD/OO phase was 2.53.
The lower panel shows the refined magnetic structure of the material in this space
group.
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Figure 6.14: The refined magni-
tudes of the magnetic moments on
the Co1 and Co2 lattice sites in
the I4/mmm crystal structure of
AO/OO Y1−xSrxCoO3−δ as a func-
tion of temperature.
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The main contribution to the magnetic ordering in Y1−xSrxCoO3−δ is anti-

ferromagnetic. This is known from magnetisation measurements, shown in figures

6.7 and 6.8, which show a large non-saturating component, and neutron diffrac-

tion [23]. The antiferromagnetism appears to be G-type, and this means neighbour-

ing magnetic moments are aligned antiparallel to one another. For the refinement,

the moments were taken to be aligned along the c axis of the I4/mmm unit cell.

Including a contribution to the moment in either of the other directions did not im-

prove the refinement, and all previous measurements of this compound have come

to the same conclusion. Based on these observations, the refined magnetic structure

which best fits the observed data is given in the lower panel of figure 6.13. This

structure is in agreement with that described in reference [25].

Neutron diffraction measurements were made as a function of temperature

from 5 K, scan shown in figure 6.13, to 500 K. Comparing the diffraction patterns

at different temperatures, and the intensity of the main magnetic peak two impor-

tant points must be noted. Firstly, there is still a substantial magnetic contribution

to the intensity of the diffraction patterns above the 335 K transition temperature

observed in the magnetisation (section 6.1.1). This is a further demonstration that

observed ferromagnetic signal in the magnetisation in AO/OO Y1−xSrxCoO3−δ is

not representative of the bulk magnetic state of the material, which is antiferromag-

netic. Secondly, there is a change in the intensity of the two largest structural Bragg

peaks, the (2,2,4) and the (4,0,0), at around 280 K. This is quite clear when all the

diffraction patterns are plotted together (not shown). This is the same temperature

at which a change in the thermal expansion of the lattice parameter was detected,

section 5.3.5.

The presence of a magnetic contribution to the (1,1,0) Bragg peak implies

the moments on the two different cobalt sites in the I4/mmm crystal structure are

different. The refinements of the neutron diffraction data as a function of temper-

ature meant the thermal evolution of the moments on these two different cobalt
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sites could be quantified. The results of this analysis are shown in figure 6.14. The

refined values for the magnetic moments were 1.84 and 1.49 µB respectively at 5 K.

The difference between the magnitudes of the moments on the two sites is reduced

as the temperature is increased.

The transition temperature from the refinement was found to be just above

the 370 K previously obtained from magnetisation measurements on single crys-

tals [94]. Less oxidised forms of Y1−xSrxCoO3−δ are known to have higher tran-

sition temperatures than more oxidised forms [25], and this temperature is higher

than reported by other groups on more oxidised powders, as would be expected. It

was found necessary to fit the nuclear and magnetic contributions to the diffraction

profile using different values for the same peak width parameters. This is because

the widths of the two components were found to vary differently with temperature,

with the width of the nuclear component having no temperature dependence and

the width of the magnetic component having some temperature dependence, shown

in figure 6.15. A change the width at around 280 K is observable. Below this

temperature, the width appears to be resolution limited, however, above this tem-

perature the magnetic correlations appear to be of finite spatial extent and cause

peak broadening. This broadening effect may be due to domains, but the change

in behaviour at 280 K may also be linked to the suspected structural and magnetic

transitions at this temperature discussed in sections 5.3.5 and 6.1.

The process of refining the magnetic structure to fit the observed neutron

diffraction pattern was also carried out using the Cmma structural space group. In

this space group there are six separate cobalt sites, three in the CoO6 and three in

the CoO4+δ layers. Those in the CoO6 layers are all in octahedral environments.

However, those in the CoO4+δ layers sit in three different environments; octahedral

Co2, square pyramidal Co6 and tetrahedral Co1 (for labels see table 5.6). In agree-

ment with the refinement in the I4/mmm cell, the moments were fixed to point

parallel to the a axis and arranged in a G-type antiferromagnetic lattice. The mo-
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280 K Figure 6.15: The refined width
of the magnetic contribution to
the neutron diffraction profile of
AO/OO Y0.15Sr0.85CoO3−δ as a
function of temperature. A change
the width at around 280 K is ob-
servable.
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Figure 6.16: The powder neutron diffraction pattern, calculated profile and re-
fined magnetic structure for the AO/OO phase of Y1−xSrxCoO3−δ at 5 K in the
Cmma unit cell. The upper panel shows the measured profile (red), calculated
profile (black), difference (blue) and peak positions for the two components of the
refinement (green), structural and magnetic. The R-factors for the refinement were
Rp = 9.24 and Rwp = 9.72. The magnetic R-factor for the AD/OO phase was 3.14.
The lower panel shows cobalt environments of the oxygen deficient layer in the
Cmma crystal structure of Y0.15Sr0.85CoO3−δ, as shown in figure 5.13. The refined
magnetic structure of the material in this space group at 5 K is also represented,
where the red arrows denote the sizes of the magnetic moments on each site.
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ments in the CoO6 layers were also fixed at the values found from the refinement

of the moments in the smaller unit cell. This was justified as the moments of the

cobalts on the three sites are all in the same oxygen environment, and are therefore

believed to have similar magnitudes [24].

The diffraction pattern at 5 K was refined in the Cmma space group and

the moments on the Co1, Co2 and Co6 sites in the CoO4+δ layers were found to be

2.8(2) µB , 0.9(1) µB and 1.4(1) µB respectively. The value for the Co6 moment is in

agreement with the size of the moments in the CoO6 layers in the same octahedral

environment. The magnitudes of these moments were then refined as a function of

temperature, shown in figure 6.17. Like the equivalent refinements of the AD/OO

data, the errors were larger than the fluctuations associated with data. Again this

reflects the uncertainty in the magnitudes of the moments per se, as the resolution

of the data and number of magnetic Bragg peaks were not sufficient to achieve a

perfect refinement with small errors.

The observed macroscopic magnetisation can be explained by the unequal

size of the moments on the Co1, Co2 and Co6 sites, as the net magnetic ordering

will be antiferrimagnetic. The peak in the zero field magnetisation below Tc can

also be reproduced by taking the difference between the moments in the CoO4+δ

layers, supporting this interpretation. This also suggests there is no component

from spin canting or clustering contributing to the observed ferromagnetism, and

the ferromagnetic magnetisation signal is purely due to the ferrimagnetism of the

sublattice moments.
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Figure 6.17: The refined magni-
tudes of the magnetic moments on
the Co1, Co2 and Co6 lattice sites
in the Cmma crystal structure of
AO/OO Y1−xSrxCoO3−δ as a func-
tion of temperature.

The same analysis performed here was recently performed by another group

on their powder neutron diffraction data [24]. Their sample was more oxidised than

ours, and the magnitude of the moment on the Co2 site was found to be much

larger. The dc-susceptibility of their sample were also an order of magnitude larger,

so this difference is probably due to the different oxidation levels of the samples.

Their data also suggests an increase in the magnitude of the moment on the Co1
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site at around 280 K which is less clear in our data due to the larger error bars.

However, there may be some increase in the size of the moment on that site at that

temperature, masked by the large error bars, and some change in the relative sizes

of the moments is expected as there is a change in the macroscopic magnetisation

at this temperature. The same variation in the width of the magnetic contribution

to the diffraction pattern at temperatures down to 280 K shown in figure 6.15 was

also observed when refining in the Cmma space group.

6.3 Single Crystal Neutron Diffraction

6.3.1 Experimental Details: Single Crystal Diffractometers D7 and

D10

Neutron diffraction experiments were performed on the O2-annealed single crystals

described in section 5.1.2. Measurements were made on the single crystal neutron

diffractometer D10 and the polarised neutron diffractometer D7, and the instrument

and experimental details for the D10 experiment are described in section 5.3.1.

The aims of both these experiments were to assess the position and temperature

dependence of the magnetic Bragg peaks and diffuse scattering in Y1−xSrxCoO3−δ

and further understand the magnetic structure of this compound. The D10 data

presented in the following section was all collected by fitting the Bragg peaks with

either a Gaussian, a Lorentizan or a combination of the two, and using that function

to determine the integrated intensity.

Diffraction measurements were made on the polarised neutron diffractome-

ter D7. xyz polarisation analysis was implemented on the instrument as described

in section 3.4.4, and the instrument layout is shown in figure 6.18. The entire

instrument can be moved with respect to the neutron guide to access three differ-

Figure 6.18: Layout of the po-
larised neutron diffractometer
D7. Taken from reference [118].
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ent incident wavelengths; λ = 3.12 Å, λ = 4.86 Å and λ = 5.80 Å, and for this

experiment a λ = 3.21 Å incident wavelength was chosen. A cryofurnace with a

temperature range of 1.5 to 550 K was mounted inside the instrument. A 6 mm

diameter and 20 mm length single crystal, with a mass of 3.4 g, was aligned using

the neutron Laue OrientExpress. The size of the spots on the neutron Laue were

larger along the b axis of the I4/mmm unit cell than along the a and c axes. The

geometry of the experiment was such that we expect the spots to be larger when

measuring large samples, and the b axis was along the longest axis of the crystal

boule. The sample was wrapped in aluminium foil and screwed into an aluminium

sample holder so it could be mounted in the cryofurnace.

Once the experiment was set up, it was necessary to measure three samples

to calibrate the instrument. Vanadium is run as it is a purely incoherent, and

therefore an isotropic, scatterer and allows for calibration of the detectors. Quartz

(amorphous silica) is run as its scattering is entirely nuclear and means the finite

polarisation of the incident beam can be corrected for. The empty sample holder

must also be run to quantify its contribution to the background.

Initially the sample was oriented so that the (h, k, 0) plane was measured.

Scans as a function of sample angle were made with steps of 0.5◦ or 1◦ between

scans. Complete 360◦ planes were measured at 400, 370 and 360 K. Quarter planes

were measured at 260 and 10 K. The step sizes were either 0.5◦ or 1◦. The sample

was later rotated so the (h, h, l) plane was measured at 360, 370, 390 K, with quarter

planes measured at 360 and 390 K and a three-quarter plane measured at 370 K.

Temperatures around 370 K were chosen because 370 K was found to be Tc from

the dc and ac-susceptibility data.

In all the figures shown below, powder diffraction rings are visible in the

scattering. These rings are from a combination of two sources. Firstly, although

the empty sample holder was measured independently and subtracted from the

data, this subtraction is unlikely to be perfect, and some aluminium contribution

may well be present. We would expect aluminium powder lines at q-positions of

approximately 2.7 and 3.1 Å, and there are powder lines present at these points.

Secondly, as mentioned in section 5.1.2, the Y1−xSrxCoO3−δ crystals form with a

thin polycrystalline coating which cannot easily be removed due to the brittleness of

the sample. This means there was a small amount of Y0.15Sr0.85CoO3−δ powder in

the beam when the measurement was made, accounting for the rest of the powder

lines, including those present in the magnetic channel.

6.3.2 Behaviour below Tc

The nuclear and magnetic components of the scattering from the (h, k, 0) plane of

the I4/mmm unit cell at 370 K, 260 K and 15 K are shown in figure 6.19. The top
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370 K 370 K

260 K 260 K

15 K 15 K

Figure 6.19: The (h, k, 0) scattering plane in the I4/mmm space group of
Y0.15Sr0.85CoO3−δ measured at temperatures of 370, 260 and 15 K respectively as
recorded on the polarised neutron diffractometer D7. The left and right hand panels
at each temperature show the nuclear and magnetic components of the scattering
respectively.
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left panel shows the nuclear scattering at 370 K, which as stated above is Tc from

the magnetisation data. The largest peaks in the diffraction pattern, at qx = 3.25

qy = 0 and qx = 0 qy = 3.25 are the (4, 0, 0) and (0, 4, 0) and these are intersected

by the aluminium powder lines from the sample holder. There is also clear evidence

of the complex superstructure discussed in section 5.3. There are well-defined peaks

at positions qx = 0.81 qy = 0.41, qx = 0.41 qy = 2.43 and qx = 0.41 qy = 0.81, with

(h, k, l) indices (1, 0.5, 0), (0.5, 3, 0) and (0.5, 1, 0) respectively in the I4/mmm unit

cell. This implies a unit cell at least double the 7.7 x 7.7 x 15.4 Å unit cell of the

I4/mmm space group in the ab plane, and there maybe additional superstructure

peaks obscured by the aluminium powder lines.

The magnetic component of the scattering at 370 K is shown in the top

right hand panel of figure 6.19. There are very few features in this figure, which

is to be expected as 370 K is Tc for the compound. The strongest peak visible

is the (4, 0, 0), which is a large structural peak, and its presence, as well as the

presence of the aluminium powder lines, implies the beam is slightly depolarised

at this temperature, suggesting the presence of a ferromagnetic component to the

magnetic order. The other peaks visible in this diffraction pattern are the (1, 1, 0)

and its equivalent positions, which are known to be magnetic peaks. As they are

magnetic peaks, they will have more intensity in the magnetic channel than the

nuclear one which is why they appear stronger in the right hand panel than the left

hand one.

The degree of depolarisation increases when the temperature is reduced be-

cause the ferromagnetic contribution to the measured signal becomes greater. This

means the polarisation analysis is incomplete and the separation into nuclear and

magnetic components must be treated with some care. In particular, the strongest

nuclear peaks will partially ‘bleed through’ into the calculated magnetic pattern.

However, by comparing the intensity of particular peaks in both channels it is gen-

erally possible to determine if a particular peak is purely nuclear or has a magnetic

component. In the patterns recorded at 260 and 15 K, additional peaks not obvious

at 370 K are visible at q-positions qx = 0.41 qy = 0.41 and equivalents. At 15 K,

these peaks are stronger in the magnetic than the nuclear channel, suggesting they

are antiferromagnetic in origin. These peaks are also present at 260 K, but are much

weaker than at 15 K.

On cooling below 370 K, peaks also appear surrounding the (4, 0, 0) and

(0, 4, 0) structural peaks at positions corresponding to (3.75, 0.25, 0) and equivalents

in the I4/mmm unit cell. These peaks are more intense in the structural than

the magnetic channel, implying they are structural rather than magnetic in origin.

They are in fact the same (0.25, 0.25, 0) (and equivalent) peaks observed using single

crystal X-ray diffraction shown in figures 5.14 and 5.16. These (0.25, 0.25, 0) peaks

105



Figure 6.20: The in-
tegrated intensities of
the (3.75, 0.25, 0) and
(1.5, 1.5, 0) Bragg peaks in
the I4/mmm space group
of Y0.15Sr0.85CoO3−δ as a
function of temperature as
measured on the single crys-
tal neutron diffractometer
D10. Tc is marked with a red
dashed line.
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also appear to be present but weaker at 260 K. There is some small suggestion of

diffuse scattering in the nuclear channel at all three temperatures along the (h, 0, 0)

and (0, k, l) directions.

It was not practical to measure the temperature dependence of the peaks

appearing below Tc on D7 because of the lack of q-resolution, however the tem-

perature dependence of the peaks could be measured on the single crystal neutron

diffractometer D10. Figure 6.20 shows the integrated intensity of the (3.75, 0.25, 0)

and (1.5, 1.5, 0) peaks as a function of temperature between 400 K and the 2 K base

temperature of the cryostat (the (1.5, 1.5, 0) peak is an equivalent to the (0.5, 0.5, 0)

peak). Both peaks were fitted with Gaussian profiles, as they were too weak to be

fitted with more complex functions. Although neither peak has a large integrated

intensity, the measurement clearly shows both peaks appear at a temperature of

370 K. The polarisation analysis available on D7 described above showed that the

(3.75, 0.25, 0) and (1.5, 1.5, 0) peaks are structural and magnetic respectively. These

measurements therefore show that both a structural and a magnetic transition occur

close to 370 K in this compound, and the transitions are most likely to coincide.

