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40MHZ Proton

7/8/13 TeV

LAST MISSING PIECE
2012: HIGGS DISCOVERED AT THE LHC!

Proton
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Experimental:
Dark matter/dark energy

Not in SM!

Neutrinos in SM,
 masses?…

Anomalies: Muon g-2, LHCb 
lepton flavour universality? 

https://www.nytimes.com/2021/04/07/science/particle-physics-muon-fermilab-brookhaven.html
https://home.cern/news/news/physics/intriguing-new-result-lhcb-experiment-cern
https://home.cern/news/news/physics/intriguing-new-result-lhcb-experiment-cern
https://home.cern/news/news/physics/intriguing-new-result-lhcb-experiment-cern
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Many of these models  
of new BSM physics  
were proposed to  
address some of the  
questions that are left  
unanswered by the SM : 
 
E.g. ,the gauge hierarchy 
problem or the generation 
& flavor problems 
 
..or simply to explain any  
data not consistent w/  
the SM such as the top  
FB asymmetry,  a too  
large rate for hoJJ or a  
130 GeV  ‘DM’  J-line  

Stop pairs Higgsinos

DarkMatter
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Can we do better at the LHC?

PERSPECTIVE | FOCUS NATURE PHYSICS

the Higgs boson. If coupled to the Higgs boson, additional scalars 
could feature in solutions to the so-called hierarchy problem, which 
refers to the puzzle of why the energy scale of the weak interactions 
is so much smaller than that of gravity. New scalar particles have 
also been discussed in relation to DM.

Axions and axion-like particles. Axions and axion-like particles are 
(pseudo-)scalar particles. In contrast to the new scalars discussed 
above, they are special in the sense that they are thought to arise as 
remnants of an underlying symmetry. For this reason, axions and 
axion-like particles are expected to be light and their interactions 
strongly suppressed. Axions have been proposed to explain the par-
ity (mirror) symmetry of the strong force, demonstrated to a high 
precision by the observed null electric dipole moment (EDM) of the 
neutron. Axion-like particles are also good portals to DM and are 
even promising DM candidates themselves.

While these benchmark models are not an exhaustive list of DM 
and dark sector models, they provide a useful way to compare the 
sensitivities of different experiments and see how they complement 
each other as shown in Fig. 1a. They also provide a map of promis-
ing target areas suggested by the open problems of particle physics 
and the current hints of experimental anomalies.

In addition to the need for new physics, it has to be recognized 
that even the SM is not yet fully understood. In particular the the-
ory of the strong interactions, quantum chromodynamics (QCD), 
requires a better description of its behaviour at high temperatures 
and densities, notably in the phase transition between bound and 
free quarks. Here, experiments discussed within the PBC programme 
explore unique kinematic regimes available at the CERN complex, 
complementary to other facilities worldwide as illustrated in Fig. 1b.

Within QCD, the dynamics of real or virtual multi-quark sys-
tems, so-called hadrons, is difficult to compute precisely with per-
turbative methods, because the coupling of the strong force increases 
with distance. The interpretation of experiments relying on hadron 
beams, such as the LHC, or of observables that are sensitive to vir-
tual quark exchanges, such as B-hadron decays or the anomalous 
magnetic moment of the muon defined via the g-factor as aμ =  
(g − 2)μ/2, is therefore often limited by QCD theoretical uncertain-
ties. Despite the rapid progress of non-perturbative computations 
(for example, lattice, renormalization group or Schwinger–Dyson) 
of QCD-related observables (see for example, ref. 8 for (g − 2)μ), 
direct experimental measurements of the hadronic structure and 
of hadronic virtual processes will remain crucial in the foreseeable 
future to overcome these limitations.
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Fig. 1 | The potential parameter space covered by PBC projects in BSM searches and QCD studies. a, Schematic overview of the BSM areas targeted by 
different PBC projects as function of the mass of the lightest BSM particle mx and its coupling strength to the SM g/Mmediator. The Planck scale corresponds 
to the coupling strength of the gravitational force. The shaded area corresponds to domains that have already been probed (for details and caveats see 
refs. 1,6). Precision experiments (right), beam dump experiments (middle) and low-energy experiments (left) are compared to the reach of the LHC (blue 
region). The proposed experiments for long-lived particle searches are included for comparison to beam dump experiments. See main text and Table 
1 for details of the experiments. b, Conjectured QCD phase structure as function of the baryonic potential μB, roughly quantifying the excess of quarks 
over antiquarks, and the temperature T. The numbers on these axes indicate the typical scales of interest for μB and T. At high temperature, quarks and 
gluons are deconfined from the usual hadronic matter made of quark bound states into a quark–gluon plasma. The region of the onset of deconfinement 
is labelled OD. The expected critical point (CP) delimitates a region of first order phase transition on the right (red band) from a second order phase 
transition on the left. At low temperature, increasing the density induces a phase transition from a gas of hadrons into a liquid of hadrons (short black 
line, ending in another critical point). The situation at high temperature is less clear than at low temperature and subject to theoretical and experimental 
investigations. The achievable values of μB and T are determined by the atomic numbers of the beams and targets and by the beam energies. The domains 
covered by the Super Proton Synchrotron (SPS), the final pre-accelerator of the LHC delivering beams to fixed target experiments, and the LHC fixed-target 
heavy-ion experiments (LHC FT) are indicated in dark and light grey, respectively. The reach of the current LHC experiments is illustrated in green. The 
scale at the bottom provides a comparison to the reach of other facilities worldwide, namely the Relativistic Heavy Ion Collider (RHIC) in operation in the 
US, the Nuclotron Based Ion Collider Facility (NICA) and the Heavy Ion Synchrotron (SIS) in construction in Russia and Germany, respectively, and the 
lower energy ion facilities in operation in Russia (NUCL), Japan (J-PARC) and China (HIAF). Figures adapted with permission from PBC BSM and QCD 
working groups: a, ref. 1; b, ref. 47.

PERSPECTIVE | FOCUS NATURE PHYSICS

NATURE PHYSICS | VOL 16 | APRIL 2020 | 393–401 | www.nature.com/naturephysics394

Unconventional signatures: 
Long lived 

Loop contributions: 
e.g. Lepton flavor violating
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The Fast and Furious 8

Extreme data volume & rate from LHC 
collisions.

M.LIU

Multiple pp collisions in the same beam 
crossing:
LHC: 20-50. HL-LHC: 140-200



4HSTD11, Okinawa   –   M. Garcia-SciveresDec. 12, 2017

Rate

Particles / Hits

LHC HL-LHC

* Store full time sequence of drops until trigger (not collect in a bucket)
* Can quantify rate as memory bits / area / time 

(note: no mention of pixel size)

9

M.LIU

Now: The LHC LHC Run-4

How to be prepared for LHC Run-3/4?

Higher pileup, fine granularity detectors.
Advanced algorithms to maintain/improve the acceptance of (un)conventional 

signatures
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Measure what is measurable 
and make measurable what is not 
so with Artificial Intelligence?
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processing reduces the rate of events to a manageable level to be saved for o�ine processing and is
often referred to triggering. Triggering typically happens in multiple tiers where the first tier (Level-1,
L1) is performed with custom electronics at very low latency (⇠ µs) and the second step (high level
trigger, HLT) is performed on more standard computing resources and has a latency of ⇠ 10� 100 ms.
Finally, o�ine analysis of the saved events passing the HLT can take significantly longer, though, the
o�ine processing time is limited by our computing resources. The latency landscape for various levels
of experimental event processing is illustrated in Fig. 1.

1μs 1ms 1s

LHC L1 Trigger  
(pipelined)

LHC  
High Level Trigger 

LHC/DUNE 
Offline processing 

Figure 1: Latency landscape

In this paper, we do not focus on the L1 triggering requirements and instead consider the gains
from hetergeneous compute resources to improve both our HLT and o�ine processing power.

When considering how best to use new optimized computing resources for physics, we must first
consider the event processing model employed by large physics experiments. An example of the current
compute model is shown in Fig. 2 where event data is processed, often sequentially, across multiple
CPU threads. It is important to note that the basic unit of processing is a single event and performing

Event SetupDatabase

Configuration Parameter 
Sets

Input Source
(data or simulation)

Output 1
Output 2

…
threads

MODULE 2

MODULE 1

MODULE 3

MODULE 4

ML INFER 1

MODULE 5

Event Processing Job

ML INFER 2

MODULE 6

Figure 2: Diagram of CMS computing model (To be updated!)

the same task for multiple events (batching) becomes significantly more complex to manage. The tasks
themselves, denoted in Fig. 2, as a module can be very complex, either with time-consuming physics
based algorithms, or as is becoming more popular, machine learning algorithms. It can be then seen
that the most time-consuming and complex tasks will be the latency bottleneck in event processing.
When considering extremely complex events from the CMS experiment for future upgrades, the time

– 3 –
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Real-time ML… @ Level-1 12

Offline

Offlin
e

FPGAs/ASICs - high 
bandwidth low latency 
specialized compute 

hardware
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hls4ml - Fermilab - 12 September 201912.9.2019  3

What are FPGAs?
Field Programmable Gate Arrays are reprogrammable 
integrated circuits 

Contain many different building blocks (‘resources’) which 
are connected together as you desire 

Originally popular for prototyping ASICs, but now also for 
high performance computing 

‘Computing in space as well as time’ 

FPGA diagram

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/
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Neural network inference

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

activation function multiplication addition
precomputed and 
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

Nmultiplications =
NX

n=2

Ln�1 ⇥ Ln

L1
Ln

LN

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Multiplications
Digital Signal Processing 
DSPs 

Addition
Logic cellsActivation functions

Precomputed, and 
stored in BRAMs 
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NN on FPGAs



M.LIU

14

hls4ml - Fermilab - 12 September 201912.9.2019  11
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       Overview

● AWS F1 instances are machines 
connected directly to a Xilinx 
Virtex 
UltraScale+ FPGA (VU9P)
using PCI-express

● General application development 
on AWS done using SDAccel

Virtex Ultrascale+ VU9P
6800 DSPs

1M LUTs
2M FFs

75 Mb BRAMhls4ml - Fermilab - 12 September 201912.9.2019  11

Neural network inference

input layer

output layer

M hidden layers

N1

NM

layer m

Nm

activation function multiplication addition
precomputed and 
stored in BRAMs DSPs logic cells

xn = gn(Wn,n�1xn�1 + bn)

Nmultiplications =
NX

n=2

Ln�1 ⇥ Ln

L1
Ln

LN

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Multiplications
DSPs 

Addition
Logic cells

Activation functions
Precomputed, and 
stored in BRAMs 

Small network: thousands of connections
Limitation: Number of DSPs

Natural fit for FPGAs… limited resources
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Efficient NN design: quantization
• Quantify the performance of the classifier with the AUC 

• Expected AUC = AUC achieved by 32-bit floating point 
inference of the neural network 
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Fit NN on FPGA: Quantization & Reuse 15
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Low-latency machine learning inference on FPGAs
Javier Duarte1,2, Christian Herwig2, Burt Holzman2, Sergo Jindariani2, Benjamin Kreis2, Mia Liu2, Ryan

