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DUNE’s science program

• DUNE aims to address a number of key questions in particle physics and astrophysics
• Why do we live in a matter dominated Universe?

• What are the dynamics of supernova neutrino bursts?

• Do protons decay?

• A single experiment to explore the three-flavour model of neutrino physics
• CP phase

• Neutrino mass ordering

• Precision mixing parameter measurement



4

The promise of LArTPCs

• Imaging detectors for neutrino experiments 
have undergone substantial evolution since 
MINOS

• Change in scale
• 5.4 kton at MINOS

• 17.5 kton (10 kton fiducial) per module at DUNE

• From shower activity as a monolithic blob to 
mm precision energy deposition
• Separate electron and photon showers

B. Abi et al 2020 JINST 15 P12004

J. Evans 2013 arXiv:1307.0721

MINOS

https://iopscience.iop.org/article/10.1088/1748-0221/15/12/P12004
https://arxiv.org/pdf/1307.0721.pdf
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The challenge of LArTPCs

• Increased scale and detail provides 
opportunities, but also challenges

• Change in scale
• 17.5kton per module at DUNE

• Cryostat 66m x 19m x 18m (LxWxH)

• No 3D readout, 3x 2D images

• Change in resolution
• mm precision energy deposition

• Far more demanding of reconstruction software
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LArTPC operation

• Fully active interaction medium

• Charged particles ionize argon atoms to 
produce drift electrons (and scintillation 
light) along the particle trajectory

• Electrons drift in the electric field (500 V/cm 
at DUNE)

• Three anode wire planes record the 
deposited charge using wires of different 
orientations

• Result is three different 2D projections of 
the charged particles in the interaction
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Horizontal Drift Anode Plane Assembly (APA)

• A single frame holds three parallel planes of 
wires with different orientations

• Two induction planes (U and V) at 35.7⁰ and 
a collection plane (W) with vertical wires

• Wire pitch is 4.67mm for induction planes 
and 4.79mm for collection plane

• 2560 readout channels per APA, 150 APAs 
per far detector module, with production 
lead by the UK

ProtoDUNE-SP APA. Credit: J.M. Ordan
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Vertical Drift APA

• A single frame holds upto 6 charge readout planes 
(CRP), each comprising three parallel planes of 
perforated printed circuit boards (PCB)

• 80 CRPs at top and bottom of detector, each measuring 
3.4m x 3m

• Baseline strip orientation of induction planes at ±30⁰, 
collection plane at 90⁰ to beam direction

Side view of PCB stack Anode strip pattern

O. Lantwin 2022 arXiv:2211.11339

https://arxiv.org/abs/2211.11339
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Reconstruction chain

• Pandora pattern recognition sits in a chain of reconstruction steps
• The raw detector signals are processed, and discrete hits extracted

• The discrete hits are Pandora’s inputs

• Pandora then clusters these hits, constructing particle hierarchies

• These particle hierarchies form the inputs to subsequent high-level reconstruction tasks

Data prep
and signal 
processing

Hit finding
Pattern 

recognition
Particle fits: 

Tracks, Showers
Calorimetric 

reconstruction
Particle 

identification

Pandora 
lives here
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Reconstruction chain – data preparation

• Data preparation converts the Analog-to-Digital Converter (ADC) waveform (ADC 
count per tick - 6000 ticks per 3 ms readout in ProtoDUNE-SP) to a charge waveform
• Evaluate pedestals – per channel voltages must be kept in device range, so average ADC count 

absent a signal varies per channel. Fit a Gaussian to the ADC count across 6000 ticks, mean is 
pedestal, RMS is initial noise estimate.

• Charge calibration – multiply the pedestal subtracted ADC count by gain determined from charge 
calibration (injection of a known charge in short pulses)

• Noise suppression from, for example, low-voltage power supply

Pedestal subtracted and calibrated
https://arxiv.org/abs/2007.06722v3

Noise removed

https://arxiv.org/abs/2007.06722v3
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Reconstruction chain – signal processing

• Induced current on a wire contains non-negligible 
contributions from moving charges upto 10cm in 
front of the wire plane and 10 wires away

• 2D deconvolution removes both spatial and time 
components of the field response to extract the 
ionization electron distribution

Drift electron paths to collection plane (yellow) and 
equi-potentials about wire of interest (green)
https://arxiv.org/abs/2007.06722v3

https://arxiv.org/abs/2007.06722v3
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Reconstruction chain – hit finding

• Given the deconvolved waveform on a single wire look to find the peaks in that 
waveform

• Fitted Gaussians define the arrival time and width of discrete hits

• Peak separation is not always so clean
• Particle trajectories parallel to the wire plane can leave very wide charge deposits