Figure 6.21: The integrated
intensity of the (4, 0, 0) peak
in the I4/mmm space group
of Y0.15Sr0.85CoO3−δ as a
function of temperature as
measured on the single crys-
tal neutron diffractometer
D10. The peak was fit-
ted with two components, a
Gaussian and a Lorentzian
with widths of 0.13◦ and
0.25◦ respectively.
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The influence of the two transitions on each other cannot be determined without

further study of similar compounds with different doping levels and transition tem-

peratures. Resonant X-ray scattering has suggested the ferrimagnetism is brought

on by the orbital ordering of the IS cobalt ions, which would fit with our observation

of coincident structural and magnetic transitions [45].

The temperature dependence of the strong nuclear peak (4, 0, 0) in the I4/mmm

unit cell was also measured on D10. The peak was fitted with two components, a

close to resolution limited Gaussian and a Lorentzian with a width of 0.25◦, imply-

ing some finite length correlations in the material. The centres of the two peaks

were fixed to coincide. Fitting the peak in this way also accounts for any change in

the peak position as a function of temperature due to lattice expansion. The total

integrated intensity of the peak would be expected to persist or slightly increase as

the temperature was decreased, but as figure 6.21 shows, it decreases in intensity

with temperature. In fact, between 300 and 100 K the total integrated intensity re-

duces by over a third. We take this to be further evidence of a structural transition

at 280 K in Y1−xSrxCoO3−δ. The presence of a structural transition at 280 K was

discussed in section 5.3.5, as a feature was also observed in the lattice parameter

data along the b and c axes at this temperature.

The temperature dependence of the integrated intensity of several other

peaks was measured on D10, and the results for the (0, 0, 8) and (1, 1, 2) peaks

in the I4/mmm unit cell are shown in figure 6.22. The (0, 0, 8) is a large structural

peak akin to the (4, 0, 0). The same drop in intensity observed for the (4, 0, 0) peak

is observed for this peak. The temperature at which this feature occurs is judged

to be 280 K, the same temperature a currently unexplained feature occurs in the

magnetisation. More information is required to identify the source of this change

in intensity, which most likely requires a better structural model for the compound

than the one currently available to fully resolve. As the (0, 0, 8) and (4, 0, 0) are

nuclear peaks it might be expected that the change is due to some structural mod-

ulation, and the powder diffraction measurements discussed in section 5.3.5 suggest

there is a displacive-type structural transition at this temperature. On the other

hand, any ferromagnetic component to the magnetic order will contribute to all the

Bragg peaks, so may also be responsible, but the magnitude of the change suggests

it is due to a structural transition.

The largest magnetic peak for the AO/OO form of Y0.15Sr0.85CoO3−δ is the

(1, 1, 2) in the I4/mmm unit cell. This peak was also measured using the single

crystal neutron diffractometer D10, shown in figure 6.22. Like the nuclear peaks, it

was also fitted with two components, a Gaussian with width 0.30◦ and a Lorentzian

with width 0.69◦. Both components follow the expected trend for a magnetic peak

as function of temperature below Tc. Unlike the equivalent powder data, shown in

107



0 100 200 300 400
16000

17000

18000

19000

20000

(0,0,8)

 

 

In
te

gr
at

ed
 In

te
ns

ity
(A

rb
itr

ar
y 

U
ni

ts
)

Temperature (K)

Nuclear

0 100 200 300 400
0

200

400

600

800

1000

0 100 200 300 400
0

200

400

600

800

1000

 

 

 Gaussian
 Lorentzian

In
te

gr
at

ed
 In

te
ns

ity
(A

rb
itr

ar
y 

U
ni

ts
)

Temperature (K)

(1,1,2)

Magnetic

 

 

 Total 

Temperature (K)

Figure 6.22: The integrated intensities of the nuclear (0, 0, 8) and magnetic (1, 1, 2)
peaks in the I4/mmm space group of Y0.15Sr0.85CoO3−δ as a function of temperature
as measured on the single crystal neutron diffractometer D10.

figure 6.15, the width was not found to change with temperature. This may be due

to the direction or resolution of the scan, or it may be the variation in width seen

in powder is due to some strain or domain effect not found in single crystals.

6.3.3 Behaviour above Tc

Measurements were also made in the (h, h, l) scattering plane at temperatures above

the 370 K Tc with the polarised neutron diffractometer D7 to look for evidence of

magnetic clustering or phase separation that may be responsible for the observed

room-temperature ferromagnetic signal. Measurements were made above Tc because

the beam became depolarised below the transition temperature due to the presence

of a ferromagnetic component to the magnetic ordering. The nuclear and magnetic

components of the scattering at 390, 370 and 360 K are shown in figure 6.23. The

strongest peaks are at qx = 0 qy = 3.28 and qx = −2.24 qy = 1.68, and can be

indexed by (0, 0, 8) and (2, 2, 4) in the 7.7 x 7.7 x 15.4 Å I4/mmm space group.

There are no clear changes in the intensity of structural peaks between the three

temperatures measured.

The magnetic components of the scattering in the (h, h, l) plane at 390, 370

and 360 K are shown in the right hand panels of figure 6.23. Commensurate diffuse

scattering was observed at all three temperatures, and the figures are shown on a

logarithmic scale to make this clear. The diffuse scattering is most intense around

a peak at a q-position of qx = −1.20 qy = 0.83. This corresponds to the position

of the (1, 1, 2) peak, which is known to be the strongest magnetic peak. At 370 K

diffuse scattering is also present around a q-position of qx = −1.20 qy = 2.49, which

corresponds to the (1, 1, 6) peak, known to also be magnetic. This diffuse scattering

becomes stronger as the sample is cooled from 390 to 360 K and only appears in the

magnetic channel.
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390 K 390 K

370 K 370 K

360 K 360 K

Figure 6.23: The (h, h, l) scattering plane in the I4/mmm space group of
Y0.15Sr0.85CoO3−δ measured on the polarised neutron diffractometer D7 at temper-
atures of 390, 370 and 360 K respectively. Spiral features suggesting a Lorentzian
inelastic component are observed. The left hand panels show the structural com-
ponent of the scattering and the right hand panels show the magnetic scattering.
The right hand figures have been plotted on a logarithmic scale to emphasise the
magnetic diffuse scattering.
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Previous work on chromium [119, 120] identified similar spiral features to

the ones in figure 6.23 in the magnetic channel of a polarised neutron scattering

measurement. They attributed these spiral features to magnetic, commensurate

diffuse scattering localised in an arc around the magnetic (1, 1, 2) lattice position

which has a broad, Lorentzian energy distribution. The transformation of the data

from the coordinates in measurement space to the reciprocal q-space used in the

analysis of the D7 data assumes pure elastic scattering. This means inelastic scat-

tering events are shifted from their original position in q-space, and become smeared

out in a spiral pattern such as those observed here. The scattering events with the

most energy are generally shifted by the greatest amount. In our single crystal

AO/OO Y0.15Sr0.85CoO3−δ sample, commensurate diffuse scattering due to mag-

netic inelastic scattering was only observed in the (h, h, l) plane and not the other

plane measured, the (h, k, 0) plane, implying anisotropic magnetic fluctuations not

previously reported.

6.3.4 Magnetic Structure

Although it was not possible to refine the magnetic structure of the Y1−xSrxCoO3−δ

single crystals from the D7 data as a complete data set was not collected, such an

analysis is possible on D10, as the 4-circle diffractometer means a nearly complete

data set can be collected from a single crystal sample. Data was collected at three

temperatures, 420, 300 and 2 K, in the I4/mmm space group. However, after

analysing the powder diffraction data, section 6.2.2, it was shown that more in-

formation could be gleaned about the magnetic behaviour of Y1−xSrxCoO3−δ by

refining in the Cmma space group, so the data was transformed using the matrix

given in chapter 5. The equivalent isotropic thermal parameters for the same species

were constrained to be equivalent during the refinements.

The data at 420 K is purely nuclear and a description of the refined structure

at this temperature was given in section 5.3.4. The data at 300 K was then refined

including a magnetic contribution and according to the model described in section

6.2.2. The results for the moments on the different cobalt sites are given in table 6.1.

The oxygen content of the single crystals was higher than the powders, so the small

differences in moment magnitudes compared to the powders are not unexpected.

Unfortunately, the errors on the refinement are somewhat higher that would be

hoped, and that is because of the dominance of the nuclear contribution to the

scattering compared to the magnetic intensity. For example, the largest nuclear

peak in the refinement was the (0,4,4) with 59598 counts, but the largest magnetic

peak was the (2,2,0) with 2033 counts (peaks given in the Cmma cell). This means

that because the model we have for the nuclear contribution is imperfect, a good

refinement for the magnetic contribution was difficult to achieve.
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Environment Coordination Site 420 K 300 K 2 K

Pyramidal 5 Co1 0 1.9(2) 2.5(2)
Tetrahedral 4 Co2 0 1.0(2) 1.0(2)
Octahedral 6 Co6 0 1.2(5) 1.1(4)

R-Factor 8.10 6.78 9.88
χ2 13.7 15.9 30.8

Table 6.1: The magnetic moments in different environments and the goodness of fit
parameters for the refinement of Y0.15Sr0.85CoO3−δ single crystal neutron diffraction
data taken on D10 at temperatures of 420, 300 and 2 K. The units for the magnetic
moments are µB.

During the refinement, the biggest effect on χ2 when refining the data at

300 and 2 K was not the magnetism but the oxygen positions. All the oxygens

were found to shift their positions between 420 K and 300 K, across the structural

transition that appears to coincide with Tc. The largest shifts in position between

the measurements at these temperatures were along the c axis of the Cmma unit

cell for the O3 and O9 oxygen positions. The shifts were of more that 1% of the size

of the unit cell. Between 300 and 2 K, across the structural transition at 280 K, the

largest shift is in the position of the O7 atom along the a axis. Again, between these

two temperatures, the largest effect on χ2 was the change in the oxygen positions

rather than the change in the magnetism of Y0.15Sr0.85CoO3−δ. This is why the χ2

is so high for the refinement at 2 K.

Despite the difficulties with refining the single crystal magnetic data, a dif-

ference within error was recorded for the square pyramidal cobalt site between the

refinements at 300 and 2 K. This supports what was seen from the powder refine-

ment, and suggests there may be some change in the behaviour of the moment on

this site around 280 K, either as a result of the structural transition or via some

other mechanism such as a spin state transition.

6.4 Inelastic Neutron Spectroscopy

6.4.1 Experimental Details: 2T1 Neutron Spectrometer

The same 3.4 g AO/OO Y0.15Sr0.85CoO3−δ single crystal used on D7 was used for

inelastic neutron spectroscopy measurements on the triple-axis instrument 2T1 at

the Orphee reactor neutron source at LLB. The aim was to characterise the disper-

sion relation for the compound and to assess the general features of the excitation

spectrum. The experiment was intended to be a broad survey of the magnetic ex-

citations along several high symmetry directions. Additionally, we wished to assess
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what information inelastic scattering can contribute to an overall picture of the

magnetic interactions in AO/OO Y0.15Sr0.85CoO3−δ.

Detector

Analyser

Collimator
Beam 

 Stop

Source

Monochromator

Sample

   Sample

Orientation

    Table

Figure 6.24: Layout of the thermal

neutron triple-axis spectrometer 2T1.

Adapted from reference [121].

2T1 is a thermal neutron triple-

axis spectrometer built to study inelastic

scattering from condensed matter systems.

The layout of the instrument is shown in

figure 6.24. Thermal neutrons from the re-

actor source are incident on a PG or Cu

monochromator and are collimated before

they arrive at the sample. The sample ori-

entation table is used to move the sample

so that different parts of reciprocal space

can be accessed. A PG 002 analyser is

used to select the final energy of the neu-

trons which are then recorded by the de-

tector [121].

The single crystal sample was

strapped to an aluminium grating attached

to the sample mount using aluminium wire.

The G43 spectrometer was used to align

the sample on its mount so that the c axis

was vertical. A cryofurnace with a temper-

ature range of 4 to 500 K was used for the experiment. Measurements were made in

one of two modes. Either scans at a constant energy transfer were made by varying

the direction of ki and kf or scans as a function of energy transfer were made by

keeping ki constant and therefore maintaining a constant q. An example of a q scan

made around the (1, 1, 2) lattice position along the ab direction in the crystal at a

constant energy transfer of 12.4 meV is shown in figure 6.25. The q-scans were then

fitted with pairs of symmetric peaks, as expected for dispersive behaviour, using the

Figure 6.25: Scan along the (h, h, 2)
direction across the (1, 1, 2) peak
in the I4/mmm space group of
Y0.15Sr0.85CoO3−δ measured at 100 K
at an energy transfer of 12.4 meV on
the the triple-axis spectrometer 2T1.
The red line is the fit to the data.
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software afitv available at LLB. The background, intensity, FWHM, q position, and

asymmetry parameters for the peaks were all fitted, with the background, q-position

and FWHM initially fixed to sensible values to achieve a good fit, before allowing

all the parameters to vary.

6.4.2 Dispersion along the ab direction

A series of q-scans of the two strongest magnetic peaks, the (1, 1, 2) and the (1, 1, 6),

were made at a temperature of 100 K with fixed values for the energy transfer. At

each new temperature selected, the (0,0,6), (2,2,0) and (1,1,2) peaks were remea-

sured to check the alignment of the crystal had been maintained. The scans at

constant energy transfer were chosen as transition metal oxide systems similar to

Y1−xSrxCoO3−δ are known to have steep dispersion ‘chimneys’, where the inelastic

features vary strongly in energy over a small q-range. The temperature of 100 K was

chosen as the intensity of the magnetic peaks has been shown to remain constant

below this temperature, illustrated in figure 6.22. For the (1, 1, 2) peak, (h, h, 2)

scans were made at energy transfers of 4.1, 6.2, 8.3, 10.3 and 12.4 meV between h

values of 0.5 and 1.5. For the (1, 1, 6) peak higher energy transfers could be accessed,

and (h, h, 6) scans were made at energy transfers of 4.1, 8.2, 12.4, 16.5, 20.7, 24.8,

28.9, 33.0 and 37.2 meV between h values of 0.5 and 1.5.

Figures 6.26 and 6.27 show the dispersion along the ab direction around

the (1, 1, 2) and (1, 1, 6) magnetic peaks respectively. The top panel of each figure

shows the raw data in the form of scans at constant energy transfer. The central

panel shows the same data displayed as a contour plot, with all points with a value

greater than 1000 included in a single contour. The lower panel shows the values

for q obtained by fitting the data to a dispersion as described above. The presence

of a dispersive component is clear in both figures. Figure 6.26 shows the dispersion

between 4 and 12 meV, where there is one clear dispersive branch, and the fits

suggest there maybe a second. The data taken across a greater energy transfer

range, displayed in figure 6.27, shows the same clear dispersion at lower energy

transfers, with a concentration of intensity centred around an energy transfer of

20 meV where the mode becomes dispersive. The scans at energy transfers above

this, such as the 33 meV scan, show evidence of dispersive behaviour, suggesting

the presence of another inelastic mode with an energy gap at the zone centre.