Rivera2, Nhan Tran2, Song Han3, Phil Harris3, Dylan Rankin3, Vladimir Loncar4, Jennifer Ngadiuba4,
Maurizio Pierini4, Sioni Summers4, Scott Hauck5, Shih-Chieh Hsu5, Zhenbin Wu6, Edward Kreinar7

1UC San Diego 2Fermilab 3MIT 4CERN 5UW 6UIC 7HawkEye360

Introduction

1 ns 1 μs 1 s1 ms

Compute 
Latency

High-Level 
Trigger

1 kHz 
1 MB/evt

40 MHz
L1 Trigger

100 kHz

Offline

I Machine learning (ML) use case in particle physics: first stage of real-time
data processing and filtering in field programmable gate arrays (FPGAs)

I CERN LHC requirements: high input data rates > 100 TB/s, < 1µs
fixed algorithm latency, constrained FPGA resources

I Compiler based on high-level synthesis (HLS) called hls4ml to rapidly
prototype ML models in FPGAs

Case study

I Task: di↵erentiate showers (or jets) produced in decays of heavy standard
model particles (W and Z bosons and top quarks), from backgrounds
consisting mainly of light quark- (u, d , c , s, b) and gluon-initiated jets

I Fully-connected neural network
(NN) with 16 inputs and 3 hidden
layers (64, 32, 32) to classify 5
categories of jets

I Performance quantified in a
receiver operating characteristic
(ROC) curve of signal e�ciency
versus misidentification rate for
quark, gluon, W boson, Z boson,
and top quark jets

Design
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hls  4  ml

hls4ml

HLS  4  ML

Explore the FPGA design space through
I compression, the three-hidden-layer model with 70% of the parameters

removed using iterative retraining with L1 regularization and
magnitude-based pruning

I quantization, the precision of the inputs, weights, and biases
I parallelization, the number of times a given multiplier is used for a layer

computation, quantified by a reuse factor

With these handles, monitor
I resources: digital signal processors (DSPs), block random access memory

(BRAM), flip-flops (FFs), and lookup tables (LUTs)
I latency: time it takes to compute the full network
I initiation interval (II): time before a new set of inputs can be accepted

Implementation

I First evaluate NN with fixed point precision: <16,6> fixed-point precision
reproduces the ROC curve performance

I DSP usage in the compressed 3-hidden-layer model increases as a function
of the network precision and decreases for larger reuse factors

I Latency increases from 10 to 35 clock cycles (50 to 175 ns) for larger reuse
factors

I Results based on Xilinx Kintex Ultrascale FPGA part number
xcku115-flvb2104-2-i, 200 MHz clock frequency, Vivado HLS 2017.2

Recent developments

To enhance the flexibility of hls4ml, several new developments include
I extension to allow for significantly larger dense networks in terms of the

number of neurons per layer
I inclusion of zero-suppression for weights stored in on-chip memory or

BRAM, reducing the use of on-chip logic registers
I addition of binary and ternary matrix multiplication

To demonstrate the new developments, several versions of a large dense
network to classify handwritten MNIST digits are benchmarked

78
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12
8
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1.3 � 10�13
1.2 � 10�10
1.9 � 10�11
3.5 � 10�7
5.4 � 10�10
1.9 � 10�12
1.6 � 10�19
0.999999

3.0 � 10�13
5.1 � 10�7

Model II Accuracy Latency DSP BRAM FF LUT
MNIST dense 128 0.97 2.6 µs 21% 45% 12% 33%
MNIST binary dense 128 0.93 2.6 µs 0% 33% 7% 39%
MNIST ternary dense 128 0.95 2.6 µs 0% 33% 7% 40%
MNIST dense, 95% pruned 128 0.96 2.8 µs 1% 34% 13% 164%
MNIST dense 4096 0.97 68.1 µs 1% 66% 27% 83%
MNIST dense, 95% pruned 4096 0.96 82.1 µs 0% 34% 9% 25%

Summary

I hls4ml: compiler based on HLS for porting fully-connected NNs to an
FPGA from conventional training frameworks such as Keras and PyTorch

I Focus on real-time event reconstruction and filtering at the LHC in
FPGAs, with many other applications to real-time detector systems in the
physical sciences

I Implemented a dense 3-hidden-layer NN in a Xilinx Kintex Ultrascale using
roughly 10% of the available DSPs and latency of approximately 75–150 ns
with a clock frequency of 200 MHz

I Extend the capabilities and flexibility of hls4ml to allow larger NN
architectures for applications with latency constraints of approximately
1–100 µs

fastmachinelearning.org Machine Learning and the Physical Sciences, NeurIPS 2019, Vancouver, BC, Canada

6 parallel DSPs: 75 ns 

1 DSP serial :175 ns 

Efficient NN design: quantization

•Post-training quantization on FPGA allows for 
large area reduction but severe model 
performance drop for too few bits

9
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Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –
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Neural Network compression is a widespread technique to reduce the size, 
energy consumption, and overtraining of deep neural networks 
Several approaches in literature 
arxiv.1510.00149, arxiv.1712.01312, arxiv.1405.3866, arxiv.1602.07576, 
doi:10.1145/1150402.1150464

 HOW TO FIT NEURAL NETWORKS ON FPGA  13
M.LIU

(ENERGY) EFFICIENT NEURAL NETWORKS �14

1. Compression 
‣ Maintain high performance while removing redundant 

synapses and neurons  

2. Quantization 
‣ Reduce precision from 32-bit floating point to 20-bit, 8-bit, …

3. Parallelization/Reuse 
‣ Balance parallelization (how fast) with resources needed  

(how costly)
Further reading: arXiv:1510.00149

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

[https://arxiv.org/abs/1804.06913]

Efficient NN design: compression

10

Fully parallelized  
(max DSP use)

compression
Number of DSPs available

•Neural Network compression is a widespread technique to reduce the size, energy 
consumption, and overtraining of deep neural networks 

•Several approaches in literature [arxiv.1510.00149, arxiv.1712.01312, arxiv.1405.3866, arxiv.1602.07576, 
doi:10.1145/1150402.1150464] 

eg, tensorflow sparsity toolkit 
iteratively remove low magnitude 
weights, starting with 0 sparsity, 
smoothly increasing up to the set 
target as training proceeds

https://arxiv.org/abs/1804.06913
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Bring DL to FPGA for L1 trigger with

high level synthesis for machine learning

•User-friendly automated tool 
•Easy to tune the inference performance for your specific application: 

precision, resource vs latency/throughput tradeoff 

•Can be used as API 
•Includes several debugging utilities 

•Most common DL layers and  
activation functions supported
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First paper demonstrated a fully connected NN in 100 ns.
HLS4ML in CMS
Run 3: muon momentum regression in CMS
More models demonstrated for Phase-2 trigger upgrade TDR
Advanced models:
binary/ternary, CNNs, RNNs, auto-encoders. Support for Graph Neural 
Network Models  
Advanced Pruning/quantization:
Quantization-aware training with QKeras/Quantization-aware pruning
On ASICs and Low power devices.

For latest status: please check hls4ml website, CPAD 2021 talk,
Try it out: hls4ml tutorials

https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2102.11289
https://fastmachinelearning.org/hls4ml/
https://indico.fnal.gov/event/46746/contributions/210997/attachments/141316/177896/hls4ml-cpad21-ngadiuba.pdf
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Application Algorithms drive HLS4ML 
developments.
Graph Neural Networks (GNNs):
Represent data as nodes and edges
appropriate representation of particle physics data: 
irregular, structural, relational 
GNN developments driven by social media.
Active development and applications in science 
domains: how to adapt to domain knowledge & 
applications
Many variations of GNNs. Problem formulation is 
important: Node/edge classification, graph 
classification, identifying subgraphs  
Will show two GNN studies at Purdue.

GRAPH TASKS

▸ Edge-level tasks 
▸ Identify track segments 
▸ Estimate track parameters  

▸ Graph-level tasks 
▸ Jet tagging 
▸ Estimate shower energy 
▸ Signal-to-background event discrimination 

▸ Node partitioning/pooling tasks 
▸ Particle-flow reconstruction

12

▸ Node-level tasks 
▸ Correct cluster energies 
▸ Identify "pileup" particles

⇒ GRAPH-TO-GRAPH MAPPINGS
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Very rare in the SM, Neutrino 
oscillations:
 BR ~O(10-14) 

Daniel Guerrero (UF)                        Introduction to τ 3→ μ triggers at the HL-LHC  9

µ

µ

µτ

ν~

Search for τ 3→ µ decays at particle colliders 
Charge lepton Wavor violating decays:
 Possible via neutrino oscillations with extremely small branching ratio: BR(τ→3μ) ~ O(10-14)
 New physics can enhance BR(τ→3μ) up to ~ O(10-8)
 There-muon signature is the cleanest at LHC (as opposed to 3e , μμe, μγ, etc.)

Recent BR(τ  3µ)→  experimental limits (90% CL):    
 Belle  : 2.1 x 10-8 (expected 2.3 x 10-8)  Phys. Lett. B687 (2010) 139
 BaBar: 3.3 × 10-8 (expected 4.0 x 10-8) Phys. Rev. D81 (2010) 111101
 LHCb : 4.6 × 10-8 (expected 5.6 x 10-8 ) JHEP 02 (2015) 121
 CMS   : 8.0 x 10-8  (expected 6.9 x 10-8)  JHEP01(2021)163
 ATLAS: 3.8 × 10-7 (expected 3.9×10 -7 ) Eur. Phys. J. C76 (2016) 5, 232

SUSY with a R-parity violation

Neutrino oscillations
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 ATLAS: 3.8 × 10-7 (expected 3.9×10 -7 ) Eur. Phys. J. C76 (2016) 5, 232

SUSY with a R-parity violation

Neutrino oscillations

R-parity violating SUSY

Daniel Guerrero (UF)                        Introduction to τ 3→ μ triggers at the HL-LHC  10

Tau production at the High-Luminosity LHC (HL-LHC)
The HL-LHC (2027-2037): 
 14 TeV of center of mass energy pp collisions
  7.5 x 1034cm -2 s-1 instantaneous luminosity & 200 pile-up (PU)
 Integrated luminosity: 4000 fb-1 (25 x more data)
 Challenging data-taking conditions: 

 High particle multiplicity & intense radiation environment

Tau particle production 
 5.6 x 1014 expected τ‘s from hadronic processes with D/B mesons 

 ~72% originate from D
s
→τν decays

 Lots of taus, but challenging to reconstruct at the L1 trigger! 
 M(Ds) ~ M(τ)  collimated, low pT and very forward muons→  
 Background: Pile-up and Bs + π/K production

 CMS upgrades are needed to fully exploit signature

Muon 
properties 

in
Ds  τ→ (3µ)ν 

decays

• Collimated, low pT and very 
forward muons

• Current CMS trigger for HL-LHC 
uses track trigger tracks, 25% 
efficiency.

Daniel Guerrero (UF)                        Introduction to τ 3→ μ triggers at the HL-LHC  10
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GNN τ->3μ classifier 21
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Graph Inputs: Muons hits (Coordinates and 
bending angle) from L1 primitives, represented 
as nodes in graph. 

