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A window to new physics measurements: 
Photon scattering at the LHC
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The Standard Model: A success story
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The Standard Model: Free parameters

Everythin
g

19 free parameters

● particle masses

● CKM mixing angle 
(mass and electroweak 
eigenstates of quarks)

● Gauge couplings
(strength of forces)

● Symmetry properties 
of QCD

● Parameters of 
electroweak symmetry 
breaking (Higgs mass and 
vaccum expection value)
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The Standard Model: Extremely predictive

Once parameters are known, 
everything else is “fixed”

Extremely precise predictions 
allow for consistency tests of the SM
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radiative corrections

The Standard Model's biggest triumph

 

 1961 Glashow: Unification of electromagnetic and weak force
 1964 Brout, Englert, Guralnik, Hagen, Higgs: Higgs mechanism 
 1967 Weinberg, Salam: Mechanism of electroweak symmetry breaking

 Even before the direct discovery, indirect constraints on 
Higgs mass through connections with W and top

Feynman diagrams: 
graphical representations of integrals 
→ result: numerical prediction of probability of process
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Indirect determination of Higgs boson mass 
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>Apart from 19 free parameters: All interactions and 
other parameters within the Standard Model of 
particle physics are fixed

>Measuring any SM process is a stringent test of our 
understanding of nature – especially if it’s for the first 
time
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Using protons….

Airport 

CERN site 

Jura 

Geneva 

High energy proton-proton collisions 
center-of-mass energy of √s = 7, 8 and 13 TeV

Data collected:
More than 140 fb-1 at 13 TeV

4.6 fb-1

46.9 fb-1

35.9 fb-1

20.3 fb-1

3.7 fb-1

60.6 fb-1

 …. and other collisions 
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Mechanisms for photon collisions at the LHC

“resolved” proton: It breaks up, 
event looks similar to normal 
pp collision

“intact” proton: It continues to travel in the 
direction of the beam – empty event (here: 
Pb Pb → γγ, even more empty, no pileup)
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γγ → WW production at the LHC

elastic (EE)  semi-dissociative (SD)         double-dissociative (DD)
no particles other than
W decay products

Second 
scattering:
“survival factor”
(phenological)

Reduces “visible” 
cross-section of 
elastic production
→ additional 
particles 
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γγ → WW production at the LHC

elastic (EE)  semi-dissociative (SD)         double-dissociative (DD)
no particles other than
W decay products

Second 
scattering:
“survival factor”
(phenological)

Reduces “visible” 
cross-section of 
elastic production
→ additional 
particles 

>No particles (or tracks) 
associated with the primary 
interaction vertex
→ Track reconstruction
→ Vertex definition
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The ATLAS inner detector

  )

 Accurately reconstructing as many charged-particle tracks as possible is key!
 Innermost tracking layer at r = 33.5 mm (pixel size: 50 × 250 μm2)

Intrinsic spacial resolution: 10 × 75 μm2

 (IBL missing)

1 hit in 2 
innermost 
layers

9 hits in SCT

11 hits in SCT

η = 1.65 
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Track reconstruction

Track parameters:
ϕ, θ, q/p, d0, z0

d0z

0

pseudo-rapidity η
charge
transverse momentum 

 PT > 500 MeV

 |η| < 2.5

 |d
0
|<1mm

 |z
0
|<1mm 

Secondary particles
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Tracking performance

 Track efficiency ~75-80%

 Tracks are the largest consumer
of CPU and disk space in ATLAS 
→ only tracks with pT > 500 MeV
are available for analysis

 Lower pT → worse resolution 
(multiple scattering)
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Vertex reconstruction

 ATLAS standard is to choose vertex with the largest ∑p2
T
 as primary 

 Not optimal for photon-induced processes, here leptons are used to 
reconstruct the interaction vertex:

(sin2θ parametrizes uncertainty
on measured z position) 

 This definition is more efficient
and unbiased* by close-by 
pileup tracks

*backup
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Event selection

>Modeling of pileup (random interactions close to vertex)

>Modeling of underlying event of backgrounds 

>Modeling of the signal (“survival factor”)

Underlying event
(particle from 
fragmentation)

 leptons Pile-upPile-up

vertex

  exactly one electron and 
muon with opposite electric 
charge

  p
T
 (ll) > 30 GeV, 

m(ll) > 20 GeV

  no tracks associated with  
primary interaction vertex
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γγ → WW production at the LHC
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Pile-up in the context of the measurement 

>Pile-up is the number of pp interactions per bunch crossing 

>Longitudinal width of the beam spot determines density of 
additional pp interaction along z 

>Corrected for using reweighting approach
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Correcting number of tracks per pile-up vertex

 Same procedure in data and MC: Sample number of tracks in 
random windows along z (away from lepton vertex)

 Weight with beam spot distribution
 Divide data/MC → final correction!
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Pile-up correction at work

*backup

 Full set of correction gives 
good agreement between
data and MC 

 Efficiency to select 0-tracks in 
presence of pile-up is on 
average 52.6% for Run 2 
(exclusive efficiency)

 Large source of efficiency loss
→ worsens with number of 
interactions*
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Modelling of underlying event

Hard scatter:
WW → eνμν 

Underlying event: Interactions of proton 
remnants, fragmentations

 qq/gg → WW has the same final 
state as γγ →WW apart from 
underlying event  

 Problems with modelling of charge 
particle (track) multiplicity at low 
momentum are well known*  
→ need to apply in-situ 
correction to model WW 
background correctly 

 Use Z boson and unfold charged 
particle distribution as function of:
– particle multiplicity
– p

T
(ll) (measure for p

T
([di]boson) ) 

*backup*backup
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Modelling of underlying event

 Correction can be up to a factor of 5!
→ good agreement with data afterwards

 Apply unfolded charged particle 
distribution as function of p

T
(V) to DY

(as function of p
T
(VV) to diboson events)

*backup*backup

 For qq→WW: Good agreement for 1≤n
trk
≤4

but n
trk

=0 has large differences between 

hadronic models

 Use midpoint and envelope for WW 
prediction
(7% syst.)