Up to three excitation branches have been observed in the ab plane. We

suggest these are likely to be magnon branches as they are at relatively high energies

and we expect strong spin waves in this cobaltate system, but measurements above

Tc are necessary to confirm this (section 6.4.4). In section 2.5.2, the dependence

of ω on q for ferromagnets (ω ∝ q2) and antiferromagnets (ω ∝ q) at q-positions

near the zone centre was set out. For ferrimagnets, as we believe Y1−xSrxCoO3−δ
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Figure 6.26: Scans along the (h, h, 2) direction across the (1, 1, 2) peak in the
I4/mmm space group of Y0.15Sr0.85CoO3−δ measured at 100 K at energy trans-
fers up to 16.5 meV on the the triple-axis spectrometer 2T1. The top panel shows
the raw data, the central panel shows the same data plotted as a contour plot and the
lower panel shows the q-positions obtained from fitting the data with a dispersion.
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Figure 6.27: Scans along the (h, h, 6) direction across the (1, 1, 6) peak in the
I4/mmm space group of Y0.15Sr0.85CoO3−δ measured at 100 K at energy trans-
fers up to 37.2 meV on the the triple-axis spectrometer 2T1. The top panel shows
the raw data, the central panel shows the same data plotted as a contour plot and the
lower panel shows the q-positions obtained from fitting the data with a dispersion.
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to be, a q-dependence of ω ∝ q2 is to be expected. However, the dispersion for a

ferrimagnet with an anisotropic crystal structure and at least three different cobalt

moments, as is the case in our system, will be more more complex than this, and is

beyond the scope of this experimental thesis, but suffice to say many magnon modes

would be expected in the excitation spectrum.

All the inelastic measurements presented thus far were made at 100 K, but

some attempt was also made to study the temperature dependence of the dispersion.

In figure 6.28, the q-scan with energy transfer 28.9 meV shown in the top panel of

figure 6.27 is plotted as a function of temperature. Within the error bar, there is

limited difference between the different scans made below 300 K, they all show a

dispersion peak centred on the (1, 1, 6) position. The 350 K scan is also similar, but

with a corresponding drop in intensity at the centre of the peak and an increase

in intensity towards the edge of the scan. This is most likely due to the greater

thermal fluctuations at this temperature causing a increased phonon contribution

to recorded intensity.
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Figure 6.28: Scans along the (h, h, 6) direction across the (1, 1, 6) peak in the
I4/mmm space group of Y0.15Sr0.85CoO3−δ measured at temperatures between 100
and 350 K at an energy transfer of 28.9 meV on the triple-axis spectrometer 2T1.
The dispersion shows limited temperature dependence across this range.

6.4.3 Dispersion along the c direction

Y1−xSrxCoO3−δ has an anisotropic structure and the dispersion may be different

along the different crystallographic axes. The dispersion along the (1, 1, l) direction

at 100 K is shown in figures 6.29 and 6.30 for the excitations around the (1, 1, 2)
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Figure 6.29: Scans along the (1, 1, l) direction across the (1, 1, 2) peak in the
I4/mmm space group of Y0.15Sr0.85CoO3−δ measured at 100 K at energy trans-
fers up to 16.5 meV on the the triple-axis spectrometer 2T1. The top panel shows
the raw data, the central panel shows the same data plotted as a contour plot and the
lower panel shows the q-positions obtained from fitting the data with a dispersion.
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Figure 6.30: Scans along the (1, 1, l) direction across the (1, 1, 6) peak in the
I4/mmm space group of Y0.15Sr0.85CoO3−δ measured at 100 K at energy trans-
fers up to 37.2 meV on the the triple-axis spectrometer 2T1. The top panel shows
the raw data, the central panel shows the same data plotted as a contour plot and the
lower panel shows the q-positions obtained from fitting the data with a dispersion.

The intense feature at q = −6.7 Å
−1

, E = 18 meV is a spurion.
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and (1, 1,−6) peaks respectively. For the (1, 1, 2) peak, (1, 1, l) scans were made at

energy transfers of 4.1, 6.2, 8.3, 10.3, 12.4, 14.4 and 16.5 meV between l values of 1

and 2. In figure 6.29, at least two dispersion modes are visible, and the q-positions

obtained from fitting the scans with a dispersion corroborate this interpretation.

As with the scans made along the ab direction, by measuring the dispersion around

the (1, 1,−6) magnetic peak higher energy transfers could be accessed. At least

two, most likely magnon, branches are present at energy transfers between 4.1 and

37.2 meV. There is a concentration of intensity around 20 meV, as with the scans

along the ab direction, where at least one excitation mode becomes dispersive.

Aside from the concentration of intensity around the Bragg peak, there is a

second peak in intensity at an h value of -6.7 and an energy transfer of 18 meV. This

is a parasitic signal commonly known as a spurion. Spurious signals can appear as a

result of many processes, but this particular spurion is caused by a harmonic which

satisfies the Bragg condition (equation 3.5) at that particular value of q. Or to

express it another way, an additional elastic signal is recorded Q= nki−mkf where

n and m are integers. A larger spurion was present in the (1, 1, l) measurement

around the (1, 1, 6) peak, hence the data presented in figure 6.30 was taken around

the (1, 1,−6) position.

In the measurement along the (1, 1, l) direction shown in figure 6.30, the

presence of a dispersive component at energy transfers higher than 15 meV is more

obvious than the measurement in the (h, h, 6) direction. This higher energy transfer

mode is gapped at the (1, 1, 6) position, suggesting anisotropy. A cold neutron

spectrometer experiment would be necessary to probe this gap, and the potential

for addition modes at low energy transfers, in more detail.

The temperature dependence of one of the constant energy transfer scans

made along the (1, 1, l) direction was also studied, and the results are shown in

figure 6.31. A lower energy transfer scan of 12.4 meV was chosen compared to the

comparable measurement along the (h, h, 6) direction. There is a more obvious tem-

perature variation at this value for the energy transfer, with the highest intensity

excitations at 350 K and a steady decrease in intensity at temperatures below this.

This is because as the sample is cooled below ordering temperature the magnetic

fluctuations reduce and the magnetic ground state is approached. These measure-

ments also show that significant excitation intensity is present at 390 K, above the

magnetic transition temperature of the compound, and this will be further discussed

in the next section.

6.4.4 Correlations above Tc

The ferrimagnetic transition temperature Tc for Y0.15Sr0.85CoO3−δ is 370 K. Q-

scans were made between 350 and 440 K, crossing this transition, along the (h, h, 6)
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Figure 6.31: Scans along
the (1, 1, l) direction across
the (1, 1, 2) peak in the
I4/mmm space group of
Y0.15Sr0.85CoO3−δ measured at
temperatures between 100 and
390 K at an energy transfer
of 12.4 meV on the triple-axis
spectrometer 2T1. 1.0 1.5 2.0 2.5 3.0
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and (1, 1, l) directions at up to five different energy transfers; 4.1, 12.4, 20.7, 28.9

and 37.2 meV on the triple-axis spectrometer 2T1. Some scans were made along

(−h, h, 6) and (−1, 1, l) to avoid spurion signals. These scans are shown in figure

6.32. At the lowest energy transfer measured, 4.1 meV, there is a strong tempera-

ture dependence along both axes as the transition temperature is crossed, with the

scans at 410 and 440 K having comparable intensities, and the scans at all tem-

peratures along both axes showing evidence of dynamic magnetic correlations. At

12.4 meV, there is still a distinct temperature dependence of the correlations across

the transition along the c axis of the I4/mmm unit cell, but this is less clear along

the other direction measured. These magnetic fluctuations have become negligible

by an energy transfer of 28.9 meV along the (1, 1, l) axis, but there is still some ev-

idence of correlations at an energy transfer of 37.2 meV in the scans along (h, h, 6)

direction, although neither show any temperature dependence. Due to limitations

on the equipment used, we were unable to probe temperatures above 440 K and

establish a temperature at which these correlations disappear.

These measurements provide two key pieces of information about the mag-

netic correlations in Y0.15Sr0.85CoO3−δ. The dynamic magnetic correlations in

Y0.15Sr0.85CoO3−δ persist for a substantial temperature interval above Tc. Addi-

tionally, these correlations above Tc have a 2D character, evidenced by the fact that

the peaks along the ab direction are significantly sharper than those along the c axis,

implying longer-range fluctuations along this direction. This observation should be

related to the measurements made at 390, 370 and 360 K on the polarised neutron

diffractometer D7 shown in figure 6.23. Apparent magnetic diffuse scattering corre-

sponding to an integrated inelastic contribution is obvious in the (h, h, l) scattering

plane at Tc but not in the (h, k, 0) plane.

To try and understand this behaviour it should be considered in the context

of similar systems. The perovskite LaMnO3 is a antiferromagnet with a Néel tem-

perature TN = 139.5 K. The behaviour of the magnetic moments in this system,

which are aligned along the b axis, does not fit with a 3D Heisenberg antiferro-

120



0.0 0.5 1.0 1.5 2.0
0

200
400
600
800

1000
1200
1400
1600
1800
2000

 

 

 350 K
 370 K
 390 K
 410 K
 440 K

In
te

ns
ity

 (A
rb

itr
ar

y 
U

ni
ts

)

(h, h, 6) 

4.1 meV

1.0 1.5 2.0 2.5 3.0
0

200
400
600
800

1000
1200
1400
1600
1800
2000

 

 

 350 K
 370 K
 390 K
 410 K
 440 K

In
te

ns
ity

 (A
rb

itr
ar

y 
U

ni
ts

)

(1,1, l)

4.1 meV

0.0 0.5 1.0 1.5 2.0
0

100
200
300
400
500
600
700
800
900

1000
 

 

 350 K
 370 K
 390 K
 410 K
 440 K

In
te

ns
ity

 (A
rb

itr
ar

y 
U

ni
ts

)

(h,h,6)

12.4 meV

1.0 1.5 2.0 2.5 3.0
0

200

400

600

800

1000
 

 

 350 K
 370 K
 390 K
 410 K

In
te

ns
ity

 (A
rb

itr
ar

y 
U

ni
ts

)

(1,1,l)

12.4 meV

-2.0 -1.5 -1.0 -0.5 0.0
0

200

400

600

800
 

 

 350 K
 370 K
 390 K
 410 K
 440 K

In
te

ns
ity

 (A
rb

itr
ar

y 
U

ni
ts

)

(h,h,6)

20.7 meV

5.0 5.5 6.0 6.5 7.0
0

200

400

600

800
 

 

 350 K
 370 K
 390 K
 410 K
 440 KIn

te
ns

ity
 (A

rb
itr

ar
y 

U
ni

ts
)

(-1,-1,l)

20.7 meV

0.0 0.5 1.0 1.5 2.0
0

100

200

300

400

500
 

 

 350 K
 370 K
 390 K
 410 K
 440 K

In
te

ns
ity

 (A
rb

itr
ar

y 
U

ni
ts

)

(h, h, 6)

28.9 meV

5.0 5.5 6.0 6.5 7.0
0

100

200

300

400

500
 

 

 350 K
 370 K
 390 K
 410 K

In
te

ns
ity

 (A
rb

itr
ar

y 
U

ni
ts

)

(-1,-1,l)

28.9 meV

0.0 0.5 1.0 1.5 2.0
0

100

200

300
 

 

 350 K
 370 K
 390 K
 410 K
 440 KIn

te
ns

ity
 (A

rb
itr

ar
y 

U
ni

ts
)

(h,h,6)

37.2 meV

Figure 6.32: Scans along the (h, h, 6) (left) and (1, 1, l) (right) directions of the
(1, 1, 6)/(−1,−1, 6) and (1, 1, 2)/(−1,−1, 2) peaks in the I4/mmm space group
of Y0.15Sr0.85CoO3−δ respectively at energy transfers of 4.1, 12.4, 20.7, 28.9 and
37.2 meV. Scans have been made between 350 and 440 K on the triple-axis spec-
trometer 2T1.
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magnet, but is instead a layered antiferromagnet. The correlations are ferromag-

netic in the ab plane and antiferromagnetic along c, and the value of the ferromag-

netic exchange integral is larger than the antiferromagnetic exchange integral [122].

Measurements on the doped manganite, La1.2Sr1.8Mn2O7 have also identified long-

lived antiferromagnetic clusters above Tc, which on first glance are not dissimilar

to those described here [123]. The weak ferromagnetic signal in La1.2Sr1.8Mn2O7

is attributed to a canted ferromagnetic component rather than the ferrimagnetism

in Y1−xSrxCoO3−δ [124]. However, the principle that at the critical temperature

dynamically ordered planes order against each other to achieve 3D static magnetic

ordering is a plausible scenario for both materials. The presence of 2D fluctuations

in Y1−xSrxCoO3−δ would be significant as it would mean it is magnetically ordered

only in the planes above Tc, before 3D magnetic ordering onsets at Tc.

Scans in energy transfer at constant positions in reciprocal space were also

made to probe the correlations above Tc in Y0.15Sr0.85CoO3−δ. These are shown

in figure 6.33. Scans were made at the (−1,−1, 6), (−2,−2, 6) and (−1,−1, 7)

Bragg positions at temperatures of 350, 370, 390 and 410 K. There is an increase

in quasi-elastic scattering below Tc but the dispersive component between 10 and

20 meV shown earlier in figures 6.26, 6.27, 6.29 and 6.30 is clearly observable at

all temperatures. The presence of inelastic modes with energy gaps is reinforced

by peaks at ∼15 and ∼20 meV in the (−1,−1, 6) scan. The increased intensity of

the (−1,−1, 7) scan compared to the (−2,−2, 6) at energy transfers up to 30 meV

suggests anisotropy in the magnetic correlations, as already discussed.

6.5 Discussion

The magnetic behaviour of Y0.15Sr0.85CoO3−δ powder and single crystals has been

investigated. The simple perovskite AD/OD sample was found to be ferromagnetic

with a Tc of 150 K by both magnetisation and neutron diffraction. However, the

neutron diffraction measurements on the brownmillerite AD/OO and AO/OO struc-

tural variants showed the susceptibility measurements do not necessarily reflect the

full story of the magnetic order in the bulk of the material. The magnetisation

signal measured from the AD/OD sample was found to be due to ferromagnetic or-

dering of the cobalt moments. In contrast, the magnetisation signal measured from

the AD/OO sample is believed to be due to a ferromagnetic impurity phase in an

otherwise antiferromagnetic system.

A ferromagnetic-like magnetisation signal from single crystals of the AO/OO

structural variant of Y1−xSrxCoO3−δ was also recorded below the transition tem-

perature of 370 K, and was also found to be isotropic. This has been shown to

coincide with the temperature at which a structural transition was observed, and it
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Figure 6.33: Scans of the (−1,−1, 6), (−2,−2, 6) and (−1,−1,−7) peaks in the
I4/mmm space group of Y0.15Sr0.85CoO3−δ as a function of energy transfer made
on the triple-axis spectrometer 2T1. Tc is 370 K, and measurements have been made
at 350, 370, 390 K and 410 K.

has been suggested that the antiferrimagnetism below 370 K in Y1−xSrxCoO3−δ is

brought on by orbital ordering of the IS cobalt atoms [45]. The second change in the

magnetic behaviour of Y1−xSrxCoO3−δ as a function of temperature, evident from

the susceptibility measurements, is at 280 K. This change also seems to be accom-

panied by a displacive-type structural phase transition. The width of the magnetic

contribution to the powder diffraction also appears to become resolution limited

at this temperature, which may indicate that this change in magnetic behaviour is

associated with domains. Alternatively, some change in the magnitude of a fraction

of the magnetic moments, such as a spin state transition, may be associated with

the change in structure and magnetic behaviour at 280 K.

Diffuse and inelastic scattering measurements on Y0.15Sr0.85CoO3−δ have

shown that the inelastic spectrum has a minimum of two magnon branches along

each axis, and probably many more, as might be expected in such a complex system.

There are also gapped energy modes indicative of the magnetic anisotropy of the

system. Quasi-elastic magnetic scattering was observed both below and significantly

above Tc using both techniques. The results suggest that the magnetic fluctuations

are 2D becoming 3D at Tc, although more detailed investigation is necessary to fully

understand this behaviour.