Attention mechanism for information 
aggregation between local nodes and global 
node

Training setting:

τ->3μ signals mixed with PU backgrounds vs 
pure PU sample

> 90% efficiency for 30 kHZ trigger bandwidth 

Fully connected network: ~26%

SignalPU200 Events

SignalPU200 Events

On-going: Model interpretations, Data 
augmentation. Regression of muon 
kinematics, Model adaption (to other signals & 
other experiments), implementation with 
HLS4ML. 

Work in progress
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The Fast and Furious 22

Extreme data volume & rate from LHC collisions.

M.LIU

Multiple pp collisions in the same beam 
crossing:
LHC: 20-50. HL-LHC: 140-200



Semi-supervised Pileup mitigation with GNN 23
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Improve Per-Particle Pileup Mitigations With 
better 

• Trained on charged particles and applied 
to neutral ones —> can learn from data.

• Outperforms Puppi, comparable to fully 
supervised method. 

• Presented at BOOST 2021, Short paper 
submitted to NeurIPS 2021 AI for Science 
Workshop. Long paper targeting PRD in 
preparation.

• Next: Apply to CMS simulation & data. 
Neutral particle vertex association in for the 
forward region.

Introduction: PileUp Mitigation

2

• Pileup (PU): additional proton-proton interactions in the same or nearby bunch crossings 
✤ PU at run2: ~30-40; and is expected to be around 150 at HL-LHC 

✤ Pileup can significantly a!ect the reconstruction of many physics variables - jet mass, jet momentum, missing 
transverse momentum (MET) 

✤ Pileup mitigation is needed

Model Architecture

6

• Build graph in  space. Connect the particles in the  cone. 

• Input features are the  , charge, and PUPPI weights for the nodes, and the , , 
and  between particles for the edges 

• Outputs are a weight between 0 and 1, representing the probability that the particle 
is produced from the LV. Also study the ‘Hybrid’ algorithm: 

            , where  
• Model architecture:

η − ϕ ΔR = 0.8
pT Δη Δϕ

ΔR

Final Score = β ⋅ GNN Output  + (1 − β) ⋅ PUPPI Weight 0 < β < 1 Δη, Δϕ, ΔR

charge, 

PUPPI weight

pT,

✤ Convolutional layer is the convolution on graphs. Here we use the gated model: 

               where  is the gate controlling the node feature updates 

                and ,  is the gate controlling feature passing from neighbor to the node 

✤ Also tested GraphSage (ArXiv:1706.02216) for the convolution, and compare the performances

hk+1
u = Gk

u ⋅ hk
u + (1 − Gk

u) ⋅ Mk
u Gk

u = Sigmoid(hk ⊕ Mk
u)

Mk
u = 1

N ∑
v

(G′ k
u,v ⋅ Mk

u,v) G′ k
u,v = Sigmoid(Mk

u,v)

nPU
# Particles (in total) # Selected Particles (for training)

Charged LV Charged PU Neutral LV Neutral PU Charged LV Charged PU
80 85± 30 1600± 300 50± 20 800± 140 10 160
140 60± 14 3000± 350 30± 13 1420± 200 6 282

Table 1: The first four columns include the average numbers of four types of particles under different
pileup conditions per graph. The last two columns indicate the number of charged particles being
randomly selected for training per graph per epoch.

4 Results

The datasets used in this study are generated using PYTHIA 8.223 [15] and DELPHES 3.3.2 [16].
Two pileup conditions are chosen to be studied: the number of pileup interactions nPU = 80 and
140, where the latter represents a more noisy experimental environment. Table 1 shows the average
numbers of different types of particles under different pileup conditions.

The experiments are designed to demonstrate the effectiveness of the model trained via SSL and its
ability to be adapted to different nPU levels. The model is trained and tested under three scenarios: (a)
training the model on nPU = 80 with inference on nPU = 80, (b) training the model on nPU = 140
with inference on nPU = 140, and (c) training the model on nPU = 80 with inference on nPU = 140.
Experimental settings (a) and (b) are to demonstrate that the model trained on charged particles with
SSL can perform well on neutral particles in testing and work under different nPU levels. Specifically,
the SSL model is compared with the fully supervised model, which has the same architecture but is
trained directly on neutral labels, and with the baseline algorithm PUPPI. Experiment (c) is to check
the adaptation ability of the model in different nPU conditions.

To evaluate the fully supervised model performance, the particles used for training and testing
must come from different events, though this is not necessary in the SSL training. Therefore, for
experiments on nPU = 80, there are 3000/1000/1000 events for training/validation/testing. When
nPU = 140, 1000/400/800 events are used for training/validation/testing. For the nPU = 140 scenario,
there are more particles per event, so the total number of events is reduced to maintain reasonable
memory usage. During training, the model is trained until convergence, which normally takes about
5 epochs.

The testing results demonstrate the success of the model, and are shown in Fig. 3 ROC curves with
AUC scores. In Fig. 3, (a) and (b) both indicate the SSL model outperforms the baseline algorithm
PUPPI (by 7.41% under nPU=80 and 6.22% under nPU=140). Furthermore, the SSL performance
is very similar to the fully-supervised model(decays by 1.41% under nPU=80 and 0.51% under
nPU=140). The comparison between (a) and (c) in Fig. 3 demonstrates the model can adapt between
different nPUs since the model only degrades by 0.22% under SSL from (b) to (c) in Fig. 3.

Log scale

Train on nPU=80, Test on nPU=80

(a)

Log scale

Train on nPU=140, Test on nPU=140

(b)

Train on nPU=80, Test on nPU=140

Log scale

(c)

Figure 3: The ROC curves for the gated GNN on neutral particles for SSL, fully-supervised learning,
and the domain PUPPI algorithm.

4

Neighboring structure

https://indico.cern.ch/event/1037559/contributions/4451753/?_ga=2.71932627.1511027680.1632850631-1707541545.1628006093


Speeding up HLT & Offline 24

Offline

Offlin
e

Traditionally CPU; Moving towards 
heterogeneous computing 

processing reduces the rate of events to a manageable level to be saved for o�ine processing and is
often referred to triggering. Triggering typically happens in multiple tiers where the first tier (Level-1,
L1) is performed with custom electronics at very low latency (⇠ µs) and the second step (high level
trigger, HLT) is performed on more standard computing resources and has a latency of ⇠ 10� 100 ms.
Finally, o�ine analysis of the saved events passing the HLT can take significantly longer, though, the
o�ine processing time is limited by our computing resources. The latency landscape for various levels
of experimental event processing is illustrated in Fig. 1.

1μs 1ms 1s

LHC L1 Trigger  
(pipelined)

LHC  
High Level Trigger 

LHC/DUNE 
Offline processing 

Figure 1: Latency landscape

In this paper, we do not focus on the L1 triggering requirements and instead consider the gains
from hetergeneous compute resources to improve both our HLT and o�ine processing power.

When considering how best to use new optimized computing resources for physics, we must first
consider the event processing model employed by large physics experiments. An example of the current
compute model is shown in Fig. 2 where event data is processed, often sequentially, across multiple
CPU threads. It is important to note that the basic unit of processing is a single event and performing

Event SetupDatabase

Configuration Parameter 
Sets

Input Source
(data or simulation)

Output 1
Output 2

…
threads

MODULE 2

MODULE 1

MODULE 3

MODULE 4

ML INFER 1

MODULE 5

Event Processing Job

ML INFER 2

MODULE 6

Figure 2: Diagram of CMS computing model (To be updated!)

the same task for multiple events (batching) becomes significantly more complex to manage. The tasks
themselves, denoted in Fig. 2, as a module can be very complex, either with time-consuming physics
based algorithms, or as is becoming more popular, machine learning algorithms. It can be then seen
that the most time-consuming and complex tasks will be the latency bottleneck in event processing.
When considering extremely complex events from the CMS experiment for future upgrades, the time

– 3 –

M.LIU
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M.LIUHigh-Luminosity Challenges

• Huge data volumes: not just more events, but more complex events
(more detector channels, more pileup)

• Corresponding increase needed in CPU… but clock speeds stagnant since 
~2005 (Moore’s law without Dennard scaling)

¾ Need new solutions to process HL-LHC data effectively

Internet2 Challenge Kevin Pedro 3

DUNE
2026

~30 PB

CMSOfflineComputingResults

HL-LHC:Big Data Challenge 25

Current: ~5 minutes per HL-LHC event

Moore’s Law continues
…but Dennard Scaling fails. 

No faster computers for free!

Event
 complexity Data Volume

>5x >10x
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#Trending in Industry: Heterogeneous Computing 26

HARDWARE ALTERNATIVES �11

FPGAs

EFFICIENCY

Control 
Unit 
(CU)

Registers

Arithmetic 
Logic Unit 

(ALU) + + + +

+ +
+

Silicon alternatives

FLEXIBILITY

CPUs GPUs
ASICs

Advances driven by
big data explosion 
& machine learning 
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Machine Learning Inference as-a-service 27

Speed of light→10 ms

External 
processin

CMSSW 
module acquire(

FPGA, 
GPU, 

produce

Eve
nt 

da
ta Callback

Event data Callback

GQHB

Services for Optimized Network Inference on Co-processors 
(SONIC paper)
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Performance: latency & throughput 28

5000 images

10 Javier Duarte et al.

Fig. 10: Total round trip inference latencies for
ResNet-50 on the Brainwave system both remote and
on-prem. The top plot is linear in time and the bottom
plot is logarithmic in time.

tions which can cause the structures seen in Fig. 10.
Due to the speed of light, there is a hard physical limit
in the transmission time of the signal to the Azure East
2 Datacenter and back to Fermilab, which we estimate
to be around 10 ms. The physical distance between the
experimental computing cluster and the remote data-
center will limit any cloud-based inference speeds.

After comparing the remote versus on-prem latency,
we performed a scaling test to estimate how many co-
processor services would be needed to support large-
scale deployment in a production environment. A given
number of simultaneous processes were run using the
batch system at Fermilab and the round-trip latency
was measured. All jobs connected to a single Brain-
wave service. This test corresponds to a “worst-case”
estimation of the scaling of a single service because each
process only executed the Brainwave test module that
performs inference on jet images. In an actual produc-
tion process, the test module would run alongside many
other modules (see Fig. 1), greatly reducing the prob-
ability of simultaneous requests to the cloud service.
The results of the test are shown in Fig. 11. The mean,
standard deviation, and long tail for the round trip la-

tency all tend to increase with more simultaneous jobs,
but only moderately. It should also be noted that some
calls timed out during the largest-scale test with 500 si-
multaneous processes, leading to a failure rate of 1.8%,
while the other tests had zero or negligible failures.

Fig. 11: Top: Mean round trip inference latencies for
ResNet-50 on the Brainwave system for di↵erent num-
bers of simultaneous processes. The error bars represent
the standard deviation. Bottom: The full distributions
displayed in “violin” style. The vertical bars indicate
the extrema. The horizontal axis scale is arbitrary.

We also measure the throughput based on the total
time for each simultaneous process to complete serial
processing of 5000 jet images. These results are shown
in Fig. 12. Though the round trip latency for a single
request has a large variance, the total time to process
the full series of images is remarkably consistent. This
demonstrates the e�cient load balancing performed by
the Brainwave server.