Kristin Lohwasser | Seminar Warwick|  12.11.2020 |  24

Introduction
 Objectives and motivation
 Methodology
 Team, plan and outcome

Signal Modelling: Why?

elastic (EE)  semi-dissociative (SD)         double-dissociative (DD)
most reliable theory

Second 
scattering:
“survival factor”
(phenological)

Reduces “visible” 
cross-section of 
elastic production
→ additional 
particles 

Fiducial region
16%
                                                   81% 3%

Difficult to model!!
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Signal extraction: Putting it all together

1≤n
trk
≤4n

trk
=0

p
T
 (ll) 

< 30 GeV

p
T
 (ll) 

> 30 GeV

CR2

CR3SR

SRCR3CR2

 Using profile LH fit over 3+1+1 regions 
(1 SR + 3 CR + signal modelling CR)
→ 4 free normalization parameters 
(γγ →WW, γγ →ll, DY, qq→WW) 

 Signal region: γγ →WW (57%), qq→WW (33%)
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Results

 Background-only hypothesis rejected with significance of 8.4 σ (6.7σ exp.)

 First observation of photon-induced WW production (γγ →WW) in 
exclusive phase space (without any associated tracks)

 Uncertainties* dominated by WW modelling and background statistics

 Large range of theoretical models: Uncertainty dominated by data-driven 
scaling or scale uncertainties (SD) and second scattering probability

cross section uncertainty

 σ(meas) 3.13 fb ±0.31 (stat) ±0.28 (syst) fb

σ(EExSF– our 
expectation)

0.65 fb × 3.59  
2.34 fb

±0.15 (exp) ±0.39 (transfer, ll→WW ) fb
±0.27 (total) fb 

σ(pure theory 
prediction)

4.3 fb 
±1.0 (scale) 
±0.12 (syst)
(without second 
scattering)

× 0.65 = 2.8  ±0.8 (total) fb  

× 0.82 = 3.5  ±1.0 (total) fb

*backup
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Take-away message 

> γγ → WW production has been observed

> How to proceed from here?

→ use the measurement to characterize the SM

 → improve the interpretation of the measurement



Kristin Lohwasser | Seminar Warwick|  12.11.2020 |  28

Introduction
 Objectives and motivation
 Methodology
 Team, plan and outcome

Characterise the Standard Model

General extension: describes any new phenomena
suppressed by energy scale Λ(dimension d - 4)

Standard model

Operators: 
Which particles interact?

Coupling strength: 
How strong is the interaction?

d  4 → Standard model
d =  5 → Neutrino masses d  6 → Unknown phenomena

> Effective field theory is a 
general SM extension 

> Allows to identify 
deviations in a systematic 
(and renormalizable) way
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γγ → WW is incredibly sensitive

 At leading order, only diagrams with triple and quartic couplings 
contribute

 Incredibly sensitive to possible EFT operators → but need to 
improve theory prediction and measurement
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A new detector for photon scattering

  The AFP spectrometer installed between 2016 and 2017 at z=200m
  Direct detection of scattered protons that leave the interaction intact

 With ξ = 1 – E
scattered

 / E
beam

with an acceptance of 0.02<ξ<0.1

  Allows to 
reconstruct 
invariant mass of 
events

 Full event 
information 
→ better EFT (and 
other) searches
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Take-away message 

>First Observation of photon-induced WW production

>Reasonable agreement with theory prediction (albeit 
large uncertainties)

>Process can play a crucial role for the constraints on 
new physics as deviations from the Standard Model 
predictions

>Future measurements could use proton taggers
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Backup slides.
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radiative corrections

The Standard Model's biggest triumph

 

 1961 Glashow: Unification of electromagnetic and weak force
 1964 Brout, Englert, Guralnik, Hagen, Higgs: Higgs mechanism 
 1967 Weinberg, Salam: Mechanism of electroweak symmetry breaking
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Vertex reconstruction – 0 tracks
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Selected events
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Efficiency
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Efficiency
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Charge particle multiplicity measurement

Derive normalisation
for photon-induced processes
from high-mass side band
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Charge particle multiplicity measurement



Kristin Lohwasser | Seminar Warwick|  12.11.2020 |  40

Introduction
 Objectives and motivation
 Methodology
 Team, plan and outcome

Selected events
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Uncertainties
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What if we don’t reach the resonance? Effective field theory

– narrow scope!

Search for 
phenomena at 
higher energies

 Generic search for deviations 
in distributions sensitive to 
new physics effects

 Could be sensitive to much 
higher energies scales 
compared to resonance 
searches

 Detects also new physics 
without resonances or very 
broad resonancesRenormalisable 

SM Lagrangian

SM process

EFT regime
Higher-Dim 
Operators

Resonance 
produced 
on-shell
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Cross-section, Luminosity and Integrated Luminosity

u

d

Proton

Proton

Z gγ

Cross section: measure of probability of 
process to happen (strength of interaction)
(unit: area)

Luminosity: How many colliding particles cross 
per unit area and second (how much could 
happen?) (unit: 1/(area×time))

Integrated Luminosity: size of data set 
(unit: 1/area)
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