Studying the magnetism in Y0.15Sr0.85CoO3−δ has demonstrated the neces-

sity of using microscopic probes such as neutron scattering for studying this com-
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pound. The ferromagnetic signal, although isotropic from magnetisation measure-

ments, is due to the unequal, and antiferromagnetically aligned, moments on dif-

ferent cobalt sites, and this remnant moment is nevertheless not constrained to lie

in any particular direction accounting for the isotropic ferromagnetism. For fur-

ther progress to be made, an improved structural model for Y1−xSrxCoO3−δ as a

function of temperature is necessary so the magnetic structure can be accurately

determined.
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Part III

Ca3Co2O6
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Chapter 7

Ca3Co2O6: Introduction

Ca3Co2O6 is a quasi-1D magnetic material with Ising spins on a triangular lattice.

This configuration has the potential for geometrical frustration and other interesting

magnetic behaviour. Regularly-spaced steps in the magnetisation as a function of

applied magnetic field have been ascribed to either a quantum tunnelling of the

magnetisation or the evolution of metastable states. This literature review covers

the work on Ca3Co2O6 to date and identifies the outstanding issues which led to

the experimental work described in chapters 8 and 9.

7.1 Crystal Structure

a
b c

Figure 7.1: Crystal structure of Ca3Co2O6. The

chains of alternating CoO6 octahedra and CoO6

trigonal prisms are shown in blue with the oxygen

atoms in red. The green spheres are the calcium

atoms. In the ab plane the chains are arranged in

a hexagonal lattice. Figure drawn using [113].

Interest in the compound Ca3Co2O6

was ignited in 1996 when Fjellv̊ag

et al. [28] solved the structure

by refining neutron and X-ray

powder diffraction data. They

indexed the structure with the

rhombohedral space group R3̄c

(Z=6, hexagonal setting), where

the lattice parameters are a =

9.0793 Å and c = 10.381 Å

at room temperature. The

cobalt atoms (Co) alternate be-

tween face-sharing CoO6 octa-

hedra (Co1) and CoO6 trigo-

nal prisms (Co2), forming chains

running along the c axis, shown

in figure 7.1. In the ab plane

these chains form a triangular
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lattice, with calcium atoms separating the chains. The intrachain Co-Co separa-

tion is 2.59 Å whereas the interchain Co-Co separation is 5.24 Å. This means that

Ca3Co2O6 has a highly anisotropic crystal structure and can be characterised as a

quasi-1D material.

7.2 Magnetic Structure

Ca3Co2O6 has been found to magnetically order below 25 K, with an effective mag-

netic moment of 5.7 µB/f.u. in the paramagnetic regime [36]. The magnetic struc-

ture was refined as trivalent cobalt ions (Co3+) whose spin state alternates, with

high spin (HS) for the trigonal prisms, SHS = 3.00 µB/f.u., and low spin (LS) for

the octahedra, SLS = 0.08 µB/f.u. [34, 35, 125, 126], with a large orbital contri-

bution (∼ 1.57µB) to the magnetic moment [127]. The cobalt moments on both

sites are aligned along the c axis and ferromagnetic coupling dominates within the

chains. Additional Bragg peaks (such as the (1,0,0) reflection) were observed below

TN indicating antiferromagnetic order, which is present between the chains in the

ab plane [34].

The ferromagnetic intrachain interactions (JFM ∼ 25 K) in Ca3Co2O6 are

stronger than the antiferromagnetic interchain interactions (JAFM ∼ 0.25 K). The

moments also appear to be constrained to exhibit Ising-like behaviour with an easy

direction parallel to the chain direction. As the interactions between the Ising spins

are antiferromagnetic on a triangular lattice in the ab plane, Ca3Co2O6 is also a

geometrically frustrated material (section 2.4.1). The geometrical frustration has

led to the suggestion that Ca3Co2O6 has a partially disordered antiferromagnetic

structure, shown in figure 7.2. The model is used to describe a system where one

of the three Ising spin chains in the unit cell will have spin up, one will have spin

down, and the third will be incoherent [34, 39].

+

- 0

+

+

-

-

Figure 7.2: The partially dis-
ordered antiferromagnetic (PDA)
structure on a hexagonal lattice.
The circles represent the ferromag-
netic spin chains. The plus and
minus signs indicate the direction
of the moment on each of the spin
chains. The zero (0) indicates that
the spin can be either plus or mi-
nus at random and is incoherent.
Adapted from reference [128].
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7.3 Behaviour in an Applied Magnetic Field

At temperatures below 5 K, steps in the magnetisation have been found to occur

at applied magnetic fields of 0, 1.2, 2.4, 3.6 and 4.8 T respectively, shown in figure

7.3. Additional steps were claimed in fields of 6 and 7.2 T at temperatures below

2 K [37]. The relative magnitudes of these steps were cited as particularly inter-

esting [129], as they appear to have relative magnitudes of m = 1/4, 1/2, 1, 2, and

3, where m = 1 corresponds to the ferromagnetic ordering of a single chain and

m = 3 corresponds to the ferromagnetic ordering of three chains on the same trian-

gle and the maximum possible magnetisation. These steps can therefore be directly

interpreted as reorientation of particular spin chains when a critical field is applied

due to the geometrical frustration within the lattice. It has been claimed that next

nearest neighbour interactions need to be considered to fully explain all of the steps

[129].

Figure 7.3: Hysteresis loops
for Ca3Co2O6 recorded at 2
and 10 K at a sweep rate of
0.1 T/min. The arrows indicate
the direction of the field varia-
tion. The inset shows a projec-
tion of the crystal structure of
Ca3Co2O6 along the hexagonal
c axis. The cobalt polyhedra are
shown in dark and light grey and
the small grey circles represent
the Ca ions. Taken from refer-
ence [38].

2 K

10 K

On cooling from TN , the hysteresis of the M-H loops increases around 12 K

(Tc2), with substantial hysteresis at 2 K and evidence of spin-freezing (broadening

of the magnetisation plateaux at low temperatures) [39]. Between TN and Tc2,

the M-H loops have two steps, the first step just above 0 T being the transition

to a ferrimagnetic plateau with 1/3 of the saturation magnetisation and the second

step being to a value close to the saturation magnetisation (MSat = 4.8µB/f.u.),

suggested to indicate a transition into a purely ferromagnetic phase [34].

The magnetic and physical properties of Ca3Co2O6; dc-magnetisation, ac-

susceptibility and resistivity, are highly anisotropic in accordance with the anisotropic

crystal and magnetic structures. It has been established that the powder magneti-

sation primarily reflects the c axis behaviour alone [130]. The single crystals used

for these measurements were grown using a flux method [129] and were a few mm

in length and needle-like.
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7.4 Time Dependent Behaviour

Various measurements [38, 129, 131, 132, 133] have made it clear that the dynamics

of the particular measurement affect the appearance of the low temperature steps

in Ca3Co2O6. At 4 K, the steps at 1.2 T and 2.4 T are clearly visible features in the

magnetisation data with a sweep rate of 1 T/min, but as the sweep rate is decreased

these features are progressively smoothed, and at 0.01 T/min they are completely

absent [38]. This relaxation in the bulk magnetisation is most pronounced at low

temperatures, and at temperatures of 10 K and above there is almost no relaxation

observable. At temperatures between 2 and 10 K unusual relaxation effects occur,

often over timescales as long as several thousand seconds. These effects are most

obvious in fields close to the step at 2.4 T. At 4 K, there is a crossover in the

relaxation behaviour at 2.4 T, with the magnetisation increasing with time when

measured in fields below 2.4 T and magnetisation decreasing with time in fields

above 2.4 T [38]. Initially the magnetisation at 2.4 T and 4 K increases with time,

before starting to decrease after just over an hour.

The appearance of steps in the magnetisation, substantial magnetic hystere-

sis and very slow spin-relaxation time are characteristics that Ca3Co2O6 shares with

the so-called ‘single molecule magnets’, Mn12 and Fe8 [134]. These single molecule

magnets are systems in which resonant quantum tunnelling of the magnetisation

(QTM) is found, and supply a special opportunity to study this quantum mechan-

ical phenomenon. The similarities in behaviour between Ca3Co2O6 and the single

molecule magnets has led to the suggestion that Ca3Co2O6 is the first example of

QTM in a magnetic oxide [37].

Materials which exhibit quantum tunnelling have two or more degenerate

ground states with a potential energy barrier between them. Where a magnetic

field is applied, the degeneracy of these ground states is lifted and one state is

stabilized with respect to the other. As the field increases, this state becomes

resonant with other excited spin states and quantum tunnelling becomes possible

[37]. The asymptotic behaviour of the relaxation time in Ca3Co2O6, with an onset

of about 7 K, agrees well with the behaviour of the single molecule magnets [133],

but the field dependence of the relaxation shows different features. Unlike the single

molecule magnets, Ca3Co2O6 has steeper variations in the relaxation time and the

positions of the peaks in the time dependence as a function of field do not vary with

sweeping rate as would be expected for a quantum tunnelling process [37].

There is still some debate about the classification of Ca3Co2O6 as a quan-

tum tunnelling system [37, 135] and it was originally suggested that below 12 K,

Ca3Co2O6 is a spin glass [39], with spin freezing (TSF = 7 K) at low temperatures.

This would be as opposed to 12 K being a crossover temperature where spin relax-

ation time τ becomes temperature independent, crossing from standard Arrhenius
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behaviour described in section 2.4.3 to a potential quantum regime akin to the quan-

tum tunnelling of the magnetisation in the single molecule magnets described above

[37, 133]. However, some studies [129, 133] have suggested this behaviour is closer

to that expected for superparamagnetic clusters [136] or the evolution of metastable

states [137]. The experimental work presented in the following two chapters is in-

tended to further our understanding of these issues.

7.5 Recent Developments

Resonant X-ray scattering investigations have highlighted a small incommensuration

in the magnetic order along the c axis of Ca3Co2O6 in low fields. In zero field, the

modulation of the magnetic order changes continuously between 5 K, where it has

a periodicity of 1500 Å, and 23 K, where it has a periodicity of 700 Å [138]. These

are both very long scale modulations, and imply a long wavelength spin density

wave (SDW) propagating along the c axis. This gives a general propagation vector

of k = (0, 0, 1.01) for the antiferromagnetic spin density wave in Ca3Co2O6 in zero

field at temperatures below TN . Recent thermal conductivity measurements [139]

suggest an exchange-mediated heat transfer which is incompatible with the Ising

model, and supports the helical exchange pathway implied by the spin density wave.

Neutron diffraction measurements have shown that the long-range magnetic

order in Ca3Co2O6 coexists with a short-range magnetic ordering with a correlation

length of ∼180 Å in the ab plane. It was previously known that there was anomalous

dip in the intensity of the Bragg peaks corresponding to long-range antiferromagnetic

order at low temperatures [140]. The maximum intensity of these peaks was found

at the temperature 18 K. It has been suggested that this drop in intensity is due

to an increase in the fraction of material exhibiting this short-range order, however

more recent results suggest some intensity is still unaccounted for [141].

7.6 Theoretical Work

Electronic structure calculations considering possible intrachain ferromagnetic and

antiferromagnetic hopping events have shown that the origin of the ferromagnetic

coupling along the chains is direct Co-Co orbital overlap between magnetic and non-

magnetic cobalt ions with J1 ∼ 25 K. For the antiferromagnetic interchain coupling

the exchange is via two oxygen sites, super-superexchange coupling JAFM ∼ 0.25 K

[142]. By assuming these two exchange interactions between nearest and next near-

est neighbours are different (JAFM = J2+J3) a helical exchange pathway is formed

which serves to stabilise the SDW state [144]. This is shown in figure 7.4. The

overlap of the oxygen 2p orbital is very small, so the nearest neighbour exchange
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term J2 is weaker than the next nearest neighbour exchange term J3.

J

J

J1 3

2

Co1

Co2

Figure 7.4: Exchange interac-
tions in Ca3Co2O6. The Co1
CoO6 octahedra are shown in
red and Co2 CoO6 trigonal
prisms are shown in blue. The
J1 ferromagnetic intrachain in-
teractions are shown in red,
the J2 nearest neighbour anti-
ferromagnetic interchain inter-
actions are shown in dashed
green and the J3 next-nearest
neighbour antiferromagnetic in-
terchain interactions are shown
in black. Adapted from [144,
145].

Magnetisation plateaux are expected in Heisenberg antiferromagnetic chains

when Nc(S − m) is an integer, where Nc is the number of sites in the magnetic

unit cell, S is the spin quantum number and m the average magnetisation per

spin [142, 143]. The location in field of the steps in the magnetisation observed

in Ca3Co2O6 agrees with this criterion and several researchers have attempted to

reproduce the observed behaviour by theoretical considerations. The plateaux have

been explained using entropy arguments focusing on the interchain magnetic order

within a PDA honeycomb model [146]. In this model, there are a mixture of spin

up, spin down and mixed spins sites forming a hexagonal lattice of spin up and

spin down chains with a chain which can either be spin up or spin down at the

centre. The steps correspond to the flipping of chains in particular configurations

within the honeycomb, for example the step at B = 0 arises from the flipping of

all the chains at the centre of the hexagons to align with the applied magnetic field

[146, 147, 148]. Monte Carlo simulations have been used to assess the effect of these

metastable states on the sweep rate dependence of the magnetisation and found

reasonable agreement with experiment [137, 149, 150].

7.7 Discussion

In summary, Ca3Co2O6 is a complex system with several competing magnetic in-

teractions. Firstly the zero field magnetic structure consists of spin chains, with

ferromagnetic interactions along the chains and antiferromagnetic interactions be-

tween the chains. These interactions give rise to a sinusoidally modulated SDW

structure along the c axis generated by a helical exchange pathway in the ab plane.
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Secondly, on application of a magnetic field Ca3Co2O6 starts to display ferrimag-

netic behaviour, then becoming ferromagnetic when the moment is saturated, with

regularly-spaced steps appearing in the bulk magnetisation. Thirdly, the magnetic

order has unusual time dependence at temperatures below 12 K. Fourthly, there is

clear coexistence of long-range and short-range antiferromagnetic order in Ca3Co2O6

at low temperatures. These four intriguing features of the magnetic behaviour of

this material will be further explored in the following two chapters.

132



Chapter 8

Ca3Co2O6: Temperature and

Time Dependent Magnetic

Behaviour

This chapter details experiments carried out on the neutron diffractometers GEM

and D7 to study the time and temperature dependence of the different components

of the magnetic order in Ca3Co2O6. The aim of these experiments was to use neu-

tron diffraction to understand the microscopic mechanisms behind the competition

between short and long-range order and the slow relaxation of the magnetic order,

frequency dependence of the ac-susceptibility and other time dependent behaviour

observed in Ca3Co2O6. All the work detailed in this chapter describes behaviour

observed in zero applied magnetic field at temperatures below TN = 25 K.

8.1 Magnetic Phases

8.1.1 Experimental Details: The GEM Neutron Diffractometer

The GEneral Materials (GEM) diffractometer [151] at the pulsed neutron source

ISIS is a powder diffractometer with eight detector banks which cover the range

of scattering angles between 1.2◦ and 171.4◦ designed to study a wide variety of

different materials. The large number of detectors on GEM are engineered to give the

highest possible count rate. The high reciprocal-space resolution of the instrument,

with a best value of ∆ Q/Q of 0.34 %, is made possible by having individual ZnS/6Li

scintillator detectors with an effective width of 5 mm and a relatively long moderator

to sample distance of 17 m. The neutron flight path and sample tank are evacuated

to prevent air scattering.