With the total time measured for all simultane-
ous processes to complete, we can compute the total
throughput of the Brainwave service. Recall from above
that while the cloud service inference round trip latency
is 60 ms, on average, the latency for the featurizer in-
ference on the FPGA itself is approximately 1.8 ms.
When we run multiple simultaneous CPU processes

JetImageProducer

JetImageProducer

JetImageProducer

 SONIC: LATENCY SCALING TEST  26
M.LIU

•Single FPGA service, multiple CPU requests 
•Each request sends 5000 images 

• Run N simultaneous processes, all sending requests to 1 BrainWave service

• Processes only run JetImageProducer IURP�621,&�ĺ�³ZRUVW�FDVH´�VFHQDULR

o Standard reconstruction process would have many non-SONIC modules

• FPGA performs inference serially (1 image at a time)

Scaling Tests

27LPC Topic of the Week Kevin Pedro

Brainwave Service

Worker Node
JetImageProducer

Worker Node
JetImageProducer…

Worker Node
JetImageProducer

5000 images

N: simultaneous processes

Single Brainwave service

Network

Latency stable up to N=50

Latency: 10 ms (60 ms) for local (remote cloud) server, (10/100) faster than 
CPU-only

Max data throughout: 600-700 images/sec
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Ibsexbsf!
qmbugpsnt

Pqfo!tpvsdf!uppmt;!
gmfyjcjmjuz

FPGA-as-a-service Toolkit

hls  4  ml

hls4ml

HLS  4  ML

SONIC: recent explorations

GPU-as-a-service for DUNE
https://arxiv.org/pdf/2009.04509.pdf

GPU-as-a-service
https://arxiv.org/abs/2007.10359

Bmhpsjuin!
dpnqmfyjuz

More benchmarks driven by use cases 
to test scaling for HLT/offline: 2k- 10M 
parameters

Inference Servers
• Nvidia Triton

o Supports all backends (even non-ML)

o Dynamic batching

o Load balancing

o TensorRT optimization

o Shared memory (for local processor)

o I/O compression

o Model analyzer

• FPGA as a Service Toolkit (FaaST)

o Open-source, developed by physicists!

o hls4ml or Xilinx ML Suite to deploy models

o Uses Triton gRPC calls (by design)
ĺ�XVH�&38��*38��RU�)3*$�Z��H[DFW�VDPH�621,&�FOLHQW�FRGH

Internet2 Challenge Kevin Pedro 7

NVIDIA Triton

https://people.ece.uw.edu/hauck/publications/FaaST_ML.pdf
https://arxiv.org/pdf/2009.04509.pdf
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• SONIC miniAOD workflow has been developed, machine learning algorithms offloaded to GPU 
servers. 

• Testing at Purdue T2 with local GPUs/GPUs in google cloud.

• Infrastructure development in plan such as  server management, authentication etc

• A HLT workflow has also been developed for non-ML algorithms (patatrk, tracking on GPUs)
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M.LIU
International Data Needs

17

Google	
searches
98	PB

LHC	Science	
data

~200	PB
SKA	Phase	1	–

2023
~300	PB/year	
science	data

HL-LHC	– 2026
~600	PB	Raw	data

HL-LHC	– 2026
~1	EB	Physics	data

SKA	Phase	2	– mid-2020’s
~1	EB	science	data

LHC	– 2016
50	PB	raw	data

Facebook	
uploads
180	PB

Google
Internet	archive
~15	EB

Yearly	data	volumes
DUNE		
2026	

LSST		
2021	
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Fast Machine Learning Community 32

Community built upon hls4ml & sonic 
effort: monthly general meetings, 
alternating hls4ml & co-processor meetings.

Workshops at Fermilab/SMU (virtual)

Fruitful discussions on common challenges 
across science domains & interesting 
intersections with industry and other fields

: HEP, neutrino, astrophysics, plasma 
physics (fusion control), material science, 
Xilinx, Nvidia, Neuromophic compute.

White papers: 2019, 2020 submitted to 
frontier in big data. 

Next (mini) Fast ML workshop in Spring 2022

https://indico.cern.ch/event/822126/
https://indico.cern.ch/event/924283/
https://fastmachinelearning.org/images/coproc_whitepaper_v0.pdf
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A3D3 Institute 33

Harnessing the data revolution Institute grant 
awarded by National Science Foundation (NSF):
Accelerated Artificial Intelligence For Data-Driven 
Discoveries.

The challenge for domain scientists is that a 
broad range of expertise is required to arrive at 
full ML device implementations.
15 M grant, 9 Institutions. HEP, astrophysics, neural 
science, AI algorithm, Hardware acceleration.
Interface with frontier algorithm & engineering 
research (machine learning compiler)

Figure 1: Vision for how A3D3 is connected.

Real-time artificial intelligence (AI) is a new frontier at the interface of science, engineering,
and technology [1] While AI holds great promise in enhancing the discovery potential of many
experiments, its use is often limited by its computational cost and additional constraints placed
by real-time system requirements. Moreover, the sheer enormity of the data volume of next-
generation experiments can be a hindrance if its not collected by intelligent systems and processed
with modern heterogeneous computing platforms. The challenges span broad scientific domains and
a few cases where real-time/accelerated AI will revolutionize discovery potentials in high energy
physics(HEP), Multimessager Astrophysics (MMA) and Neuroscience are highlighted and detailed
in section 3.2, 3.3, 3.4.
Enabling these use cases requires new techniques, AI models, tools, software, expertise, and greater
collaboration between domain scientists, data scientists, AI experts, and hardware experts, which
this Institute will provide. Domain scientists will work closely with AI and hardware experts, , insert

namesto create and apply e�cient algorithms that are the most advantageous in exploiting structured
scientific data as detailed in Section 3.1. For example, this can be achieved with domain-inspired
architectures [2,3], inductive bias [4], or built-in symmetries, equivariance, or invariance [2,5–11]. In
addition, compression of AI algorithms, such as quantization [12–16], parameter pruning [12,17–21],
and knowledge distillation [22], has been shown to be e↵ective in designing e�cient yet performant
algorithms that are suitable for accelerated/real-time AI applications.
Hardware-AI codesign [23] is required to tightly couple the design of AI algorithms with the do-
main science, hardware, or system constraints. A hallmark of codesign is either an encoding of
the design constraints directly in the algorithm [14, 15, 24] or a fast-to-evaluate approximation of
the acceptability of an on-device solution to allow for fast exploration and evaluation, e.g. through
reinforcement learning [13]. Developing and implementing these techniques in the context of sci-
entific low-power [25], low-latency, or resource-constrained use cases makes it imperative to create,
develop, and maintain e↵ective tools like hls4ml [18, 26] for the implementation of fast AI and
explore the most e↵ective techniques for AI-hardware codesign, and will be a focus of synergistic
development in this institute. need to

add some
planning
for hls4ml
develop-
ment fo-
cus and
a few
projects
planned

need to
adapt the
following
to be for
general
science

While scientific data sets continue to grow by orders of magnitude, single-threaded performance
of CPUs has plateaued and more e�cient computing architectures need to be explored. Hetero-
geneous computing resources—mixed-architecture computing systems that can o↵er large gains in
performance—are becoming increasingly popular to meet data processing demands driven by AI
and big data explosion. This presents an opportunity for transformative changes to the computing
model and technology in scientific domains. FastML-as-a-service has been explored by collabora-
tors in the fast machine learning lab as a scalable, cost-e↵ective computing paradigm of integrating
heterogeneous systems into large-scale complex experimental software stack [27–29].

need to
add plan-
ning for
SONIC
develop-
ment and
highlight
a few
projects
planned.
HPC sup-
port, work
with in-
dustry
to im-
prove as-
a-service
tools,
what else?

3
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https://www.nsf.gov/news/special_reports/announcements/092821.jsp
https://www.nsf.gov/news/special_reports/announcements/092821.jsp
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Machine learning methods offer opportunities to significantly boost the 
discovery potential at the LHC (e.g τ->3 μ). 

Accelerated machine learning inference in online & offline processing.

User-friendly prototype tools for domain experts.

Multidisciplinary teams to realize optimal ML on targeted (e.g. CMS L1 trigger) 
or heterogeneous systems (e.g. CMS HLT & offline).

Look forward to the visions unfold in the next few years!



Adaptive algorithms and tools 35
M.LIU

 

Dark sector searches at SeaQuest @ Fermilab
CNNs, Graphs, RNNs, auto-encoders, binary/ternary
e.g. Lepton flavor violation: τ->3μ 

Measuring muon EDM with frozen spin techniques.
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M.LIUSaturating the GPUs 18Modeling

46

~11s

Wang et al. GPU-accelerated ML inference aaS for computing in neutrino experiments

which can be accelerated, such that the total time of a CPU-only job is trivially defined as:

tCPU = (1� p)⇥ tCPU + p⇥ tCPU (1)

We replace the time for the accelerated module with the GPU latency terms:

tideal = (1� p)⇥ tCPU + tGPU + tlatency. (2)

This reflects the ideal scenario when the GPU is always available for the CPU job. We also include tlatency,
which accounts for the preprocessing, bandwidth, and travel time to the GPU. The value of tGPU is fixed,
unless the GPU is saturated with requests. We define this condition as how many GPU requests can be
made while a single CPU is processing an event. The GPU saturation condition is therefore defined as:

NCPU

NGPU
>

tideal

tGPU
. (3)

Here, tideal is equivalent to Eq. (2), the processing time assuming there is no saturated GPU. There
are two conditions, unsaturated and saturated GPU, which correspond to NCPU

NGPU
< tideal

tGPU
and NCPU

NGPU
> tideal

tGPU
,

respectively. We can compute the total latency (tSONIC) to account for both cases:

tSONIC = (1� p)⇥ tCPU + tGPU


1 + max

✓
0,

NCPU

NGPU
� tideal

tGPU

◆�
+ tlatency. (4)

Therefore, the total latency is constant when the GPUs are not saturated and increases linearly in the
saturated case proportional to tGPU. Substituting Eq. (2) for tideal, the saturated case simplifies to:

tSONIC = tGPU ⇥ NCPU

NGPU
. (5)

3.4 Measurements deploying SONIC

To test the performance of the SONIC approach, we use the setup described in the “server stress test”
in Section 3.2. We vary the number of simultaneous jobs from 1–400 CPU processes. To test different
computing model configurations, we run the inference with two different batch sizes: 235 (small batch) and
1693 (large batch). This size is specified at run time through a parameter for the EmTrackMichelId module
in the FHiCL [32] configuration file describing the workflow. With the small batch size, inferences are
carried out in approximately 235 batches per event. Increasing the batch size to 1693 reduces the number
of inference calls sent to the Triton server to 32 batches per event, which decreases the travel latency. We
also test the performance impact of enabling or disabling dynamic batching on the server.

In Fig. 5 (left), we show the performance results for the latency of the EmTrackMichelId module for
small batch size vs. large batch size, with dynamic batching turned off. The most important performance
feature is the basic trend. The processing time is flat as a function of the number of simultaneous CPU
processes up to 190 (270) processes for small (large) batch size. After that, the processing time begins to
grow, as the GPU server becomes saturated and additional latency is incurred while service requests are
being queued. For example, in the large batch case, the performance of the EmTrackMichelId module is
constant whether there are 1 or 270 simultaneous CPU processes making requests to the server. Therefore,
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using less than 270 simultaneous CPU processes for the 4-GPU server is an inefficient use of the GPU
resources; and we find that the optimal ratio of CPU processes to a single GPU is 68:1.