• These hits form the inputs to Pandora’s pattern recognition

https://arxiv.org/abs/2007.06722v3

https://arxiv.org/abs/2007.06722v3
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Pattern recognition - inputs

• 2D hits from each wire/strip plane
• Drift coordinate, x, is common to all planes

• PID indicated here for reference only

• Vertex is quite clear here, but downstream reconstruction remains 
challenging

• Colinear muon and pi minus

• Little separation between pi plus and one downstream photon

• Small opening angle between two high energy photons from pi zero decay

• For a broader discussion of Pandora’s pattern recognition see 
Maria Brigida’s EPP seminar
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DUNE preliminary

https://warwick.ac.uk/fac/sci/physics/research/epp/events/seminars/Pandora_Brunetti.pdf
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Vertex finding
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Vertex finding

• A critical component of LArTPC reconstruction is identification of the neutrino 
interaction vertex

• Downstream reconstruction algorithms rely on vertex location to make clustering 
decisions and determine the particle flow

• True
• Reco

Incorrect vertex placement
leads to mis-clustering and
incorrect particle flow

Correct vertex placement
aids clustering and improves
particle flow

DUNE preliminary DUNE preliminary
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Machine learning

• LArTPCs are imaging detectors and vertex identification is a pattern recognition task 
at which humans excel

• Advances in convolutional neural networks in the past 7 years have seen machines 
begin to outperform humans in many pattern recognition tasks and so CNNs look 
like a natural choice to tackle the problem

• There are complications, however:
• DUNE’s neutrino interaction topologies are varied and complex

• Readout is 3x 2D images, so overlapping projected trajectories are common

• At “full resolution” DUNE images are often far larger than typical input images sizes for CNNs
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Humans versus machines

• A couple of events where precision vertexing is not so simple, even for humans

DUNE preliminary DUNE preliminary
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Humans versus machines

• A couple of events where precision vertexing is not so simple, even for humans

NC Res π- NC Res π0

DUNE preliminary DUNE preliminary
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Truth definition

• How should we define the truth?

• CNNs are excellent for classification, but tend not to 
be great for regression (e.g. Fischer et al 2015)
• Getting a CNN to learn two continuous variables from highly 

varied input hits is unlikely to succeed

• Can reframe the problem in the form of semantic 
segmentation

ҧ𝜈μ+ Ar→ μ+ + 3π0

DUNE preliminary

https://doi.org/10.1007/978-3-319-24947-6_30
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Truth definition

• Each hit in an image can be related to the interaction 
vertex in terms of its distance to it
• And direction, of course, but we’ll ignore that for now

• Encode this distance information in the form of 19 
classes, each spanning a particular range of distances

• This turns the vertex finding procedure into a 
semantic segmentation problem, suitable for a U-Net
• Every hit contributes directly to the loss function

• Hits are spatially correlated

• At inference time the network attempts to determine 
the appropriate distance class for every hit

• But note this doesn’t give us a vertex location…
ҧ𝜈μ+ Ar→ μ+ + 3π0
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Network architecture

• U-Net concept introduced in 2015 for biomedical 
image segmentation (arXiv:1505.04597)

• The name comes from the conceptual structure of 
the network

• Attempt to classify every pixel in an image

MaxPool

DropOut TConvBlock

ConvBlockView

ConvBlock TConvBlock .

Conv2D
Cx3x3

BatchNorm

ReLU

Conv2D
Cx3x3

BatchNorm

Input

BatchNorm

ReLU

TConv2D
Cx3x3

Input Skip

cat

ConvBlock

DropOut

ConvBlock Sigmoid

x4 x4

arXiv:1505.04597
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Performance considerations

• Semantic segmentation is memory intensive

• Instead of a single classification output for an image, there is a classification output 
for each pixel

• Strong constraint on input image size and batch size

• 256 x 256 is about the limit with a training batch size of 32

• Single pixel errors represent several centimetres for events spanning workspace 
geometry
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Network training

• ~93,000 event training sample using horizontal drift far 
detector 1x2x6 APA geometry
• 75:25 split between training and validation

arXiv:2002.03010 1

2

6

DUNE preliminary • Two pass approach
• Pixels often exceed ~0.5 cm wire pitch

• First pass region finding with 256x256 
pixel input containing whole event

• Second pass comprises 128x128 pixel 
input containing 64 cm x 64 cm region

Pass 1

Pass 2

https://arxiv.org/abs/2002.03010
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Example event

• As noted previously, the network does not return the vertex location

• Instead, the spatial relationship between hits and the vertex is learned

• An example pass 2 image is presented here

• The network is clearly able to
learn spatial relationships
between the hits and the
vertex