An experiment to study the time dependence of the magnetic order in Ca3Co2O6

was carried out on GEM using 2.9 g polycrystalline sample. The sample was syn-
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Figure 8.1: Layout of the powder diffractometer GEM at ISIS. The eight sets of
detector banks are labelled in the figure [152].

thesized via a standard solid state reaction method [35, 39, 129] and pressed into

a 32 mm rod. The magnetisation behaviour of the sample was checked and found

to agree with that previous published by other researchers [39]. The sample was

then inserted into a vanadium sample can and the can was packed with silica wool.

The sample can was mounted in a standard 10 T cryomagnet with an aluminium

window. Data were not collected in backscatter mode, so six detector banks were

used for the experiment.

8.1.2 Magnetic Structure

The sample was installed at 300 K and then cooled to 35 K over a time period

of several hours. A diffraction measurement was made at this temperature with

a counting time of 1 hour 45 mins. The sample was then cooled to 2 K and a

measurement was made with a counting time of 2 hrs. Later, when cooling using the

same procedure, a further measurement was made at the intermediate temperature

of 18 K with a counting time of 15 minutes.

The recorded neutron diffraction patterns were analysed by Rietveld re-

finement using the FULLPROF program [111]. A pattern collected above TN

(T= 35 K, shown in figure 8.2(a)) was refined using the known structural parame-

ters of Ca3Co2O6 (space group R3̄c) and data from all six detector banks. A 0.08 %

phase fraction of nonmagnetic CaO (space group Fm3̄m) was found to be the only

detectable impurity present, indicating the sample was of high quality. The final
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Figure 8.2: Raw diffraction data (red circles) and fits to the data (black lines) with
difference plots (blue lines) made at temperatures of (a) 35 K (nuclear phase only
χ2 = 5.412) (b) 18 K (nuclear and SDW phases χ2 = 1.727) (c) 2 K (SDW and
short-range phases χ2 = 3.317). The data presented is from detector bank 2 of the
powder diffractometer GEM.

135



atomic parameters and Wyckoff positions from the refinement are given in table 8.1.

Atom Site x y z B Occ.

Ca 18e 0.3688(3) 0 0.25 0.07(2) 1.0
Co1 6b 0 0 0 0.37(2) 1.0
Co2 6a 0 0 0.25 0.15(4) 1.0
O 36f 0.1762(3) 0.0245(2) 0.1144(3) 0.48(2) 1.0

Table 8.1: Table of atomic positions for Ca3Co2O6 refined in the R3̄c space group.
The lattice parameters were a = b = 9.0733(1) Å and c = 10.3830(3) Å, with
α = 90◦, β = 90◦ and γ = 120◦. The data was collected at a temperature of 35 K.

When cooled below TN , antiferromagnetic peaks appear in the diffraction

pattern at q-values of 0.79, 1.59 and 1.82 Å−1 (figure 8.2(b)). As established pre-

viously, these peaks correspond to an incommensurate antiferromagnetic phase and

were fitted to a magnetic phase with propagation vector k = (0, 0, 1.01). The suc-

cess of this fit confirmed the presence of a spin density wave (SDW) structure along

the c axis with period of 100 Å. The magnetic moment on the high spin Co2 site

was refined to be 5.1 ± 0.1 µB directed along z, which includes a sizable orbital

contribution. The magnetic moment on the Co1 site was fixed to be zero as it is

well-established that it is in a non-magnetic low spin state. The analysis of the

phase fractions discussed throughout this chapter is based on the assumption that

the cobalt moment is saturated. This assumption is believed to be reasonable be-

cause of the low temperatures used, and is supported by the fact that the phase

fractions for all our fits consistently summed to 1 [153].

The intensity of the peaks corresponding to the main antiferromagnetic phase

have an unusual temperature dependence, decreasing in intensity as the temperature

is reduced. This is clear when comparing figures 8.2(b) and 8.2(c), measured at 18

and 2 K respectively. The intensity of the three main antiferromagnetic Bragg peaks

can be seen to have decreased noticeably. A broad peak is also visible to the low-

q side of the main antiferromagnetic Bragg peak, extending down to a q-spacing

of 0.69 Å−1. This broad peak indicates short-range antiferromagnetic correlations

which are not symmetrical about the main antiferromagnetic Bragg peak, unlike

those previously identified [154]. It has previously been suggested that the loss in

intensity of the peaks corresponding to the long-range antiferromagnetic phase is,

at least in part, due to the an increase in the volume of material correlated on a

shorter length scale [154]. However, it is clear that the short-range order observed

here is not simply antiferromagnetic correlations on a finite length scale with the

same propagation vector as the SDW phase, but something more complex.
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8.1.3 Commensurate Antiferromagnetic Phase

Time dependent behaviour has previously been observed in laboratory measure-

ments of Ca3Co2O6 [133], including a time dependence in the magnetisation at

temperatures below 10 K. The experiment described here was designed to study

this time dependence using neutron diffraction. Firstly, the sample was warmed

above TN to remove any magnetic history. Then it was cooled slowly to 2 K, where

it was allowed to thermalise for 15 minutes. The sample was then warmed to 8 K,

where diffraction data was collected as a function of time. After some time, a dis-

tinct, sharp peak, not present when the sample was first warmed to 8 K, emerges

at a q-value of 0.69 Å−1, along with other smaller peaks at higher q-values. These

peaks become sharper and more intense with time, shown in figure 8.3. This peak

does not correspond to the SDW or the short-range magnetic phases and indicates

a new type of long-range magnetic order has emerged as a function of time.

This new magnetic phase, hereafter referred to as the commensurate antifer-

romagnetic (CAFM) phase, was indexed with a propagation vector k = (0.5,−0.5, 1)

with respect to the hexagonal setting of the unit cell, which provided a good fit to

the data. This propagation vector indicates a doubling of the unit cell in the a and

b directions forming stripes of magnetic order in the ab plane.

The magnetic unit cells of the SDW and CAFM phases are shown in figure

8.4, along with the positions of the cobalt atoms in the equivalent structural unit

cell. For all the phases, the moments along the chains are ferromagnetically aligned.

For the SDW phase, the magnetic moment modulates between +M and -M along

all the chains, so that at some points in the lattice the magnetic structure has the

PDA structure shown in the figure with configuration (
√

3/2M,−
√

3/2M, 0). At

other lattice points however, the configuration is (M,−M/2,−M/2). In contrast,

the magnetic structure of the CAFM phase is believed to be commensurate.

The broad feature connecting the main magnetic peaks of the SDW and

CAFM phases is indicative of short-range correlations. It is not symmetrical about

either Bragg position, implying its propagation vector is not the same as either

phase. We suggest that it is caused by defects in the ferromagnetic chains due to

the helical exchange pathway of the antiferromagnetic superexchange interactions

[144]. However, from this single feature it is not possible to determine the magnetic

arrangement responsible for these short-range correlations.

The main magnetic peak of the CAFM stripe phase appears to be resolu-

tion limited. However, some of the smaller peaks, those indexed with (h,−h, 0),
are additionally broadened due to the finite correlation length of the phase. This

broadening was found to indicate the magnetic domains of the stripe phase have

a platelet shape along the stripe direction. The correlation length associated with

this size broadening was found using the Scherrer equation D = CK/Sz, where C is
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Figure 8.3: Upper panel: The main magnetic peaks of the SDW and CAFM phases
in Ca3Co2O6 measured on reaching 8 K (black squares) and after waiting for 5.5
hours at this temperature (red circles). Lower panel: The same data taken at 8 K
after 5.5 hours (red circles) with the fit obtained using the model we propose shown
in black.
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Positions of Cobalt Atoms Spin Density Wave (SDW) Phase

Commensurate Antiferromagnetic 
(CAFM) Phase

Figure 8.4: SDW and CAFM magnetic unit cells and the positions of the cobalt
atoms in the structural unit cell. The top left panel shows the positions of the
nonmagnetic Co1 (blue) and magnetic Co2 (red) cobalt atoms in the Ca3Co2O6

unit cell. The PDA magnetic structure of the SDW phase is shown in the top right
panel and the bottom panel shows the CAFM magnetic phase.
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the diffractometer constant and K is the Scherrer constant (∼ 0.9). The Lorentzian

contribution to the anisotropy is of the form Sz ·cosφ, where Sz is the refined param-

eter and φ is the acute angle between the scattering vector and the stripe direction

[1,−1, 0]. A refined Sz value of 10 gives a magnetic correlation length of around

100 Å along the stripe direction.

8.2 Time and Temperature Dependent Behaviour

8.2.1 Time Dependence

Time dependence in systems without inherent randomness or impurities is rare on an

appreciable timescale to be measured by neutron diffraction. However, such a time

dependence was recently observed in the compound CeIr3Si2, where there are two

magnetic transitions within 1 K of each other. The time dependence was observed

when the compound was rapidly cooled to a low temperature (2 K), leading to a

time dependent lock-in transition between the incommensurate and commensurate

magnetic phases [58]. Ca3Co2O6 has also been reported to exhibit a time dependent

lock-in transition in a low applied magnetic field [155]. However, neither of these

reports involves a magnetic phase with an entirely different propagation vector such

as the one discussed here.

In order to study the time dependence of the conversion of the SDW to

the CAFM phase in Ca3Co2O6, the sample was warmed above TN and allowed to

thermalise to erase the magnetic history. It was then thermalised again at 18 K

and cooled rapidly to 2 K at a rate of approximately 2 K/min. It was then warmed

to the required temperature. To evaluate the time dependent behaviour the data

were binned into 15 minute intervals. The phase fractions of the different magnetic

phases in Ca3Co2O6 were evaluated at each 15 minute interval by refinement of the

scale factors.

The time dependence of the data collected at 8 K is shown in the top panel

of figure 8.5. The resulting curves for the SDW and CAFM phases were then fitted

using stretched exponentials, defined in section 2.4.3, where the order parameter is

the phase fraction (given as a percentage) of each of the magnetic phases. Using this

method, the characteristic relaxation time τ was found to be 4.4 ± 0.9 hrs at 8 K.

Equilibrium values of 28 ± 5 % and 24 ± 5 % were found for the SDW and CAFM

phases respectively, showing that within error bar the equilibrium percentages of the

two phases are equal. The phase fraction of the short-range component increases

slightly in the first hour of measurement before reaching a relatively stable value of

∼35 %.

The time dependence of the magnetic phases in Ca3Co2O6 was also measured

at a temperature of 10 K, shown in the lower panel of figure 8.5. At this temperature
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Figure 8.5: Time dependence of the phase fractions of the SDW, short-range and
CAFM phases in Ca3Co2O6 at 8 and 10 K. The data has been binned into 15 minute
intervals, with the first measurement assigned a time of 15 minutes allowing for the
fact that some time had passed before the measurement had started. The solid lines
are fits to the data, described in the text.
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the relaxation to equilibrium is faster than at 8 K, with a characteristic relaxation

time of τ = 1.4 ± 0.2 hrs. However, at 10 K the equilibrium values of the SDW and

CAFM phases are no longer comparable, and are 66.6 ± 0.6 % and 23.3 ± 0.4 %

respectively. The phase fraction of the short-range component oscillates around a

constant value of ∼17.4 %. It is the reduced number of short-range correlations

that causes the equilibrium percentage for the SDW phase to be higher at this

temperature. The diffraction patterns collected at 2 K with counting times up to

4 hours show no appreciable time dependence, and it is believed that the timescale

for relaxation at this temperature is too long to feasibly measure using neutron

diffraction.

8.2.2 Temperature Dependence

The time dependent evolution of the SDW to form the CAFM phase in Ca3Co2O6

is reproducible. That is, if warmed above 12 K the peaks corresponding to the

CAFM phase disappear and the peaks corresponding to the SDW phase increase

in intensity and become resolution limited. The temperature dependence of the

magnetic phases after the CAFM phase has been allowed to evolve at 8 K is shown

in figure 8.6. The phase fraction of the CAFM phase appears to increase slightly

from 15 % to 20 % between 8 and 10 K before decreasing rapidly above 10 K until

it disappears at 13 K. The phase fraction of the short-range phase also decreases

steadily as the temperature is increased from 8 to 13 K.

Figure 8.6: The tempera-
ture dependence of the phase
fractions of the SDW, short-
range and CAFM phases, af-
ter the CAFM phase has
been allowed to reach equi-
librium at 8 K. The dashed
lines are guides to the eye.
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The increased preference for the CAFM phase at the expense of the SDW

phase as the temperature is decreased suggests the CAFM phase may well be the

true magnetic ground state of Ca3Co2O6. Calculations including next-neighbour

super-superexchange interactions in the model for the magnetic behaviour of the

compound have also shown that the CAFM phase has a lower exchange energy that

the SDW phase [144], supporting this theory. Above 12 K we have shown that
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the SDW phase is preferred and this is attributed to a difference in configurational

entropy between the two phases. This is because the SDW phase has greater entropy,

containing regions with nearly zero ordered moment, whereas in the CAFM phase

every magnetic site is fully ordered. However, it is evident from the competition

between the SDW and CAFM phases and the lack of a clear preference of the

system towards one particular configuration as the temperature is reduced that the

two phases are nearly degenerate. The incomplete nature of the magnetic transition

between the two phases is attributed to defects and pinning centres such as domain

walls which should have already established themselves at higher temperatures.

It has previously been noted [140, 141] that there is an anomalous dip in

the intensity of the Bragg peaks corresponding to the SDW phase at temperatures

below 18 K. Our measurements indicate a broadening of the peaks corresponding

to the SDW phase as the temperature is reduced implying a corresponding reduc-

tion in the magnetic correlation length from 500 to 300 Å. Variations in widths of

both the CAFM and SDW phases with changes in temperature implies that the

interconversion process is due to an intergrowth of the magnetic phases rather than

magnetic phase separation. It is believed that the peak broadening, coupled with

the presence of short-range order and the emergence of the CAFM phase, fully ex-

plain the anomalous dip in intensity of the peaks belonging to the SDW which was

previously not fully accounted for [141].

The measurements made on GEM also showed that it is possible to ‘freeze

in’ the CAFM phase if the sample is rapidly cooled to 2 K after the phase has been

allowed to evolve at a higher temperature such at 8 or 10 K. This history dependence

will be further discussed in the next section.

8.3 History Dependent Behaviour

8.3.1 Experimental Details: The D7 Neutron Diffractometer

Measurements to study the short-range correlations and time dependence of the

magnetic order were also made on the diffuse scattering polarised neutron diffrac-

tometer D7, described in section 6.3.1. As Ca3Co2O6 is an antiferromagnet in zero

field, complete polarisation analysis is possible for polycrystalline samples. A 3.6 g

sample of Ca3Co2O6 powder was enclosed in aluminium foil and then wrapped

around a cylindrical aluminium insert. This was then placed inside an aluminium

sample can 10 cm in length. The sample was installed in a standard orange cryostat

and cooled to 35 K.

Standard vanadium, quartz and empty sample can measurements were made

to calibrate the diffractometer at the two different wavelengths used for the exper-

iment, λ = 4.8 Å and λ = 3.2 Å. The different normalised contributions to total
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Figure 8.7: Normalised magnetic,
spin incoherent and coherent (nu-
clear) contributions to the total
scattering from Ca3Co2O6 at 1.5 K
as measured on the polarised neu-
tron diffractometer D7.
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scattering determined using the polarisation analysis on D7 are shown in figure 8.7.

The use of polarisation analysis to separate the nuclear and magnetic contri-

butions to the total scattering showed that the CAFM phase is purely magnetic in

origin, and the formation of this phase does not coincide with any structural change

in the system.