As described in Section 3.3, 7 s of the module time is spent on the CPU for preprocessing to prepare
the inputs for neural network inference. The term ttravel is computed based on a measured round trip ping
time of 12ms for a single service request. Therefore, for small (large) batch size, the total ttravel per event
is 2.8 s (0.4 s). The difference between the corresponding processing times for the different batch sizes
roughly corresponds to that 2.4 s. We also see that in the small batch size configuration, the GPU server
saturates earlier, at about 190 simultaneous CPU processes. In comparison, the large batch size server
saturates at about 270 simultaneous processes. This is because the GPU is more efficient with larger batch
size: at a batch size of 235 (1693), the GPU server can process about 80,000 (125,000) images per second.
The overall performance using the SONIC approach is compared to the model from Section 3.3. We see
that performance matches fairly well with our expectations.

In Fig. 5 (right), we show the performance of the SONIC approach for large batch size with dynamic
batching enabled or disabled, considering up to 400 simultaneous CPU processes. We find that at large
batch size, for our particular model, the large batch size of 1693 is already optimal and the performance is
the same with or without dynamic batching. We also find that the model for large batch size matches the
data well.

Figure 5. Processing time for the EmTrackMichelId module as a function of simultaneous CPU processes,
using a Google Kubernetes 4-GPU cluster. Left: small batch size vs. large batch size, with dynamic
batching turned off. Right: large batch size performance with dynamic batching turned on and off. In both
plots, the dotted lines indicate the predictions of the latency model, specifically Eq. (4).

We stress that, until the GPU server is saturated, the EmTrackMichelId module now takes about 13 s per
event in the most optimal configuration. This should be compared against the CPU-based inference, which
takes 220 s on average. The EmTrackMichelId module is accelerated by a factor of 17, and the total event
processing time goes from 330 s to 123 s on average, a factor of 2.7 reduction in the overall processing
time.

Finally, it is important to note that throughout our studies using commercially available cloud computing,
we have observed that there are variations in the GPU performance. This could result from a number of
factors beyond our control, related to how CPU and GPU resources are allocated and configured in the
cloud. Often, these factors are not even exposed to the users and therefore difficult to monitor. That said,
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which can be accelerated, such that the total time of a CPU-only job is trivially defined as:

tCPU = (1� p)⇥ tCPU + p⇥ tCPU (1)

We replace the time for the accelerated module with the GPU latency terms:

tideal = (1� p)⇥ tCPU + tGPU + tlatency. (2)

This reflects the ideal scenario when the GPU is always available for the CPU job. We also include tlatency,
which accounts for the preprocessing, bandwidth, and travel time to the GPU. The value of tGPU is fixed,
unless the GPU is saturated with requests. We define this condition as how many GPU requests can be
made while a single CPU is processing an event. The GPU saturation condition is therefore defined as:
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tideal

tGPU
. (3)

Here, tideal is equivalent to Eq. (2), the processing time assuming there is no saturated GPU. There
are two conditions, unsaturated and saturated GPU, which correspond to NCPU

NGPU
< tideal
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tGPU
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respectively. We can compute the total latency (tSONIC) to account for both cases:

tSONIC = (1� p)⇥ tCPU + tGPU
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Therefore, the total latency is constant when the GPUs are not saturated and increases linearly in the
saturated case proportional to tGPU. Substituting Eq. (2) for tideal, the saturated case simplifies to:

tSONIC = tGPU ⇥ NCPU

NGPU
. (5)

3.4 Measurements deploying SONIC

To test the performance of the SONIC approach, we use the setup described in the “server stress test”
in Section 3.2. We vary the number of simultaneous jobs from 1–400 CPU processes. To test different
computing model configurations, we run the inference with two different batch sizes: 235 (small batch) and
1693 (large batch). This size is specified at run time through a parameter for the EmTrackMichelId module
in the FHiCL [32] configuration file describing the workflow. With the small batch size, inferences are
carried out in approximately 235 batches per event. Increasing the batch size to 1693 reduces the number
of inference calls sent to the Triton server to 32 batches per event, which decreases the travel latency. We
also test the performance impact of enabling or disabling dynamic batching on the server.

In Fig. 5 (left), we show the performance results for the latency of the EmTrackMichelId module for
small batch size vs. large batch size, with dynamic batching turned off. The most important performance
feature is the basic trend. The processing time is flat as a function of the number of simultaneous CPU
processes up to 190 (270) processes for small (large) batch size. After that, the processing time begins to
grow, as the GPU server becomes saturated and additional latency is incurred while service requests are
being queued. For example, in the large batch case, the performance of the EmTrackMichelId module is
constant whether there are 1 or 270 simultaneous CPU processes making requests to the server. Therefore,
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✤ Convolutional layer is the convolution on graphs. Here we use the gated model: 

               where  is the gate controlling the node feature updates 

                and ,  is the gate controlling feature passing from neighbor to the node 

✤ Also tested GraphSage (ArXiv:1706.02216) for the convolution, and compare the performances
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Figure 2: A diagram illustrating the SSL model training flow.

node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. Table 1 includes the numbers of selected charged LV
and PU particles per graph per epoch and the total number of charged LV and PU particles per graph.
About 10% of charged particles are selected in order to balance preserving neighboring structures
and training convergence/speed.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like [11, 12, 13], can be
applied to our SSL framework, though we focus on a variant of the gated GNN model [14]. Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hk

v denote the node v representation at
k-th layer. The GNN follows

Edge message: muv =
⇥
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,
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Node update: hk
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where �⌘,��,�R are the geometric features that characterize the difference between the
spatial coordinates ⌘,� of two particles and their distance

p
�⌘2 +��2 respectively. The node

representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
(0, 1, 0) for PU charged particles, (0, 0, 1) for neutral particles and masked charged particles. The
node representations of the selected particles in the final layer of GNN are put through a multi-layer
perceptron with two hidden layers to make the final prediction.
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node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. Table 1 includes the numbers of selected charged LV
and PU particles per graph per epoch and the total number of charged LV and PU particles per graph.
About 10% of charged particles are selected in order to balance preserving neighboring structures
and training convergence/speed.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like [11, 12, 13], can be
applied to our SSL framework, though we focus on a variant of the gated GNN model [14]. Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hk

v denote the node v representation at
k-th layer. The GNN follows
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where �⌘,��,�R are the geometric features that characterize the difference between the
spatial coordinates ⌘,� of two particles and their distance

p
�⌘2 +��2 respectively. The node

representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
(0, 1, 0) for PU charged particles, (0, 0, 1) for neutral particles and masked charged particles. The
node representations of the selected particles in the final layer of GNN are put through a multi-layer
perceptron with two hidden layers to make the final prediction.
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node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. Table 1 includes the numbers of selected charged LV
and PU particles per graph per epoch and the total number of charged LV and PU particles per graph.
About 10% of charged particles are selected in order to balance preserving neighboring structures
and training convergence/speed.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like [11, 12, 13], can be
applied to our SSL framework, though we focus on a variant of the gated GNN model [14]. Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hk

v denote the node v representation at
k-th layer. The GNN follows
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�⌘2 +��2 respectively. The node

representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
(0, 1, 0) for PU charged particles, (0, 0, 1) for neutral particles and masked charged particles. The
node representations of the selected particles in the final layer of GNN are put through a multi-layer
perceptron with two hidden layers to make the final prediction.
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node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. Table 1 includes the numbers of selected charged LV
and PU particles per graph per epoch and the total number of charged LV and PU particles per graph.
About 10% of charged particles are selected in order to balance preserving neighboring structures
and training convergence/speed.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like [11, 12, 13], can be
applied to our SSL framework, though we focus on a variant of the gated GNN model [14]. Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hk

v denote the node v representation at
k-th layer. The GNN follows

Edge message: muv =
⇥
hk�1
u , hk�1

v ,�⌘uv,��uv,�Ruv

⇤
,

Aggregation: mv =
P

u2N(v)guvmuv, where guv = Sigmoid(W1muv + b1)

Node-level gate: qv = Sigmoid(W2[h
k�1
v ,mv] + b2)

Node update: hk
v = ReLU(qv(W3h

k�1
v + b3)) + (1� qv)(W4mv + b4)),

where �⌘,��,�R are the geometric features that characterize the difference between the
spatial coordinates ⌘,� of two particles and their distance

p
�⌘2 +��2 respectively. The node

representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
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node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. Table 1 includes the numbers of selected charged LV
and PU particles per graph per epoch and the total number of charged LV and PU particles per graph.
About 10% of charged particles are selected in order to balance preserving neighboring structures
and training convergence/speed.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like [11, 12, 13], can be
applied to our SSL framework, though we focus on a variant of the gated GNN model [14]. Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hk
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representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
(0, 1, 0) for PU charged particles, (0, 0, 1) for neutral particles and masked charged particles. The
node representations of the selected particles in the final layer of GNN are put through a multi-layer
perceptron with two hidden layers to make the final prediction.
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• Algorithm outperforms Puppi, comparable to fully supervised 
method. Can be adapted to different pile up conditions. No 
need for tuning as the particle itself is represented as a node. 

• Presented at BOOST 2021, Short version of the paper 
submitted to NeurIPS 2021 AI for Science Workshop. Long 
version paper targeting PRD in preparation.

• Next: Apply to CMS simulation & data. Neutral particle vertex 
association in for the forward region.

Model Architecture

6

• Build graph in  space. Connect the particles in the  cone. 

• Input features are the  , charge, and PUPPI weights for the nodes, and the , , 
and  between particles for the edges 

• Outputs are a weight between 0 and 1, representing the probability that the particle 
is produced from the LV. Also study the ‘Hybrid’ algorithm: 

            , where  
• Model architecture:

η − ϕ ΔR = 0.8
pT Δη Δϕ

ΔR

Final Score = β ⋅ GNN Output  + (1 − β) ⋅ PUPPI Weight 0 < β < 1 Δη, Δϕ, ΔR

charge, 

PUPPI weight

pT,

✤ Convolutional layer is the convolution on graphs. Here we use the gated model: 

               where  is the gate controlling the node feature updates 

                and ,  is the gate controlling feature passing from neighbor to the node 

✤ Also tested GraphSage (ArXiv:1706.02216) for the convolution, and compare the performances
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Figure 2: A diagram illustrating the SSL model training flow.

node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. Table 1 includes the numbers of selected charged LV
and PU particles per graph per epoch and the total number of charged LV and PU particles per graph.
About 10% of charged particles are selected in order to balance preserving neighboring structures
and training convergence/speed.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like [11, 12, 13], can be
applied to our SSL framework, though we focus on a variant of the gated GNN model [14]. Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hk

v denote the node v representation at
k-th layer. The GNN follows

Edge message: muv =
⇥
hk�1
u , hk�1

v ,�⌘uv,��uv,�Ruv

⇤
,

Aggregation: mv =
P

u2N(v)guvmuv, where guv = Sigmoid(W1muv + b1)

Node-level gate: qv = Sigmoid(W2[h
k�1
v ,mv] + b2)

Node update: hk
v = ReLU(qv(W3h

k�1
v + b3)) + (1� qv)(W4mv + b4)),

where �⌘,��,�R are the geometric features that characterize the difference between the
spatial coordinates ⌘,� of two particles and their distance

p
�⌘2 +��2 respectively. The node

representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
(0, 1, 0) for PU charged particles, (0, 0, 1) for neutral particles and masked charged particles. The
node representations of the selected particles in the final layer of GNN are put through a multi-layer
perceptron with two hidden layers to make the final prediction.
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node feature can be categorized into two parts, where the first part contains feature values shared by
charged and neutral particles, while the rest contain the charged-or-neutral-specific feature values.