Truth Classification

DUNE preliminary DUNE preliminary
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Vertex extraction

Image from a single wire plane Heat map from one classified pixel

• We have a set of distance classes for each occupied pixel

• Draw a ring, centred on the hit with radii corresponding to the distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Vertex could be anywhere within the shaded region of one ring

DUNE preliminary DUNE preliminary
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Vertex extraction

Heat map from one classified pixel Heat map from two classified pixels

• We have a set of distance classes for each occupied pixel

• Draw a ring, centred on the hit with radii corresponding to the distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Many rings for a heat map, where high weight indicates likely location

DUNE preliminary DUNE preliminary
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Vertex extraction

Heat map from two classified pixels Heat map from three classified pixels

• We have a set of distance classes for each occupied pixel

• Draw a ring, centred on the hit with radii corresponding to the distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Many rings for a heat map, where high weight indicates likely location

DUNE preliminary DUNE preliminary
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Vertex extraction

Heat map from three classified pixels Heat map from all classified pixels

• We have a set of distance classes for each occupied pixel

• Draw a ring, centred on the hit with radii corresponding to the distance bounds

• Weight the pixels in the ring inversely proportional to its area

• Many rings for a heat map, where high weight indicates likely location

DUNE preliminary DUNE preliminary
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Training the first pass

• First pass network appears to train well
• Smooth loss metric and accuracy evolution, no evidence of over-fitting

• ~90% classification accuracy across all hits

DUNE preliminary DUNE preliminary DUNE preliminary

DUNE preliminary DUNE preliminary DUNE preliminary
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Training the second pass

• 64 cm x 64 cm event region, allowing for 0.5 cm resolution

• Smaller images at 128 x 128 pixels

• If the first pass vertex is off by much more than 32 cm, pass two won’t help

• To define the training dataset I take a perturbed version of the true vertex
• Gaussian (0 cm, 15 cm) perturbation in X and Z

• Treat this as the centre of the image (check hit containment and try again if no hits)

• First pass will be imperfect - we don’t want the network to learn to pick the centre all the time

• I don’t like this approach, alternatives:
• Smaller, uniform perturbation of truth, using hit distribution to frame event similarly to pass one

• Use unperturbed pass one vertex result, using hit distribution to frame event similarly to pass one
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Training the second pass

• Second pass network appears to train well
• Smooth loss metric and accuracy evolution (a couple of sharp changes in W), no evidence of over-fitting

• ~80% classification accuracy across all hits

DUNE preliminary DUNE preliminary DUNE preliminary

DUNE preliminary DUNE preliminary DUNE preliminary
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Investigating network activations

• Distribution of activations per down-sampling 
layer mostly reasonable
• Reasonably broad spread of activations

• No sharp discontinuities as training proceeds

• First layer has too many activations near zero

DUNE preliminary
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Exploring the loss landscape

• Loss landscape looks to visualize the mean loss over many inputs with respect to 
different parameter values
• Map the ~2.2M-dimensional space onto two parameters to visualize

• Use the method developed by Li et al (arXiv:1712.09913)

• Generate two random Gaussian direction vectors (N = 2.2M), δ and η

• Pick parameters α and β on a grid [-1, 1] and take a step αδ + βη away from the training minimum

• Compute the mean loss over 1024 events in validation set for the model with these parameters

• Aim for smooth loss landscape for efficient, effective learning

• Also consider distribution of trained weights
• Aim for many small weights

• Better generalisation than relying on fewer substantial weights

https://arxiv.org/abs/1712.09913
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Exploring the loss landscape

• The loss landscape can help identify problems with 
architecture or hyperparameters

• Multiple local minima indicate either poorly chosen 
hyperparameters (e.g. learning rate) or an architecture 
not conducive to smooth weight evolution

• Here the loss landscape is quite smooth

• Few large weights

Loss landscape at the end of 
training

Visualisation method from
[arXiv:1712.09913]

DUNE preliminary

DUNE preliminary

DUNE preliminary

https://arxiv.org/abs/1712.09913
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Improving network behaviour

• Most layers appear to have reasonable distributions of activations

• But the network doesn’t get off to a good start

• Most activations are near zero

• Potential solutions:
• Weight initialisation – activations can collapse if initial distribution of weights leads to vanishing 

gradients

• Current architecture only uses ReLU activations within convolution blocks
• Add them after blocks as well

• Current architecture is a U-Net, not a U-ResNet
• In principle, easier to learn residuals between input and

output rather than full mapping from input to output
in convolutional layers

DUNE preliminary
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First pass performance

• Tested on an independent test sample
• 28,611 events passing fiducial volume cut