8.3.2 Measurements at λ = 4.8 Å.

The sample was measured on cooling at temperatures of 30, 25, 20, 15, 10, 5 and

1.5 K, with counting times of 5 hrs per temperature. This meant the cooling rate

was very slow, the equivalent of 1 K/hr if cooled continuously. These measurements

made on slow cooling are shown in figure 8.8(a). Unlike the measurements made

on GEM, the CAFM phase was immediately prominent in all the measurements at

10 K and below. This was attributed to the significantly longer measuring times

and slower cooling rate involved in the experiment.

The slow cooled measurements were then compared with measurements made

when the sample had been warmed above TN to clear the magnetic history, then

rapidly cooled to 1.5 K at the maximum cooling rate of the cryostat. The sample was

then measured on warming for 4 hrs per temperature at 1.5, 5, 7.5, 10 and 15 K,

shown in figure 8.8(b). The main magnetic peak of the CAFM phase, although

clearly present, was much smaller at 1.5 K than when measured on slow cooling,

and the measurements do not become equivalent until the sample is warmed up to

10 K.
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(a) Data collected on slow cooling, counting was for ∼5 hrs per tem-
perature. Inset: Integrated intensity of the main magnetic peak as a
function of temperature for the SDW, short-range and CAFM phases
when slow cooled
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(b) Data collected on warming after rapid cooling to 1.5 K, counting
was for ∼4 hrs per temperature. Inset: Integrated intensity of the main
magnetic peak as a function of temperature for the SDW, short-range
and CAFM phases after rapid cooling

Figure 8.8: Magnetic component of the scattering from a polycrystalline sample
of Ca3Co2O6 measured in diffraction mode on D7 with an incident wavelength of
λ = 4.8 Å. The insets show the integrated intensities of the main peaks of each of
the magnetic phases when slow and rapid cooled respectively. All the data has been
normalised to the monitor and counting time, and the appropriate calibrations have
been applied.
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The main magnetic peaks of the SDW, short-range and CAFM phases have

been fitted at each temperature and plotted as a function of temperature for both

slow cooled and rapid cooled measurements, figures 8.8(a)(Inset) and 8.8(b)(Inset).

This allows us to compare the behaviour of the two phases already discussed and

the short-range order when rapid and slow cooled and so assess the contribution of

the magnetic history of the sample to the magnetic order.

The fraction of short-range correlated material is far higher when rapid

cooled, which is due to the fact it has not had time to form long-range order at

a temperature when the energy barrier is equivalent to or less than the thermal en-

ergy of the spins. Interestingly, the relative intensities of the SDW phase when slow

and rapid cooled to 1.5 K are similar, indicating that in this case the CAFM phase is

forming at the expense of the short-range correlated material rather than the SDW

phase. In both measurements, the fraction of material exhibiting short-range order

changed between 5 and 10 K, and there were fewer short-range correlations at the

higher temperature in both cases.

In the range 5 to 10 K the behaviour of the three magnetic phases is different

when slow (5 hrs per temperature) and rapid (maximum rate of the cryostat) cooled.

Once formed by slow cooling, the CAFM phase remains at a constant intensity.

However, when rapid cooled to 1.5 K the fraction of material in the CAFM phase

is very small, and then when the temperature is increased the fraction of CAFM

material increases to a maximum around 10 K, as observed on GEM. The extra

thermal energy available at this temperature compared to at 1.5 K means that part

of the sample overcomes the energy barrier involved in forming the CAFM phase.

This means that unlike the slow cooled phase, where the intensity of the peaks

corresponding to the SDW phase steadily increases, there is a dip in the intensity of

the peaks corresponding to the SDW phase at 7.5 K. This dip marks the point where

the thermal energy available is greater than the energy barrier and the intensity of

the peaks corresponding to the CAFM phase starts to increase.

The contrast in behaviour between the slow and rapid cooled measurements

shows the importance of magnetic history to the study of Ca3Co2O6. Although the

dynamics are such that at intermediate temperatures (8-10 K) the CAFM phase

will become apparent if left for a sufficiently long amount of time, if rapidly cooled

from these temperatures its current magnetic state will become ‘frozen in’ as the

dynamics of the system are too slow at low temperatures (2 K and below) for the

relative phase fractions of the different magnetic phases to change with time.

The total scattering, defined as the sum of the areas of the main magnetic

peaks of the SDW, CAFM and short-range correlated phases, follows a similar trend

for both rapid and slow cooled measurements. That trend is an increase in peak

intensity at temperatures between TN and 5 K, at which point the combined in-
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tensity of the three phases remains at a constant value. This is notable because it

shows the presence of the CAFM and short-range correlated phases fully accounts for

the drop in intensity of the SDW phase at low temperatures, giving a temperature

dependence which is as we would expect for an antiferromagnetic material.

8.3.3 Measurements at λ = 3.1 Å.

Measurements were also made with an incident wavelength of λ = 3.1 Å. The shorter

wavelength meant more peaks were visible in the diffraction pattern and therefore

more peaks belonging to the metastable phase could be identified at higher values

of q. As the sample was slow cooled in this incidence, the CAFM phase was clear

at all temperatures below 10 K, reproducing the results at the longer wavelength.
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Figure 8.9: Magnetic component of the Ca3Co2O6 data collected on the D7 polarised
neutron diffractometer on slow cooling, counting was for ∼4 hrs per temperature.
The incident neutron wavelength was 3.1 Å.

8.4 High Temperature Correlations

The specific heat data in zero field for Ca3Co2O6 was measured by Hardy et al.

and is shown in reference [132]. When the lattice component has been subtracted

to give the magnetic contribution, there is a sharp lambda-like peak at TN , which

is as expected. There is also a broad maximum centered around 90 K, suggesting

magnetic correlations exist above the transition temperature. Such a result would

be expected in a 1D magnetic compound due to the development of magnetic corre-

lations along the chains. This behaviour could also be due to a spin state transition

but other measurements directly probing the spin states of the two cobalt sites [136]
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suggest this possibility is unlikely.

These correlations were also observed on D7, and measurements were made

at temperatures of 25, 30, 35, 50, 75 and 100 K (figure 8.10). At 25 K, there

is a well-defined broad peak at low-q. This peak is still clearly visible in all the

scans up to 75 K. By 100 K, it is much less distinct. This is a similar temperature

to the maximum in the specific heat described earlier and shows the same short-

range magnetic behaviour above TN is present as suggested by the specific heat

measurements. Attempts are now underway to model this behaviour using Monte-

Carlo methods.

8.5 Discussion

Neutron diffraction measurements on polycrystalline Ca3Co2O6 have shown for the

first time that an unusual order-order transition between two different magnetic

phases takes place in zero field over a time period of hours at temperatures between 8

and 12 K. The incommensurate SDW phase with propagation vector k = (0, 0, 1.01),

dominant at higher temperatures is intergrown with a commensurate antiferromag-

netic (CAFM) phase with propagation vector k = (0.5,−0.5, 1). This interconver-

sion is never complete although measurements and calculations suggest this previ-

ously unreported CAFM phase is the true ground state of the system.

This magnetic transition is particularly notable because of the very slow

time dynamics involved. It is well-established that the spins in Ca3Co2O6 are Ising-

like and Ca3Co2O6 has a quasi-1D lattice, and as discussed in section 2.2.3, it is

theoretically impossible for any magnetic transition to long-range order to occur

in such a system as it involves flipping an infinite chain of spins. As Ca3Co2O6 is

not perfectly 1D, and the magnetic coupling is in fact helical [154], magnetic order

is possible, but we can assume it has a high energy cost. In an analogy with the

behaviour of the single molecule magnets, there is an Ising energy barrier which

hampers reversal of an individual spin and causes the slow time dynamics.

The other time dependent magnetic behaviour observed in Ca3Co2O6, the

slow relation of the dc-magnetisation and frequency dependence of the ac-susceptibility,

is likely to be part of same phenomenon discussed here. No reports currently exist

of the other similar systems exhibiting the same kind of order-order transition, and

this work is likely to either lead to the discovery of other materials that exhibit this

behaviour or to establish that the unusual time dependent behaviour of Ca3Co2O6

is in fact unique.
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Figure 8.10: Magnetic component of the Ca3Co2O6 powder data collected on D7 at
temperatures above TN on warming after rapid cooling to 1.5 K. Counting was for
4 hrs per temperature. The data has been offset by a value of 0.2 in intensity per
temperature for the purposes clarity. The broad peak at low-q indicates short-range
magnetic correlations.
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Chapter 9

Ca3Co2O6: The Effect of an

Applied Magnetic Field

The effect of an applied field on the magnetic behaviour of Ca3Co2O6 was studied

using both single crystal and powder neutron diffraction. The regularly-spaced low

temperature magnetisation steps were observed at the fields of 1.2, 2.4, 3.6 and 4.8 T

for the first time using a microscopic probe. The ferrimagnetic order which emerges

when a magnetic field is applied was probed by measuring the temperature and field

dependence of the ferromagnetic and antiferromagnetic Bragg peaks associated with

it. The effect of a magnetic field on the CAFM phase was also measured, and it

was found that relatively large fields are necessary to stabilise the SDW phase at

low temperatures once the CAFM phase has been allowed to form.

9.1 Magnetic Field Dependent Behaviour

9.1.1 Experimental Details: The GEM and D10 Neutron Diffrac-

tometers

During the same experiment on the GEM diffractometer described in section 8.1.1,

measurements were made in an applied magnetic field. The same 2.9 g rod of

Ca3Co2O6 powder was used, with the vanadium sample can mounted in a 10 T

vertical cryomagnet. The maximum applied magnetic field was 8 T, and the data

collected in this field (detector bank 2) is shown in figure 9.1.

To study the field dependence of the magnetic behaviour of single crystals of

Ca3Co2O6, an 8 x 2 x 2 mm3 crystal produced using a flux method was used. This

crystal had been used for previous experiments, and its preparation is described

in detail in reference [154]. The high quality of the crystal had previously been

established using X-ray techniques and magnetic measurements. The sample was

aligned by putting the crystal in slow drying glue and applying a strong magnetic
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field. Due to the highly anisotropic magnetic response of Ca3Co2O6, the crystal

aligned with the c axis parallel to the direction of the applied field and the field was

maintained until the glue dried and the sample was fixed in position.

The single crystal neutron diffraction measurements were carried out on the

four-circle diffractometer D10 at the ILL, described in section 5.3.1. The incident

wavelength used was 2.36 Å. The sample was mounted in a 6 T vertical cryomagnet,

and was found to be aligned to within 1◦ of a magnetic field applied parallel to the

c axis. The geometry of the cryomagnet limited the scattering to the (hk0) plane.

Measurements were made both with the standard configuration 2D 80 x 80 mm2

area detector and with the vertically focusing pyrolytic graphite analyser and a

single 3He detector.

Data was collected on D10 in one of two different modes. Either by summing

the intensity across a small region of the area detector containing the Bragg peak of

interest while sweeping the field or temperature or by integrating scans through the

peak (rocking curves varying the angle ω) at fixed values of field or temperature.

All the data was normalised to the monitor time, which was 60 s/pt for sweeping

mode and 20 s/pt for the ω scans.
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Figure 9.1: Raw data (red), refinement (black, discussed below) and difference (blue)
plots of the Ca3Co2O6 powder diffraction measurements made on GEM at a tem-
perature of 1.5 K in an 8 T applied magnetic field. The ferromagnetic order can be
clearly seen contributing to the Bragg peaks at 1.4 and 1.5 Å−1.

9.1.2 Ferrimagnetic Behaviour

When a magnetic field is applied parallel to the c axis, Ca3Co2O6 exhibits a slow

lock-in transition from SDW to either antiferromagnetic or ferrimagnetic behaviour.

The field position of this lock-in transition changes with temperature, but occurs at

0.4 T at 5 K. Early work on Ca3Co2O6, based on powder neutron diffraction and
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magnetisation measurements, suggested in the purely ferrimagnetic phase the mag-

netisation is equal to MSat/3. Theoretical descriptions of the purely ferrimagnetic

phase consist of two thirds of the chains being spin up and one third being spin

down [140]. The ferrimagnetic phase is commensurate, the lock-in transition mark-

ing the removal of any incommensuration associated with the SDW zero field state.

Ferrimagnetic behaviour persists in magnetic fields up to 3.6 T, and at temperatures

below 10 K additional steps in the magnetisation are present in the ferrimagnetic

regime at 1.2 and 2.4 T.

In high magnetic fields, Ca3Co2O6 enters a fully ferromagnetic phase [34]

with a saturation magnetisation of MSat ∼ 4.8µB/f.u. [37, 140]. From magnetisa-

tion measurements, the transition to a ferromagnetic phase occurs at 3.6 T at 10 K,

but the moment is not fully saturated until ∼ 7 T at 2 K, although this is dependent

on sweep rate [133]. The steps in the magnetisation suggest that at low tempera-

tures there are magnetic fields where the magnetic structure does not correspond

to either the SDW, ferrimagnetic or ferromagnetic structures described and adopts

some intermediate antiferromagnetic or ferrimagnetic configuration [146].

In order to provide a framework to describe the magnetic field dependent

behaviour of Ca3Co2O6 a model has been developed by some of my research col-

laborators [156] which describes the ferrimagnetic phase as the sum of the ferro-

magnetic (M,M,M) and antiferromagnetic phases (M,−M/2,−M/2), where the

antiferromagnetic (AFM) phase is the SDW phase in zero field. Equation 9.1 gives

the general description of Ca3Co2O6 in an applied magnetic field specified by this

model.

| a | (M,M,M) + | b | (M,−M/2,−M/2) (9.1)

In this description, the mixing coefficients a and b have physical meanings, with

a2 = I(generic)/I(AFM) and b2 = I(generic)/I(ferro). In the purely ferrimagnetic

phase | a | = M/MSat = 1/3 and | b | = -4/3 and we have:

(−M,M,M) = 1/3 (M,M,M) − 4/3 (M,−M/2,−M/2) (9.2)

By using this model, we therefore only need to fit the antiferromagnetic (including

SDW and CAFM) and ferromagnetic phases in order to fully describe the behaviour

of the system as a function of applied field. This is a convenient description for the

data we have, as in powder neutron diffraction, peaks belonging to the ferrimag-

netic phase appear in the same positions as the antiferromagnetic and ferromagnetic

peaks.

Having established all this, it is clear that when Ca3Co2O6 is measured

in an applied magnetic field two kinds of peak will be observed corresponding to

three or more magnetic phases; ferromagnetic, ferrimagnetic and antiferromagnetic.
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It is not immediately obvious how to separate these phases, so the quantitative

results we obtain will be presented in terms of the measured ferromagnetic and

antiferromagnetic components. These will then later be qualitatively discussed in

relation to the ferromagnetic, AFM and ferrimagnetic phases.

9.2 Ferromagnetic Bragg Peaks

9.2.1 Peak Shape
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Figure 9.2: The lineshape of the fer-

romagnetic (3,0,0) peak measured

at 2 K in zero field. The peak was

fitted with a single Gaussian (blue

line) and a flat background.

Both for the powder and single crystal sam-

ples, ferromagnetic peaks appear in field at

positions on top of the nuclear peaks. For the

single crystal, these peaks could adequately be

fitted with a single Gaussian, and the (3,0,0) is

shown in figure 9.2 as an example. The width

of these peaks was considered to be limited by

the resolution of the D10 instrument, with a

typical FWHM of 0.35◦. This implies that the

ferromagnetic component of the ferrimagnetic

phase is fully long-range ordered.

For all the ferromagnetic peaks, the

nuclear component was measured in zero field

and has been subtracted to give a purely fer-

romagnetic intensity. This analysis has been

applied to the data shown in figures 9.3, 9.4

and 9.5.