3 The Proposed Model

Training the model consists of four steps as illustrated in Figure 2. Step (a) graph construction has
been introduced. Next, we focus on steps (b)-(d).

Step (b) Random Selection and Feature Masking. The main goal of step (b) is to deal with the
potential features not shared between charged and neutral particles. These features in our simulation
datasets are LV-or-PU label information where only charged particles hold. In real experiments, they
may include other features such as particle types as charged and neutral particles by nature are in
different categories. We term these features as charged-specific features and neutral-specific features
respectively. To prevent the model from overfitting such features, in each graph each training epoch,
a certain portion of charged LV and PU particles are randomly selected as training samples. The
charged-specific features of these particles will be replaced by neutral-specific features of randomly
selected neutral particles. Note that such a portion should neither be too large nor too small, as
otherwise, either the neighboring features of a particle get corrupted, or too many epochs are needed
to fully utilize all labeled particles for training. Table 1 includes the numbers of selected charged LV
and PU particles per graph per epoch and the total number of charged LV and PU particles per graph.
About 10% of charged particles are selected in order to balance preserving neighboring structures
and training convergence/speed.

Step (c) GNN Encoding and Step (d) Prediction. Any GNN architecture, like [11, 12, 13], can be
applied to our SSL framework, though we focus on a variant of the gated GNN model [14]. Because,
as shown in Fig. 1, there are some LV particles surrounded by PU particles, we use gates to control
the messages from the neighbors to better fit the problem. Let hk

v denote the node v representation at
k-th layer. The GNN follows

Edge message: muv =
⇥
hk�1
u , hk�1
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Aggregation: mv =
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u2N(v)guvmuv, where guv = Sigmoid(W1muv + b1)

Node-level gate: qv = Sigmoid(W2[h
k�1
v ,mv] + b2)

Node update: hk
v = ReLU(qv(W3h

k�1
v + b3)) + (1� qv)(W4mv + b4)),

where �⌘,��,�R are the geometric features that characterize the difference between the
spatial coordinates ⌘,� of two particles and their distance

p
�⌘2 +��2 respectively. The node

representations are initialized as particle features that in our experiments include the particle
transverse momentum pT and one-hot label encoding, that is, (1, 0, 0) for LV charged particles,
(0, 1, 0) for PU charged particles, (0, 0, 1) for neutral particles and masked charged particles. The
node representations of the selected particles in the final layer of GNN are put through a multi-layer
perceptron with two hidden layers to make the final prediction.
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https://indico.cern.ch/event/1037559/contributions/4451753/?_ga=2.71932627.1511027680.1632850631-1707541545.1628006093
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LHC data let us probe the new physics scale at the LHC

SUSY searches and examine SM’s description of triboson processes

Accelerated discovery potential with ML

Fast machine learning inference for CMS data processing

Crucial in maximizing the HL-LHC physics potential 

Look forward to continue with this exciting journey at UCR!
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HLS - High Level Synthesis - compiler for C, C++, 
SystemC into FPGA IP cores 
HLS 4 Machine learning :Prototype ML algorithms for 
FPGA WITHOUT Verilog/VHDL: firmware in a few 
hours

2 Building neural networks with hls4ml

In this section, we give an overview of translating a given neural network model into a FPGA
implementation using HLS. We then detail a specific jet substructure case study, but the same concepts
are applicable for a broad class of problems. We conclude this section by discussing how to create
an e�cient and optimal implementation of a neural network in terms of performance, resource usage,
and latency.

2.1 hls4ml concept

The task of automatically translating a trained neural network, specified by the model’s architecture,
weights, and biases, into HLS code is performed by the hls4ml package. A schematic of a typical
workflow is illustrated in Fig. 1.
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hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a FPGA implementation using hls4ml.

The part of the workflow illustrated in red indicates the usual software workflow required to
design a neural network for a specific task. This usual machine learning workflow, with tools such as
Keras and PyTorch, involves a training step and possible compression steps (more discussion below
in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of hls4ml,
which translates a model into an HLS project that can be synthesized and implemented to run on an
FPGA.

At a high level, FPGA algorithm design is unique from programming a CPU in that independent
operations may run fully in parallel, allowing FPGAs to achieve trillions of operations per second at a
relatively low power cost. However, such operations consume dedicated resources onboard the FPGA
and cannot be dynamically remapped while running. The challenge in creating an optimal FPGA
implementation is to balance FPGA resource usage with achieving the latency and throughput goals
of the target algorithm. Key metrics for an FPGA implementation include:

– 4 –
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M. Swiatlowski (UC) March 2, 2018
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• SUSY partners of the SM electroweak 
sector:  
• U(1)-> Bino, SU(2)->Winos 
• Higgs-> Higgsinos 
• Leptons-> sleptons 

• Could be light and accessible at the 
LHC 

Important to search for them at the LHC!
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Typical mass spectrums of chargino-neutralinos

• Depending on the mass scales of Bino/
Winos/Higgsinos:  
lightest chargino/ neutralinos form 
different mass spectrums 

• Two main mass spectrums explored at 
the LHC:  Wino-like, Higgsino-like 

• My focus: search for Wino-like production 
with WH events: 
• Larger cross section.  
• Loosely constrained in 8 TeV searches 

compared to WZ

M.LIU  4

❖ In R-parity conserved models, result in di-boson(W/Z/h/γ) associated with missing 
transverse momentum (Etmiss)

✦ Results in a final state of  WH/WZ in Wino Models.

❖ In GMSB model, mass degenerate

✦ Enhanced pair production of                

✦ Also produce a signature of diboson+missingEt.

✦ Results in a final state of ZZ/HZ/HH in higgino models.

2 3 Signal models and Monte Carlo simulation

The first class of models assumes chargino-neutralino (ec±
1 ec0

2) production. The chargino always44

decays to the W boson and the LSP, ec0
1. The second neutralino can decay to either of the Z or H45

bosons plus the LSP. We consider three choices for the ec0
2 decay: a branching fraction of 100%46

to Zec0
1 (WZ topology), a branching fraction of 100% to Hec0

1 (WH topology), and a branching47

fraction of 50% to each of these two decays. This model is depicted in Fig. 1 showing the48

two possible decays. The particles ec±
1 and ec0

2 are assumed to be wino-like states, while ec0
1 is49

assumed to be bino-like.50
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Figure 1: Chargino-neutralino pair production with the chargino decaying to the W boson and
the LSP and the neutralino decaying to either (left) a Z boson and the LSP or (right) a H boson
and the LSP.

The second class of models assumes neutralino-neutralino production. For the wino-like neu-51

tralinos the production cross section is very small, and thus we consider a specific gauge-52

mediated supersymmetry breaking (GMSB) model with quasi-degenerate higgsinos as next-53

to-lightest SUSY particles (NLSPs) and a gravitino (eG) as the LSP [42–44]. All of ec±
1 , ec0

2, and ec0
154

are assumed to be nearly degenerate in mass, such that in the production of any two of these,55

ec±
1 or ec0

2 decay immediately to ec0
1 and soft particles that do not impact the analysis, effectively56

yielding pair production of ec0
1 ec0

1. The cross sections for all of these processes are summed57

assuming these are higgsino-like states. The ec0
1 then decays to eG and either a Z or H boson,58

and we consider varying branching fractions from 100% Z to 100% H including intermediate59

values. The possible decays in this model are shown in Fig. 2.60
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Figure 2: A GMSB model with neutralino-neutralino pair production and the neutralinos de-
caying into gravitinos and (left) two Z bosons, (center) a Z and a H boson, or (right) two H
bosons.

Monte Carlo (MC) simulated samples are used in the various searches to estimate the back-61

ground from some SM processes, to assess systematic uncertainties in prediction methods62

that rely on data, and to calculate the selection efficiency for signal models. Most SM back-63

ground samples are produced with the MADGRAPH5 AMC@NLO v2.2.2 generator [45] at64

leading order (LO) or next-to-leading order (NLO) accuracy in perturbative quantum chromo-65

dynamics (QCD), including up to one to four additional partons in the matrix element calcu-66
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Electroweak and Compressed SUSY LPC EventD. Olivito (UCSD)

Decays, without SleptonsDecays, without Sleptons

(~B)~χ1
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0

W Z/h

~χ1

0

~
G

Z/h/g

GMSB / GGM

Pair production signature: Diboson + MET
W(*), Z(*), Higgs, Photons

→ leptons, jets only from boson decays or ISR, photons
Need to combine analyses to cover all boson decays
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Compressed ewkinos are well 
motivated by both naturalness and DM

arxiv:1608.05379

Coannihilation of c0 and c± can give relic 
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Wino-like 
45 fb*

Higgsino-like 
11 fb*

*Cross-sections for 500 GeV sparticles 
 @ 13 TeV(           only)
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Figure 8: The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL
cross sections, with the variations corresponding to the uncertainty in the cross sections for
the higgsino simplified models. The dashed (red) curves present the expected limits with the
associated band covering 68% of the limits in the absence of signal.
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Search for electroweakinos with WH events 44

10

5 Results
Figure 5 shows the distributions of Mbb in data compared with the SM background prediction
after all signal region requirements except the Mbb selection. No significant deviations from
the predictions are observed. Table 2 shows the expected SM background yields in the signal
region compared to the observation.
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Figure 5: Distributions in Mbb after all signal region kinematic requirements for the two ex-
clusive Emiss

T bins (left: 125  Emiss
T < 200 GeV, right: Emiss

T � 200 GeV). The signal region is
90  Mbb  150 GeV. The hatched band shows the total uncertainty in the background pre-
diction, including statistical and systematic components. The expected signal distribution for a
reference SUSY model is overlaid as an open histogram, and the legend (on the last line) gives
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6 Interpretation
The results of this analysis are interpreted in the context of the simplified SUSY model de-
picted in Fig. 1, ec±

1 ec0
2 ! W±Hec0

1 ec0
1. The ec±

1 and ec0
2 are assumed to have the same mass, and

the branching fractions for the decays listed above are taken to be 100%. The W and Higgs
bosons are taken to decay according to their SM branching fractions. Cross section limits as a
function of the SUSY particle masses are set using a modified frequentist approach, employing
the CLs criterion and an asymptotic formulation [80–83]. Both signal regions are considered
simultaneously in setting limits. The production cross sections are computed at NLO plus
next-to-leading-log (NLL) precision in a limit of mass-degenerate wino ec±

1 and ec0
2, light bino

ec0
1, and with all the other sparticles assumed to be heavy and decoupled [84, 85].

