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Structure 
The rhombohedral RFe2O4-δ (R = 

Lu, Yb, Y, Tm, Ho and Er) 

system:  

 

• triangular Fe bilayers 

separated by Lu monolayers. 

 

• Average valance Fe2.5+                     

Fe2+/Fe3+ CO         

 

(a) Refined monoclinic 

crystal structure C2/m of 

charge ordered LFO. The 

ferrimagnetic high-field 

spin order and Fe3+/2+ 

charge order is 

represented by arrows 

and different colors 

respectively [3]. 

Multiferroic’s 

Crystal Growth 
Recent studies on LFO report large 

differences in crystal quality based on 

oxygen stoichiometry [5]. A systematic 

study is needed:  
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Mössbauer Spectroscopy 

Mossbauer spectroscopy 

was carried out using a 
57Co source.  

Preliminary SCXR data of YbFO. 

• Magnetic transition similar 

to that seen in LFO but 

shifted to 246 K.  

 

• Transitons at 218 K, 145 K 

and low temperatures 

require more detailed 

investigation.  

Charge order transition 

similar to that seen in the 

specific heat data of LFO 

with slightly lower 

temperature. 

 

Very broad ferrimagnetic 

transition at 202 K, no 

evidence of the previously 

reported transition at 175 K 

[6]. 

Smeared out magnetic 

transition and only a 

small peak at the CO 

transition. 

which allow ferroelectricity through 

charge order (CO), with particular 

interest in  LuFe2O4-δ  (LFO) since the 

discovery of interesting magnetic and 

electrical characteristics .  
The specific CO configuration in the bilayers was initially thought to 

produce a ferroelectric polarization due to an imbalance of Fe2+ and 

Fe3+ in the two layers of the bilayer [4]. However our recent 

investigations indicate that the CO configuration is LFO  is actually 

non-polar [3]. 
 

YbFe2O4 crystal  
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LuFe2O4 crystal  

Two sharp transitions, much 

more defined than that of the 

(1:3) crystal. In particular the 

onset of CO at TCO=317 K, 

which correlates nicely with 

the SCXR data. 

Single crystal x-ray data 

(SCXR)         no 3D charge 

order, only diffuse super 

structure lines along the 

(1/3 1/3 l). 

Specific Heat  

Magnetometry  

SCXR reveals 3D CO 

superstructure at 90 K up 

to 300 K. At T=350 K the 

CO is destroyed and only 

weak diffuse lines are left. 

YbFO Mössbauer LFO Mössbauer 

[7] 

YbFO Mössbauer data reveals similar Fe2+ 

and Fe3+ spliting between 250 K and 310 K 

as the LFO data [7].         

[2] 

CDW or will better stoichiometric 

crystals show similar  3D CO 

found in LuFe2O4-δ ?  

complex coupling between electricity 

and magnetism (Magnetoelectric 

coupling) where a system can 

become polarized by a magnetic field 

and vice versa.  

This has led to the investigations of 

other members of the RFe2O4 series 

(R=rare earth) 
 

Off  stoichiometric crystals without 

long range magnetic order present 

broad transitions compared to sharp 

transitions of near stoichiometric 

crystals. 

 

Crystal growth of LFO and YbFe2O4-δ 

(YbFO) via optical floating zone 

method using gas ratios of 

CO/CO2=1:3 and CO/CO2=1:5 to 

tune O-stoichiometry and study 

property changes. 
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• Mössbauer analysis of YbFO- peak fitting. 

• Neutron scattering experiments to uncover origins of muliple transiton points 

showin in magnetization YbFO data. 

• Refine YbFO SCXR data at low and higher temperatures measured.  

• Determine true oxygen content in both types of LFO crystals and YbFO (1:3). 

• Grow YbFO in CO/CO2  = 1:3.5 to view stoichiometric changes. 
 

Outlook 

CO/CO2=1:5 

Hearmon et al. [8] 

describes charge ordering 

as incommensurate 

charge density waves  

(CDW). 
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From LFO crystal growth- (1:5) 

gas ratio produced better 

stoichiometric crystals. 

 

 

YbFO single phase powder 

synthesized in (1:3). 

 

 

 

YbFO crystals grown in (1:5). 

 

 

Powder x-ray confirmed single 

phase YbFO decomposed into 4 

different phases: 

 

 

 

 

 

 

 

• YbFe2O4 

• YbFeO3 

• Yb2Fe3O7 

• Yb3Fe5O12 
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Sharp magnetic transition at 

TN= 235 K. Indication of 

further transition at 175 K on 

cooling in good agreement 

with Christianson et al. [6]. 
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