9.2.2 Field Dependent Magnetic

Behaviour

Figure 9.3 shows the intensity of the ferromag-

netic component of the (3,0,0) peak at 12 and

2 K. At 12 K, there is single step at 3.6 T marking the transition from ferrimag-

netic to ferromagnetic behaviour, with little hysteresis between the measurements

made with the field ramping up and the field ramping down. When cooled to 2 K

a much larger hysteresis develops. This large hysteresis has previously been seen in

magnetisation measurements [38]. Additional steps are distinguishable in the 2 K

data, at 2.4 T and 4.8 T when the field is ramped up and steps in similar positions

were also observed when the field was ramped down.

If the positions of the magnetic peaks in the (hkl) scattering plane change

significantly as function of magnetic field then the method we have used of integrat-
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Figure 9.3: The intensity of the ferromagnetic (3,0,0) peak as a function of applied
magnetic field at 12 K and 2 K. The nuclear component of the ferromagnetic peak (89
Counts/Sec) has been subtracted from both data sets. The ramp rate of magnetic
field was 0.1 T/min.

ing over a constant area of the detector is not valid. In this case, integrating scans

through the peak is a more accurate way of assessing the overall peak intensity.

Figure 9.4 shows the results of integrating ω scans made as a function of magnetic

field. One of the advantages of using this method is that the peak widths and peak

positions as a function of magnetic field can also be measured. As the inset to fig-

ure 9.4 shows, the position of the centre of the ferromagnetic/nuclear peaks moves

very little, with a small drift of less than 0.01◦ below 2.4 T becoming fixed above

2.4 T. Comparing to the measurements made using a constant detector area, the

two methods of data collection are in good agreement with each other, justifying

the use of the area detector and the sweeping method. This is important as the

shape of the hysteresis curve in Ca3Co2O6 is strongly dependent on measurement

time and the sweeping method is a faster method of data collection than integrating

the peak intensity at each point.

Figure 9.4 shows both the integrated ω scans made on D10 at 2 K and a

magnetisation curve taken at the same temperature [156], with the positions of

the steps marked by blue dashed lines. The equally-spaced steps in intensity of the

ferromagnetic peak match well with those seen in magnetisation measurements, with

clear steps observed at 2.4, 3.6 and 4.8 T, and a likely feature at 1.2 T. The observed

increase in the intensity of the ferromagnetic peaks close to 0 T is relatively small.

However, given the fact that the magnetic intensity of the ferromagnetic peaks is

proportional to the magnetisation squared, equation 3.6, the agreement between the
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Figure 9.4: Panel (a) shows the integrated intensity of the ferromagnetic (3,0,0) peak
at a temperature of 2 K as a function of applied magnetic field. These data were
taken after zero field cooling. The nuclear component of the FM peak (equating to
24.9 in the units of integrated intensity used in the figure) has been subtracted. The
inset to this figure shows the position of this nuclear/magnetic peak as a function of
applied field. Panel (b) shows magnetisation data as a function of applied field for
a single crystal of Ca3Co2O6 aligned with the field along the c axis. These data are
presented for comparison purposes and are not my own work [156]. The blue dashed
lines indicate the positions of the magnetisation steps, and show that the positions
of the steps, where they could be observed, are the same for both measurements.
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neutron data and the magnetisation curve shown in figure 9.4 is quantitatively good.

9.2.3 Temperature and History Dependent Behaviour

Figure 9.5: Temperature depen-
dence of the intensity of the
ferromagnetic (3,0,0) peak mea-
sured in three different fields,
0.6, 1.8 and 3 T. The data
taken while warming the sample
in field after zero field cooling
(ZFCW) is shown in black and
the red symbols show the data
taken in field while increasing
the temperature after field cool-
ing (FCW). An irreversibility
temperature is visible at around
10 K, where the intensities of the
ZFCW and FCW measurements
diverge, marked by a dashed line
on the figure. The temperature
ramp rate was 0.3 K/min.
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The intensities of the ferromagnetic peaks were also measured in magnetic

fields of 0.6, 1.8 and 3 T as a function of temperature. These fields were chosen

as they are the mid-points on the plateaux seen in the bulk magnetisation curve.

The results are shown in figure 9.5. In addition to the apparent transition to the

paramagnetic state at 20 K in a magnetic field of 3 T (figure 9.5(c)) another notable

feature is the presence of an irreversibility temperature around 10 K. Below this

temperature there is a pronounced difference between the zero field cooled and field

cooled data for the 0.6 and 3 T measurements, while in the intermediate field of 1.8 T

the difference is very slight. There is also a crossover in the the zero field cooled and

field cooled data at 1.8 T, as at this point the field cooled data has greater magnitude

than the zero field cooled data at 2 K, whereas at 0.6 and 3 T the opposite is true.

This observation should be linked to the magnetisation relaxation measurements

[38], which revealed that at lower temperatures the magnetisation of Ca3Co2O6 has

a pronounced time dependence and that the magnetisation could relax up or down

depending on the value of the applied field.
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9.3 Antiferromagnetic Bragg Peaks

9.3.1 Peak Shape

The antiferromagnetic peaks, such as (1,0,0), can be best fitted with a combination

of a Gaussian and a Lorentzian peak. The Gaussian (FWHM of 0.37◦) is reso-

lution limited, as were the ferromagnetic and nuclear peaks, while the Lorentzian

component is indicative of the presence of magnetic disorder (figure 9.6(a)). This

observation is in agreement with the previously reported coexistance of short-range

magnetic correlations with the long-range magnetic order in zero field at 5 K [154].

The observed full width at half maximum (FWHM) of the Lorentzian component

(typically 1.9◦) allows us to estimate the magnetic correlation length using equation

9.3.

D(Å) =
2π

FWHM(Å)
(9.3)

Using this formula, the magnetic correlation length was found to be D =

250 Å. This value is in reasonably good agreement with the previously reported

values (D = 180 Å was obtained in ref [154]). It is possible that this small difference

is due to the truncation of the data in the earlier measurement, where typically the
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Figure 9.6: Examples of the lineshapes of the antiferromagnetic (1,0,0) peak mea-
sured at 2 K and in zero field. The profiles shown in panels (a) and (b) were obtained
without and with the use of a vertically focusing PG analyser respectively. Solid
lines are the fits consisting of two components, a main resolution limited Gaussian
component (blue dotted line) and a broad Lorentzian component (green dashed line)
as well as a flat background.
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scans were much shorted than the 20◦ rocking curves shown in figure 9.6.

The (1,0,0) peak was also measured using the pyrolytic graphite energy anal-

yser available on D10, with a typical peak profile shown in figure 9.6(b). Apart

from a narrowing of the Gaussian component due to the improved resolution down

to 0.34◦ and a significant reduction in the background (from 5.3 to 0.4 counts per

second) the shape of the peak remained largely unchanged. The ratio of the areas

of the Lorentzian to the Gaussian components of the peak measured with and with-

out the analyser are 0.7 and 0.9 respectively. This observation might suggest that

the magnetic disorder is at least partially dynamic in nature. However, to draw

any firm conclusions regarding the presence of magnetic excitations in Ca3Co2O6

and their influence on the short-range magnetic correlations, much more systematic

measurements with greatly improved energy resolution are required.

9.3.2 Field Dependent Magnetic Behaviour
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Figure 9.7: The intensity of the antiferromag-

netic (1,0,0) peak as a function of applied mag-

netic field at 12 and 2 K. The ramp rate of mag-

netic field was 0.1 T/min.

Figure 9.7 shows that clear steps

in the intensity of the antiferro-

magnetic peak were observed at

2.4 T and 3.6 T, and a possible

feature was also seen at 1.2 T.

At 2 K, there is a small but dis-

tinctly nonzero intensity for the

antiferromagnetic reflection even

above the transition at 3.6 T. This

is because the field value is suf-

ficient to fully polarise the sys-

tem only at higher temperatures,

while at 2 K a much higher field

is required. Figure 9.8 also shows

that the step-like behaviour is ob-

served for both the Gaussian and

the Lorentzian components of the

antiferromagnetic peak. There-

fore it has been shown that the

application of a magnetic field af-

fects both the long-range antiferromagnetic order and the short-range antiferromag-

netic correlations in Ca3Co2O6.

Figure 9.7 also shows that the steps at 1.2 and 2.4 T are not associated with a

redistribution of intensity between the Gaussian and Lorentzian components, estab-

lishing that the degree of antiferromagnetic disorder does not change at these fields.
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Figure 9.8: Integrated intensity of the antiferromagnetic (1,0,0) reflection split into
Gaussian and Lorentzian components as a function of increasing applied magnetic
field. The blue dashed lines are drawn at fields of 1.2, 2.4, 3.6 and 4.8 T to highlight
the positions of the magnetisation steps. All the data were taken at a temperature
of 2 K.
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Significantly, the Lorentzian component of the antiferromagnetic peak continues to

have some intensity above 3.6 T, commonly believed to be the critical field at which

there is a transition to the ferromagnetic state. The widths of both components of

the antiferromagnetic peak are found to be field independent until the transition at

3.6 T above which the width becomes resolution limited.

The most significant feature observed at base temperature is that the in-

tensity of the antiferromagnetic reflection is very weak (nearly zero) for decreasing

magnetic fields. Therefore at 2 K the zero-field cooled magnetic state of Ca3Co2O6

is completely different from the magnetic state after the application and subsequent

removal of an external magnetic field. This observation is only possible with a mi-

croscopic magnetic probe such as neutrons while all the previous bulk properties

measurements have failed to note such a difference in the magnetic state after the

application and removal of a magnetic field. In order to restore the intensity of the

antiferromagnetic peaks the sample has to be warmed up to 30 K and then cooled

in zero field.

Unlike the ferromagnetic peaks, the intensity of the (1,0,0) antiferromagnetic

peak also shows significant hysteresis at 12 K in a wide range of applied fields (see

figure 9.7). At this temperature there is also a rapid change in the intensity of the

antiferromagnetic reflection near zero field for the data taken in both ascending and

descending magnetic fields, while at 2 K the intensity of this peak does not change

appreciably on the application of a magnetic field. The intensity curve for the anti-

ferromagnetic reflection taken while decreasing the field at 12 K suggests a transition

at 2.4 T, which in magnetisation measurements [38] is visible at temperatures up to

10 K [133].

9.3.3 Temperature and History Dependent Behaviour

Investigations in 2008 [154] suggested that the origin of the anomalous dip in the

intensity of the antiferromagnetic peaks at low temperatures is due to an increase in

the fraction of short-range correlated material at the expense of the fraction of long-

range ordered material. We have repeated the zero field measurements reported in

reference [154] in a field of 0.6 T, the results of which are shown in figure 9.9. For a

zero field cooled sample at base temperature, the antiferromagnetic order has both

Gaussian and Lorentzian components, indicating a range of correlation lengths. On

warming, the intensity of both components initially increases. There is a sharp

dip in the integrated intensity of the Gaussian component at 8 K, which coincides

with a maximum in the integrated intensity of the Lorentzian component. Above

this temperature the Gaussian component continues to grow while the Lorentzian

component diminishes rapidly. The sharp decrease of the Gaussian component at

8 K indicates that some additional restructuring of the antiferromagnetic order is
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taking place at this temperature.

For a field cooled sample the peak shape can be fitted with a single Gaussian

indicating the short-range magnetic component is absent. At 2 K, the overall inten-

sity of the field cooled data collected in 0.6 T is higher that the zero field cooled data

at the same temperature. The total intensity of the antiferromagnetic (1,0,0) peak

for the field cooled sample decreases monotonically as the temperature is increased

and the zero field cooled and field cooled data sets crossover around 5 K before

coming together again at temperatures close to TN .

Similar measurements made in fields of 1.8 T and 3 T gave comparable results

for the behaviour of the short-range and long-range components of the antiferromag-

netic order in Ca3Co2O6, and are also shown in figure 9.9.

9.4 Powder Measurements

9.4.1 Ferromagnetic Phase

All the measurements made on single crystals were made with the magnetic field

directed along the c axis. It is generally acknowledged that the measured behaviour

of Ca3Co2O6 powder in a magnetic field also reflects the magnetic ordering along

the c axis due to the Ising nature of the spins, and many of the same features as

detailed in the previous two sections have been observed using powder diffraction.

As with the single crystal measurements, in an applied magnetic field ferro-

magnetic peaks appear on top of the nuclear peaks. This ferromagnetic component

can be refined as a function of applied field and is shown in figure 9.10, along with

the antiferromagnetic (AFM) and short-range antiferromagnetic phases, where the

AFM phase is either commensurate or incommensurate depending on the applied

field. These measurements were made at 2 K, and the commensurate antiferromag-

netic (CAFM) phase has not been allowed to develop, meaning its contribution to

the refinement was negligible. This figure should be compared to figures 9.3 and

9.4. Although not enough data points were collected to make the steps immediately

apparent (this would be difficult anyway using powder diffraction without an ex-

tremely high density of points), the hysteresis loop associated with the ferromagnetic

component is broad at this temperature, as observed with single crystals. There are

large changes in intensity between 3 and 4 T on field increasing and between 2 and

3 T on field decreasing, which are likely to be associated with the stepped magnetic

behaviour.

In contrast to the single crystal measurements there is a substantial difference

between the zero-field cooled and field cooled measurements in fields of 5 T for all

three components of the magnetic order. At this field strength the single crystal

measurements show the moment to be saturated with a value MSat = 5.1 µB/f.u.
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Figure 9.9: The temperature dependence of the Gaussian and the Lorentzian com-
ponents as well as of the total integrated intensity of the antiferromagnetic (1,0,0)
peak in fields of 0.6, 1.8 and 3 T. The black symbols show the data taken while
warming the sample in field after zero field cooling (ZFCW) and the red symbols
show the data taken in field while increasing the temperature after field cooling
(FCW).

162



The fact the magnetic moment does not saturate at 2 K until fields nearly twice the

saturation field at 10 K (3.6 T) was also observed in the equivalent magnetisation

measurements [133]. The interactions in the ab plane of Ca3Co2O6 are well known to

be antiferromagnetic, which is likely to be the major contribution to the substantial

antiferromagnetic intensity recorded in fields above 3.6 T.
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Figure 9.10: The refined intensity of the

main magnetic phases in Ca3Co2O6 pow-

der as a function of applied magnetic field.

The data was all taken at a temperature

of 2 K. The closed symbols show the data

taken on zero field cooled warming and the

open symbols show the data taken on field

cooled cooling.

The results displayed in figure

9.10 show that the overall ordering

scheme is ferrimagnetic at 2 K in all but

the lowest fields as there are both anti-

ferromagnetic and ferromagnetic contri-

butions to magnetic order across almost

all of the measured range at this tem-

perature. Considering the substantial

hysteresis we measure for both the fer-

romagnetic and antiferromagnetic com-

ponents, it implies the ferrimagnetic

phase is hysteretic up to fields of around

7 T. These results and the results pre-

sented earlier in the chapter show that

at these temperatures the steps at 0 and

3.6 T do not mark the transitions to fer-

rimagnetic and ferromagnetic behaviour

respectively in powder or single crystals,

as they do at 10 K and as had been sug-

gested by some previous interpretations.

9.4.2 Antiferromagnetic Phase

The refined intensities of the AFM and

short-range phases are also shown in the

figure. The behaviour of both compo-

nents matches that observed in single

crystals across the majority of the field

range measured. However, at the lowest

fields there is a clear difference. The step at 0 T seen in the magnetisation measure-

ments, while clearly absent in the single crystal data (figure 9.8), is seen in the AFM

component of the powder diffraction refinement. This sharp increase in intensity of

the AFM phase is matched by an equivalent reduction in the fraction of material

exhibiting short-range order. This provides evidence that the origin of the first step

at 0 T is not the same as the rest of the steps in Ca3Co2O6. We suggest this step
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is due to a fraction of the magnetically disordered material becoming long-range

ordered on the application of a magnetic field. Furthermore, the fact this is only

observed in the powder data suggests this ordering may well be associated with the

presence of magnetic domains.
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Figure 9.11: The incommensuration along the c

axis in Ca3Co2O6 as a function of applied mag-

netic field. The data was collected at a temper-

ature of 2 K by refining powder neutron diffrac-

tion data.