The systematic uncertainties in the signal yield are summarized in Table 3. The signal models
with the largest acceptance uncertainties are those with Dm = mec0

2
� mec0

1
' mH. For these

models, the kinematic properties of the events are most similar to those from SM backgrounds,
and as a result, the acceptance is smaller than for models with larger Dm. For these models
with compressed mass spectra, the largest uncertainties in the signal yields arise from the jet
energy scale (up to 40%), Emiss

T resolution in fast simulation (up to 50%), and limited size of MC
samples (up to 60%). These uncertainties reach their maximal values only for models where
the acceptance of this analysis is very small and the sensitivity is similarly small. For models

SR

M.LIU

•1 lepton (e/μ)+bb + large 
missing transverse energy:  

•leptons: trigger and handle 
against backgrounds 

•Higgs-> bb (60%). Mass 
peak in the SM kinematic 
tails. ttbar-> 2L background 
directly controlled in the 
mass sideband. 

•First result to probe chargino 
mass to 500 GeV in WH decay

UCSB-UCSD-FNAL July 26, 2013

9

Leptonic SUSY Meeting

Single Lepton AnalysisSingle Lepton Analysis
● Final state similar to existing 1l direct stop search
● Extend 1l stop analysis to cover this final state

— Use same triggers, object selections, etc
• And benefit from experience in understanding MET, Mt tails

— Have 2 fewer jets, additional handle in dijet mass: m(bb) = m(H)
• Natural control region inverting m(bb) 

Approved stop 1l analysis
SUS-13-011 Extension to this final state

lost

10.1007/JHEP11(2017)029

https://arxiv.org/abs/1706.09933
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WH(lνbb) + MET: pushing Wino limits 45

• Probes chargino mass up to 500 GeV 
in the WH topology 

• 300 GeV improvement wrt 8 TeV reach 

• Dominates the sensitivity in the bulk.

M.LIU

8 TeV

JHEP 03 (2018) 160  

https://arxiv.org/abs/1801.03957
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5. Search strategy and event selection 5

Another small background contribution comes from events with one or more non-prompt lep-157

tons, such as those from semi-leptonic decays of heavy-flavor hadrons which arise mainly in158

W+jets and tt+jets production. The stringent lepton identification requirements are designed159

to suppress this contribution as much as possible. Additional requirements that p
miss
T be sub-160

stantial, that there be no b-tagged jets, and that the dilepton mass not be small further suppress161

this contribution. In the e±µ± channel, a requirement M
max
T > 90 GeV is placed to reduce the162

contribution from the lost-lepton background from WZ production; M
max
T is the largest trans-163

verse mass obtained from p
miss
T and any lepton in the event. Background contributions from164

events containing misidentified or converted photons and from events with a lepton charge165

misassignment are minor. The details of the event selection for the SS category are listed in Ta-166

ble 1. There are six signal regions defined according to the value of Mjj (Mjj-in or Mjj-out) and167

the flavors of the leptons: e±e±, e±µ±, or µ±µ±.168

Table 1: Event selection criteria for the SS category, which contains events with two same-sign
leptons and at least two hadronic jets

Variable e±e± e±µ± µ±µ±

Signal leptons exactly 2 tight equally-charged leptons with pT > 25 GeV
Additional leptons no additional rejection lepton
Isolated tracks no (additional) isolated tracks
Jets � 2jets with pT > 30 GeV, |h| < 2.5
b-tagged jets no b-tagged jet

Dijet mass (closest DR) 65 < Mjj < 95 GeV (Mjj-in) OR

|Mjj � 80 GeV| � 15 GeV (Mjj-out)
Dijet mass (leading jets) < 400 GeV
Dh of two leading jets < 1.5
p

miss
T > 60 GeV > 60 GeV if Mjj-out

M`` > 40 GeV > 30 GeV > 40 GeV
M`` |M`` � MZ| > 10 GeV —
M

max
T — > 90 GeV —

The 3` category contains signal events with all three W bosons decaying leptonically, so we169

require exactly three charged leptons. Since the total charge of the three leptons is ±1, there170

can be zero, one, or two SFOS pairs (denoted 0 SFOS, 1 SFOS, 2 SFOS); we designate three sig-171

nal regions accordingly. The background sources are similar to those in the SS category. The172

contribution from three prompt-lepton final states (mostly WZ production) is suppressed by re-173

quiring the invariant mass of any SFOS pair to be incompatible with the Z boson mass and with174

low-mass resonances. Additional reduction can be achieved through the following considera-175

tions. If exactly one SFOS lepton pair is found, the transverse mass MT of the third lepton and176

~pmiss
T , M

3rd
T , must be larger than 90 GeV. For events with no SFOS pairs, M

max
T is required to be177

larger than 90 GeV. These MT requirements reduce the lost-lepton background contributions,178

which originate mostly from WZ production.179

Background contributions from non-prompt leptons and converted or misidentified photons180

are reduced by requiring high p
miss
T , high pT of the three-lepton system pT(```), and a large181

azimuthal angular separation Df
�
~pT(```),~pmiss

T
�

between ~pmiss
T and the transverse momentum182

of the three leptons ~pT(```). The non-prompt lepton background due to tt production is further183

reduced by rejecting events with more than one jet or with any b-tagged jets. Background184

contributions from photon conversions in which the photon is radiated in a Z boson decay are185

suppressed by requiring that the three-lepton invariant mass M``` is not close to the Z boson186

mass. The details of the 3` selection requirements are presented in Table 2.187
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Table 2: Event selection criteria for the 3` category, which contains events with exactly three
leptons

Variable 0 SFOS 1 SFOS 2 SFOS

Signal leptons exactly 3 tight charged leptons with pT > 25/20/20 GeV
and charge sum = ±1e

Additional leptons no additional rejection lepton
Jets  1jets with pT > 30 GeV, |h| < 5
b-tagged jets no b-tagged jet
pT(```) — > 60 GeV
Df

�
~pT(```),~pmiss

T
�

> 2.5
p

miss
T > 30 GeV > 45 GeV > 55 GeV

M
max
T > 90 GeV —

M
3rd
T — > 90 GeV —

SF lepton mass > 20 GeV —
Di-electron mass |Mee � MZ| > 15 GeV —

MSFOS — |MSFOS � MZ| > 20 GeV
and MSFOS > 20 GeV

M``` |M``` � MZ| > 10 GeV

For these event selection criteria, about one third of the selected signal events originate from188

resonant Higgs production as indicated in Fig. 1(b).189

6 Background estimation190

The background sources for the SS and 3` categories are essentially the same. We consider four191

such sources: lost leptons, three leptons from W decays, non-prompt leptons, and “other” mi-192

nor sources. The lost-lepton background contributions come from final states with one or more193

Z bosons: WZ, ttZ, and ZZ. We estimate this contribution using a three-lepton control region194

(CR) with at least one SFOS pair compatible with the decay of a Z boson. The background in195

which the SS lepton pair or all three leptons stem from the decay of a W boson is estimated196

from simulation and validated in an appropriate control region. Background yields from non-197

prompt leptons are calibrated using a control region in which one lepton passes the “loose”198

identification requirements but fails the “tight” requirements (see Section 4). The other back-199

grounds are predicted using simulated event samples and are validated using the data. The200

following sections provide the details of the background estimations.201

6.1 Lost-lepton and three-lepton background202

The background prediction for both the SS and the 3` categories rely on the selection of a pair203

of leptons consistent with a Z decay. This background is expected to contribute from about one204

third to over 90% of the total background depending on the signal region.205

Simulations suggest that about two thirds of the lost-lepton events in the signal regions of206

the SS category are present because a lepton does not mass the pT and h requirements. The207

remaining lost leptons are rejected by identification and isolation requirements. For the SS208

category, events with three leptons are selected. The additional third lepton must have pT >209

20 GeV. Among those three leptons, an SFOS lepton pair that satisfies |MSFOS � MZ| < 10 GeV210

is required. All other SS selection criteria listed in Table 1 are imposed except for the selection211

on Mjj in order to retain a sufficient number of events. In these events, the jets stem from initial-212

state radiation and have similar kinematic distributions in both the signal and control regions,213
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Populations of objects show dark 
matter, dark energy 

Region-based CNNs on 
heterogeneous compute devices 

•LSST:  20 Tb / night 

•1 Billion transient alerts /night 

•Dark Energy Survey: Sky Footprint of Observations

Long: competition between faint galaxies, 
transient objects 
Short: Weather, annual modulation of sky positions 
Smart telescopes: reinforcement learning for 
optimal scheduling and control

Challenge of scheduling on multiple time 
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• Smaller cone-size: 0.4—>0.3 
• Add lepton candidates to Isolation: 

improves rejection against heavy flavor 
decay (B→D→2 leptons + X), one of the 
leptons is selected as good lepton.

49
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10

(a) (b)

(c)

Figure 2: Prompt lepton versus non-prompt lepton efficiencies for various selections and def-
initions of the isolation criteria. Working points indicated as ”SS ID” and ”3L ID” refers to
lepton IDs for same-sign channel and three-lepton channel respectively. The isolation work-
ing points that the scale factors are provided by the POGs are indicated as well. (a) Prompt
central electron (i.e. |h| < 1.479) versus non-prompt electron efficiencies for various selections
and definitions of the isolation criteria. (b) Prompt forward electron (i.e. |h| � 1.479) versus
non-prompt electron efficiencies for various selections and definitions of the isolation criteria.
(c) Prompt muon versus non-prompt muon efficiencies for various selections and definitions
of the isolation criteria.

3.5 X background rejection for muons 
@ 70% efficiency

Available isolation on the market

6

Chang
UCSD FNALUCSB UNL

The go-to isolation variable in CMS is the “relative isolation” variable

Lepton
charged 
hadrons

neutral 
hadrons photons

ΣPF cand’s PT in the cone – PU

Lepton PT
IsoRel =

Two variations possible:
➊ Change cone-size
      (typically 0.3 or 0.4)

➋ Change PU subtraction scheme
      (Effective area correction “EA” or ∆β correction “DB”)

Available isolation on the market

6

Chang
UCSD FNALUCSB UNL

The go-to isolation variable in CMS is the “relative isolation” variable

Lepton
charged 
hadrons

neutral 
hadrons photons

ΣPF cand’s PT in the cone – PU

Lepton PT
IsoRel =

Two variations possible:
➊ Change cone-size
      (typically 0.3 or 0.4)

➋ Change PU subtraction scheme
      (Effective area correction “EA” or ∆β correction “DB”)

CMS official 
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Figure 2: Comparison of the observed numbers of events to the predicted backgrounds in
the nine signal regions. The WWW signal shown is stacked on top of the background and is
based on the theoretical cross section. The lower panels show the ratio of WWW signal to the
background prediction.

L = LSM + Â
i

ci

L2Oi + Â
j

f j

L4Oj + · · · (2)

where O represents the higher-order dimension-6 and dimension-8 operators with coefficients355

ci and fj. The operators Oi are constructed out of SM fields and respect gauge invariance. The356

coefficients are considered to be unknown and treated as free parameters to be determined357

by the data. The following CP-conserving terms can be included in the non-SM part of the358

Lagrangian [53]:359
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ŴµnŴ
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• Improve cut-based analysis:  
• e.g. 0SFOS (e+/-e+/-m-/+,m+/-m+/-e-/+) 
• Large fraction of fake leptons in 2016 analysis: 

• Dilepton ttbar 
• Low event yield:  

• susceptible to statistical fluctuations. 