• Approximately even split of νμ and νe events

• Typically isolates region well

• Narrow dx – all three views have direct measure

• Modest downstream bias

• Very long tail

< 1 cm:   40%
< 2 cm:   67%
< 5 cm:   86%
< 10 cm: 91%

DUNE preliminary DUNE preliminary

DUNE preliminary
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Second pass performance

• Tested on an independent test sample
• 28,611 events passing fiducial volume cut

• Approximately even split of νμ and νe events

• Typically sub 1cm resolution

• Little bias

• Long tail remains as expected

< 1 cm:   78%
< 2 cm:   86%
< 5 cm:   90%
< 10 cm: 92%

DUNE preliminary DUNE preliminary

DUNE preliminary



38

Example events

True
Reco

NC Res π-

NC Res π0

• Correct NC Res π- vertex
• Likely guided by learning beam direction

• What if this had been an atmospheric neutrino?

• Incorrect NC Res π0 vertex
• Understandable choice given particle multiplicity

• Perhaps a human weights the π0 decay photons

DUNE preliminaryDUNE preliminary
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Ongoing work 
and future plans
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Per pixel regression

• Use of classes to represent hit distances due to feasibility 
concerns for learning continuous distances

• Current distance thresholds are somewhat arbitrary

• Worth checking if the network can learn continuous 
distances rather than discrete classes

• This change does require some care in handling loss 
functions

DUNE preliminary
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Network inference behaviour

• Key aspect of the per-pixel regression is the distribution of deltas between inferred 
distances and true distances

• Network frequently finds a close correspondence between inference and truth

• However, when looking at given true distance bins (e.g. 0.06-0.07) there is generally a 
bias in the inferred distance, the uncertainty can become quite large and some 
distributions are rather skewed. More work needed.

reco - true reco - true

Pass 1 – W view

DUNE preliminary

DUNE preliminary DUNE preliminary
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Alternative measures of distance

Image from a single wire plane Heat map from one classified pixel

• Existing implementation is radial distance

• Could opt for perpendicular distance in drift coordinate and wire coordinates

• Ring drawing algorithm becomes a band drawing algorithm
• Potential for simultaneous determination of the drift coordinate in all three views

• Simple, fast implementation including some directional information
DUNE preliminary DUNE preliminary
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Secondary vertices

• If the network can learn from a more complex truth landscape the 
idea can be extended to secondary vertices

• Individual hits could now indicate proximity to the closest vertex

• Produce a graph of links between vertices to aid clustering 
decisions during downstream reconstruction
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3D hits

• Can we infer 3D hit locations early in reconstruction?
• Vertex finding approach could be adapted from pixels to 

voxels

• Also opens possibility of graph neural network-based 
solutions

• Use the common drift-coordinate to determine 
which hits in each view could plausibly come from 
the same 3D hit

• Combinatorics are challenging, but tractable

Hit of interest 
in U

Candidate 
matches in V

Expanded set of 
potential

relationships in 
U, V and W

DUNE preliminary

DUNE preliminary

z

y
x
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Conclusion

• Automated vertex finding in multi-kiloton LArTPCs is challenging

• Deep learning can yield accurate and precise reconstructed vertices across many 
events

• A significant long tail nonetheless remains

• Various avenues to improving performance are being explored
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Backup
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Ring-drawing efficiency

• Events can contain a relatively large number of hits (constrained by image size)

• Rings have to be drawn for each hit (or at least a sufficiently large subset)

• This process needs to be efficient or post-processing will require more computation 
than the network inference

• Bresenham mid-point circle algorithm provides efficient circle drawing needing only 
integer operations to determine which pixel to fill next as you move around an 
octant and then mirror to the remaining octants
• Performance benefits vary by CPU architecture, but ~1.5-2x speed up for integer versus float in 

modern architectures for add, sub, mul

• Note, double precision typically as fast as single precision for add, sub, mul and div in modern 
architectures

• Caveat: we need rings, not single pixel wide circles, and need to ensure that each 
pixel within the ring is filled once and only once, but Bresenham can be extended to 
achieve this while retaining integer-only arithmetic 
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Sparse implementation

• Our images are predominantly empty space

• Dense convolutions spend a lot of time multiplying by zero

• Non-hit regions contribute to loss function 

• Sparse implementations exist to allow convolutions to be 
performed on sparse tensors (e..g MinkowskiEngine)

• Principal issue at the moment is the need to run in C++ on a CPU 
in the DUNE reconstruction workflow
• Requires conversion of networks to TorchScript

• Networks with non-standard tensor inputs have problems with this 
conversion

• Future workflow likely to offer GPU as a service 