Refinement of the pow-

der data means the effect of a

magnetic field on the spin den-

sity wave in Ca3Co2O6 can also

be measured, though neutron

diffraction is not the most pre-

cise technique for doing so as the

results are limited by the resolu-

tion of the GEM instrument. The

results of the analysis are shown

in figure 9.11. They suggest the

incommensuration is still present

in low fields, becoming completely

commensurate in fields above 2 T

at a temperature of 2 K. This

lock-in transition from SDW to

commensurate antiferromagnetic behaviour is know to vary with temperature, and

has been studied in further detail by other researchers using resonant X-ray scat-

tering [157].

9.4.3 Commensurate Antiferromagnetic Phase

The effect of the application of a magnetic field on the time dependent commensurate

antiferromagnetic (CAFM) phase has also been studied. Figure 9.12 shows intensity

of the AFM, short-range and ferromagnetic phases as function of magnetic field at

four different temperatures, 10, 8, 5 and 1.5 K. To collect this data, the sample was

cooled to 2 K, allowing the AFM phase to form, and thermalised for 10 minutes. In

each case the sample was then warmed to 10 K and held for 2 hours to allow the

CAFM phase to develop before quenching to the required temperature, a procedure

which meant the CAFM phase could be ‘frozen in’ before a magnetic field was

applied.

The measurements made at 1.5 K, which were made with a 1 hour counting

time per field, show a different behaviour to the data taken at 5, 8 and 10 K. At the

higher temperatures, the CAFM phase is reduced in intensity on the application

of a magnetic field, causing a consequent increase in the AFM phase. At 1.5 K

however, both the AFM and CAFM phases gradually reduce in intensity as the field
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Figure 9.12: The refined intensity of the magnetic phases in Ca3Co2O6 powder as a
function of applied magnetic field. The measurements were made after the CAFM
phase had been allowed to form for 2 hours at 10 K and quenched to the required
temperature.
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is increased, and this is balanced by an increase in the ferromagnetic phase above

3 T. At 8 T, both the AFM and CAFM phases still have some remaining intensity at

1.5 K. This increased robustness can be explained due to the slower spin dynamics

at low temperatures, and gives valuable information towards a H-T phase diagram

for Ca3Co2O6.

9.5 Discussion

The stepped magnetisation behaviour in Ca3Co2O6 has sparked intense interest

from researchers in this material. Our neutron scattering study on single crystals

has measured these steps for the first time using a microscopic probe and detailed

measurements have been made of the field and temperature dependence of the mag-

netic order. The discovery of an additional antiferromagnetic ordering scheme (the

CAFM phase) implies the origin of these steps in the magnetisation must be re-

assessed to include this behaviour and favours an interpretation in terms of an

evolution of metastable states to a quantum tunnelling of the magnetisation. Mea-

surement of the CAFM phase in single crystals is necessary to assess whether the

stepped magnetic order can be observed for this phase, and to study its role in their

development.

The magnetic behaviour of Ca3Co2O6 powder as a function of applied mag-

netic field has also been studied. The results suggest the presence of domains in

zero field and have shown that the high temperature AFM phase is stablised by a

magnetic field. However at 1.5 K, the CAFM phase is surprisingly robust, and de-

creases in line with the AFM phase as the amount of ferromagnetic order increases,

supporting the interpretation that this is the true magnetic ground state of the

compound.

166



Part IV

Conclusions
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Chapter 10

Conclusions

The cobaltates Y1−xSrxCoO3−δ and Ca3Co2O6 are both compounds which exhibit

complex magnetic behaviour and where the crystal structure strongly influences the

magnetic ordering. Both materials are bulk antiferromagnets, with Y1−xSrxCoO3−δ

displaying a weak ferromagnetic-like magnetisation signal due to the unequal sizes of

the magnetic moments on different sites and Ca3Co2O6 becoming ferrimagnetic on

the application of a magnetic field. In zero field, Ca3Co2O6 has a spin density wave

structure and coexistent long-range and short-range magnetic order. By explaining

the observed magnetic behaviour in these compounds a broader understanding of

physics of this whole class of materials should be achieved, potentially assisting in

the development of their applications in solid state devices. Furthermore, it is hoped

studying these materials will lead to the development of new physics to explain the

phenomena observed. This thesis has detailed measurements of the structural and

magnetic properties of these two compounds and their magnetic behaviour as a

function of temperature and applied magnetic field.

Prior to the start of the work described in this thesis, only a single brief re-

port existed on either the growth or properties of single crystals of Y1−xSrxCoO3−δ.

This led us to develop a method of growing single crystals of Y1−xSrxCoO3−δ

(0.7 ≤ x ≤ 0.95) using floating zone technique, and the ratio of the atoms on

the A-site of the perovskite crystal structure and the oxygen content δ were char-

acterised using EDAX and TGA respectively. A single crystal with chemical for-

mula Y0.15Sr0.85CoO2.63 was subjected to a detailed study using X-ray and neu-

tron scattering. Structurally ordered, disordered and partially-ordered powders of

Y0.15Sr0.85CoO3−δ were also studied to obtain a more complete picture of the struc-

tural and magnetic behaviour of this compound, and neutron diffraction showed

that the different crystal structures of the three powders leads to three very differ-

ent magnetic ordering schemes.

The X-ray and neutron diffraction measurements on Y0.15Sr0.85CoO3−δ sin-

gle crystals have identified a complex superstructure with peaks at (0.25, 0.25, 0)
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and symmetry equivalent positions in the I4/mmm parent structure indicating a

8-times modulation in the ab plane at low temperatures. This superstructure could

not be solved ab−initio, but has been refined in both the I4/mmm and Cmma unit

cells, showing the results agree with previous interpretations. Evidence of structural

transitions at 370 K, involving a doubling of the unit cell in the ab plane due to

orbital ordering, and at 280 K, which appears to be a displacive-type structural

transition, has also been observed. The diffraction measurements also indicate that

in Y0.15Sr0.85CoO3−δ single crystals the structural and magnetic transitions at 370 K

coincide, in contrast to published data on polycrystalline samples [24]. This sup-

ports the conclusion drawn from recent resonant X-ray scattering work [45] that the

ferrimagnetic ordering in Y1−xSrxCoO3−δ is instigated by the orbital ordering of

the orbitally degenerate intermediate-spin cobalt ions.
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Figure 10.1: The structural and mag-

netic behaviour of Y0.15Sr0.85CoO3−δ

single crystals as a function of temper-

ature.

The magnetic ordering in Y1−xSrxCoO3−δ

has been shown to be ferrimagnetic, with

moments of different magnitudes on the

four, five and six-fold coordinated cobalt

sites. However, the macroscopic magneti-

sation has been found to be isotropic, with

the remnant ferromagnetic moment not

constrained to any particular lattice di-

rection. Antiferromagnetic Bragg peaks

appear below Tc at positions symmetric

with (0.5, 0.5, 0) in the I4/mmm unit cell.

There is also a transition in the magnetic

behaviour associated with the structural

transition at 280 K, evident from the dc

and ac-susceptibility measurements, whose

origin is unclear. Powder diffraction mea-

surements suggest this may be due to do-

main effects above this temperature, but

equally a change in the magnetic moment on one of the cobalt sites such as a spin

state transition would account for the coexistance of a structural transition and the

observed change in the magnetisation. Above the transition at 370 K, polarised and

inelastic neutron scattering measurements found evidence of anisotropic magnetic

fluctuations. The structural and magnetic behaviour of Y0.15Sr0.85CoO3−δ single

crystals as a function of temperature is summarised in figure 10.1.

Y1−xSrxCoO3−δ is a member of a class of doped strontium cobaltates Ln1−xSrxCoO3−δ

(Ln = Y, Ho, Er, Ce, Eu, Gd, and Dy), many of which are known to have the

same weak ferromagnetic-like signal in the magnetisation observed for Y1−xSrxCoO3−δ.
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It is quite possible that the source of the ferromagnetic signal in some of these ma-

terials is the same underlying ferrimagnetic ordering of the cobalt moments found

in Y1−xSrxCoO3−δ, although further investigation is required. Certainly, the be-

haviour of Y1−xSrxCoO3−δ seems quite different to that of the well-studied com-

pound La1−xSrxCoO3−δ which is an intrinsically phase-separated material with fer-

romagnetic clusters in an antiferromagnetic matrix.

Ca3Co2O6 is a low-dimensional material consisting of ferromagnetic spin-

chains along the c axis of the unit cell which are antiferromagnetically coupled

in the ab plane. In zero magnetic field, the magnetic structure of Ca3Co2O6 is

incommensurate with propagation vector (0, 0, 1.01), implying a spin density wave

(SDW) propagating along the c axis of the unit cell. The interactions in the ab

plane are geometrically frustrated, so a complex magnetic ground state is expected.

Neutron diffraction measurements detailed in this thesis have shown the different

interactions in this system result in a time dependent magnetic transition from

one ordered antiferromagnetic state to another with a different propagation vector,

determined to be (0.5,−0.5, 1). Entropy and exchange energy calculations [144]

have suggested this new magnetic state is the true ground magnetic state of the

material. This time dependent magnetic transition occurs over a timescale of hours

and is never complete.

Neutron diffraction was also used to measure the magnetic order in Ca3Co2O6

as a function of applied magnetic field. Regularly-spaced steps in the intensity of

both the ferromagnetic and antiferromagnetic Bragg peaks were observed for the

first time in this material using a microscopic probe. The stepped magnetisation as

a function of applied field was also observed for the short-range component of the

magnetic order. It is likely that these steps in the magnetisation of Ca3Co2O6 are

related to the time dependent antiferromagnetic behaviour. Prior to this research,

the steps had been discussed in terms of either a quantum tunnelling of the magneti-

sation or the evolution of metastable states. The observation of such a metastable

state favours the latter interpretation.

The measurements presented in this thesis of the magnetic behaviour of

Ca3Co2O6 as a function of applied magnetic field are summarised in the form of

a magnetic phase diagram in figure 10.2. The red data points indicate the tem-

perature of the magnetic transition to antiferromagnetic behaviour, TN , in different

fields. The blue data points indicate the magnetic field at which the SDW antiferro-

magnetic state is stabilised at the expense of the time dependent antiferromagnetic

phase. The orange data points indicate the position of the lock-in transition from in-

commensurate to commensurate antiferromagnetic behaviour; these measurements

were made by other researchers and are not described in this thesis [157]. The mag-

netisation steps as a function of applied magnetic field are also marked on the figure
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Figure 10.2: Magnetic phase diagram for the compound Ca3Co2O6. The data points
indicate transitions established from measurements described in this thesis [157].
The steps in the magnetisation as a function of applied magnetic field are marked
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with black data points.

The magnetic properties of Ca3Co2O6 should be compared to similar systems.

There are relatively few examples of systems of 1D spin chains on a triangular

lattice. The most important examples are those belonging to the same A’3ABO6

(A′ = Ca, A = Co and B = Co, Ni, Ru, Ir or Rh) class of materials or the ABX3

(A = Cs or Rb, B = Co and X = Cl or Br) family of hexagonal magnets [158]. It

has been suggested that the compounds Ca3Co2O6 and Ca3CoRhO6 have similar

phase diagrams [132]. For example, like early reports on Ca3Co2O6, it has been

suggested Ca3CoRhO6 also has a region of glassy behaviour at temperatures well

below TN . Recent work has also suggested Sr3Co2O6 is an isostructural compound

to Ca3Co2O6, and this material also exhibits stepped magnetisation behaviour as

a function of applied magnetic field which shows remarkable agreement with that

observed in Ca3Co2O6 [159]. It is likely the mechanism for this behaviour is the

similar in both materials, and further investigation is required in this area.

The presence of charge, orbital and spin state degrees of freedom in the cobal-

tates means they often display complex phases diagrams containing several magnetic

phases. Y1−xSrxCoO3−δ and Ca3Co2O6 are good examples of this, with oxygen va-

cancy and orbital ordering in Y1−xSrxCoO3−δ leading to a complex ferrimagnetic

state and geometrical frustration in Ca3Co2O6 leading to unusual time dependent

magnetic behaviour. In order to further our understanding of the magnetic order in

Y1−xSrxCoO3−δ the crystal structure in the low-temperature state now needs to be

solved so that a more accurate magnetic structure can be obtained. Further research
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is also needed into the nature of the magnetic transition at 280 K to acquire a more

complete understanding of the magnetic behaviour of this material.

Following the discovery of a time dependent magnetic transition in poly-

crystalline samples of Ca3Co2O6 it desirable to carry out similar measurements

of single crystals of Ca3Co2O6 to understand this behaviour in more detail. It is

hoped that such measurements will establish a comprehensive magnetic phase dia-

gram for this compound. Finally, the discovery of a magnetic order-order transition

in Ca3Co2O6 is likely to lead to researchers searching for similar behaviour in other

low-dimensional materials.
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Appendix A

Refined Wyckoff positions of

the Y0.15Sr0.85CoO3−δ powders

Tables A.1, A.2 and A.3 give details of the refined crystal structures of the AD/OD,

AD/OO and AO/OO forms of Y0.15Sr0.85CoO3−δ. They are based on the structural

models of a simple perovskite, brownmillerite [85] and the oxygen vacancy ordered

form of Y1−xSrxCoO3−δ [83] for the AD/OD, AD/OO and AO/OO compounds

respectively.

Atom Site x y z B Occ.

Sr1 1a 0 0 0 0.5(2) 0.85

Y1 1a 0 0 0 0.5(2) 0.15

Co1 1b 0.5 0.5 0.5 0.5(2) 1.0

O1 3c 0.5 0 0.5 0.5(2) 0.9(1)

Table A.1: Refined struc-
tural parameters for AD/OD
Y0.15Sr0.85CoO3−δ powder in
space group Pm3̄m.

Atom Site x y z B Occ.

Sr1 8c 0.1099(7) 0.013(6) 0.53(6) 0.7(3) 0.85

Y1 8c 0.1099(7) 0.013(6) 0.53(6) 0.7(3) 0.15

Co1 4a 0 0 0 0.7(3) 1.0

Co2 4b 0.25 0.910(4) -0.01(4) 0.7(3) 1.0

O1 8c 0.994(1) 0.25(1) 0.27(5) 0.7(3) 1.0

O2 8c 0.1416(6) 0.032(6) 0.04(7) 0.7(3) 1.0

O3 4b 0.25 0.88(2) 0.64(5) 0.7(3) 0.5

Table A.2: Re-
fined structural
parameters
for AD/OO
Y0.15Sr0.85CoO3−δ

powder in space
group Ima2.
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Atom Site x y z B Occ.

Sr1 4e 0 0 0.879(1) 1.735(6) 0.85
Y1 4e 0 0 0.879(1) 1.735(6) 0.15
Sr2 8g 0 0.5 0.868(1) 1.023(6) 1.0
Sr3 4e 0 0 0.348(1) 0.420(6) 1.0
Co1 8h 0.748(2) 0.748(2) 0 3(1) 1.0
Co2 8f 0.25 0.25 0.25 1(1) 1.0
O1 16n 0 0.231(1) 0.2414(7) 1.9(2) 1.0
O2 16m 0.2842(7) 0.2842(7) 0.1119(4) 1.9(2) 1.0
O3 8i 0 0.724(2) 0 1.9(2) 1.0
O4 8j 0.42(2) 0.5 0 1.9(2) 0.09(1)

Table A.3: Refined structural parameters for AO/OO Y0.15Sr0.85CoO3−δ powder in
space group I4/mmm.
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