• New selection features:  
• Customized IDs for e+/-e+/-m-/+,m+/-m+/-e-/+   
• Soft b jet veto : 30% fake rejection, no signal loss 
• Lifted kinematic selections 
• Overall improvement >50%. 

• In parallel, exploring MVA based analysis. 

Towards Run-2 Result 50
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•Handful of other VVV events produced with 
full Run-2 data (Leptonic channels). 

•WWZ(4l) has the best expected sensitivity: 
3.5 σ 
•Events categorized with W leptons(ee/mm 

vs em). 
Expect the first evidences of WWW and WWZ 
production with full Run-2 dataset

Covering all VVV processes 51
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4

for the WWW production with the 13 TeV Run 2 data set [28].73

In this note, we present the search for the WWZ, WZZ, and ZZZ productions in multi-lepton74

final states, specifically in four or more lepton final states. Previously only the four lepton final75

states have been explored in [27] and a search for a triboson production in five or more lepton76

final states have never been done.77

2 Overview78

The analysis is binned in the lepton multiplicity as events from different signal processes can be79

distinguished easily by the number of leptons in each event. For example, the WZZ process is80

the only signal process that produces events in the five-lepton final state, and the ZZZ process81

is the only signal process that produces events in the six-lepton final state. In contrast, all82

three signal processes can produce events in the four-lepton final state. However, they can be83

distinguished, although not perfectly, by tagging pairs of leptons from Z boson decays.84

The cross sections of the WWZ, WZZ, and ZZZ productions at the LHC are rather small. The85

total production cross sections are 0.35 pb, 0.092 pb, and 0.037 pb, respectively. The calculations86

were done at next-to-leading order (NLO) QCD accuracy [29–32] using MADGRAPH5 AMC@NLO87

[33] interfaced to PYTHIA 8. Both the on-shell and off-shell contributions are included. The88

Higgs contributions via the VH associated production process has been generated at NLO QCD89

accuracy also using MADGRAPH5 AMC@NLO interfaced to PYTHIA 8 and are included as a90

part of the signal. The sample is normalized to the cross section calculated at the next-to-next-91

leading order (NNLO) QCD plus NLO EW [34–36]. The Table 1 summarizes the signal pro-92

cesses cross sections, branching fractions to different lepton final states and expected number93

of events with 137 fb�1 of data.94

Table 1: Summary of signal process cross section, branching fractions and expected total num-
ber of events produced in Run 2 data set.

Quantities WWZ WZZ ZZZ Ref.
spp!VVV non-VH (fb) 188.9 36.0 23.1 NLO QCD [29–32]
sVH!VVV (fb) 165.1 55.7 14.0 NNLO QCD + NLO EW [34–36]
stotal (fb) 354.0 91.6 37.1
BVVV!4` (%) 1.16 0.81 3.22

Branching fractions from [37]BVVV!5` (%) - 0.39 -
BVVV!6` (%) - - 0.13
stotal ⇥ BVVV!4` (fb) 4.12 0.74 1.19
stotal ⇥ BVVV!5` (fb) - 0.36 -
stotal ⇥ BVVV!6` (fb) - - 0.05
stotal ⇥ BVVV!4` ⇥ 137 fb�1 (N evt.) 564 101 163
stotal ⇥ BVVV!5` ⇥ 137 fb�1 (N evt.) - 49.3 -
stotal ⇥ BVVV!6` ⇥ 137 fb�1 (N evt.) - - 6.85

Events in the four-lepton final state are swamped by various other SM processes with much95

larger cross sections. By exploiting differences in lepton flavor compositions between signal96

and background processes, the backgrounds can be reduced significantly. Any top quark re-97

lated processes that also enters the four-lepton final state can be suppressed by tagging the b98

quark originated jets, which are suppressed in the signal processes.99
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Table 12: Sensitivity estimate from yields predicted purely by simulated events for full Run 2
data set corresponding to 137 fb�1.

category Nsignal Nbkg

q
2((Nsignal + Nbkg) ln (1 + Nsignal/Nbkg)� Nsignal) Nsignal/Nbkg

eµ 10.89 ± 0.91 9.49 ± 0.51 3.1s 1.1
ee/µµ 5.2 ± 0.56 7.43 ± 0.32 1.7s 0.7
Combined 3.5s 1.0
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(b) Yields in ee/µµ category after all selections are ap-
plied.

Figure 8: The m`` distribution used for the final fit and a single bin cut-and-count yields in the
ee/µµ category.

5.2 Five-lepton final state315

5.3 Six-lepton final state316

6 Backgrounds317

6.1 Four-lepton backgrounds318

There are mainly six background components to the four-lepton final state. They are ZZ, ttZ,319

tWZ, WZ,WZ, Higgs, and other rare SM processes. The largest background contribution to320

the four-lepton final state comes from the ZZ background process. ZZ background process has321

a cross section that is three orders of magnitude larger than that of the signal process. The con-322

tribution from ZZ background process in the signal region is estimated from the control region323

(CR) events that identify two Z boson candidates. The details of the background estimation is324

detailed in Section 6.1.1.325

The second largest background contribution comes from the ttZ background process. ttZ back-326

ground process has a cross section that are approximately 50 times larger than that of the signal327

process. However, the ttZ background process events are reduced by requiring that there are328

no b-tagged jets in each event. The contribution from ZZ background process in the signal329
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• 3000 fb-1 data expected at the HL-LHC 

• e.g. Higgsinos: Low cross section, 
challenging signatures 

• Δm ~ tens of GeV : Soft decay products 

• Δm ~ hundreds of MeV : Long-lived 
signatures

56

Compressed ewkinos are well 
motivated by both naturalness and DM

arxiv:1608.05379

Coannihilation of c0 and c± can give relic 

density consistent with cosmology

Naturalness predicts higgsinos 
with mass few hundred GeV

Typical Δm of ~few-tens of GeV

~H~χ1

0
~χ1

±
~χ2

0

mass

~
t 1

~
t 2 ~

b1

~g

“Natural” SUSY Spectrum

Δm
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❖ In R-parity conserved models, result in di-boson(W/Z/h/γ) associated with missing 
transverse momentum (Etmiss)

✦ Results in a final state of  WH/WZ in Wino Models.

❖ In GMSB model, mass degenerate

✦ Enhanced pair production of                

✦ Also produce a signature of diboson+missingEt.

✦ Results in a final state of ZZ/HZ/HH in higgino models.

2 3 Signal models and Monte Carlo simulation

The first class of models assumes chargino-neutralino (ec±
1 ec0

2) production. The chargino always44

decays to the W boson and the LSP, ec0
1. The second neutralino can decay to either of the Z or H45

bosons plus the LSP. We consider three choices for the ec0
2 decay: a branching fraction of 100%46

to Zec0
1 (WZ topology), a branching fraction of 100% to Hec0

1 (WH topology), and a branching47

fraction of 50% to each of these two decays. This model is depicted in Fig. 1 showing the48

two possible decays. The particles ec±
1 and ec0

2 are assumed to be wino-like states, while ec0
1 is49

assumed to be bino-like.50

p
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±
1

W±

χ̃
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p χ̃
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1

H

Figure 1: Chargino-neutralino pair production with the chargino decaying to the W boson and
the LSP and the neutralino decaying to either (left) a Z boson and the LSP or (right) a H boson
and the LSP.

The second class of models assumes neutralino-neutralino production. For the wino-like neu-51

tralinos the production cross section is very small, and thus we consider a specific gauge-52

mediated supersymmetry breaking (GMSB) model with quasi-degenerate higgsinos as next-53

to-lightest SUSY particles (NLSPs) and a gravitino (eG) as the LSP [42–44]. All of ec±
1 , ec0

2, and ec0
154

are assumed to be nearly degenerate in mass, such that in the production of any two of these,55

ec±
1 or ec0

2 decay immediately to ec0
1 and soft particles that do not impact the analysis, effectively56

yielding pair production of ec0
1 ec0
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Electroweak and Compressed SUSY LPC EventD. Olivito (UCSD)

Decays, without SleptonsDecays, without Sleptons

(~B)~χ1

0

~χ1

± (~W )~χ2

0

W Z/h

~χ1

0

~
G

Z/h/g

GMSB / GGM

Pair production signature: Diboson + MET
W(*), Z(*), Higgs, Photons

→ leptons, jets only from boson decays or ISR, photons
Need to combine analyses to cover all boson decays

56

Compressed ewkinos are well 
motivated by both naturalness and DM

arxiv:1608.05379

Coannihilation of c0 and c± can give relic 

density consistent with cosmology

Naturalness predicts higgsinos 
with mass few hundred GeV

Typical Δm of ~few-tens of GeV

~H~χ1

0
~χ1

±
~χ2

0

mass

~
t 1

~
t 2 ~

b1

~g

“Natural” SUSY Spectrum

Δm

Decays via bosons

Δm~ hundreds of 
MeV to 

tens of GeV

Wino-like 
45 fb*

Higgsino-like 
11 fb*

*Cross-sections for 500 GeV sparticles 
 @ 13 TeV(           only)
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Figure 8: The observed 95% CL exclusion contours (black curves) assuming the NLO+NLL
cross sections, with the variations corresponding to the uncertainty in the cross sections for
the higgsino simplified models. The dashed (red) curves present the expected limits with the
associated band covering 68% of the limits in the absence of signal.
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Microsoft Brainwave 53

Microsoft Brainwave

21

• Provides a full service at scale
(more than just a single co-processor)

• Multi-FPGA/CPU fabric accelerates
both computing and network

• Weight retuning available: retrain supported 
networks to optimize for a different problem

Brainwave supports:
• ResNet50
• ResNet152
• DenseNet121
• VGGNet16

Catapult_ISCA_2014.pdf

LPC Topic of the Week Kevin Pedro

• Mature service at scale  
(more than just a single co-
processor) 

• Multi-FPGA/CPU fabric 
accelerates both computing 
and network 

• Models supported: 
• ResNet50, ResNet152, 

DenseNet121 ,VGGNet16… 
• Partially fixed neural network 

architecture.  weights can be 
retuned. 

https://indico.cern.ch/event/822126/contributions/3500184/attachments/1906428/3148591/Catapult_FastML_Fermilab_2019.pdf
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WWZ: smaller rate but clean 54

M.LIU

40% smaller than WWW , 
leptonic decays

4 : Tag Z-> , WW-> (eμ/ee/μμ)

• eμ shown as example: 
kinematic selections against 
ZZ

ℓ ℓℓ

τ

τ
Ζ

e
ν
ν
μ

mT2 = min
~p

n(1)
T +~p

n(2)
T =~p miss

T

h
max

⇣
m(1)

T (~pn(1)
T ,~pe

T), m(2)
T (~pn(2)

T ,~pµ
T)
⌘i

=~p miss
T

h

PT,4l [GeV]

A

BC

Background ZZZZ → (!!)on-Z + ee/µµ

M
ET

 [G
eV

]

B

A

C

Brute force scanned multi-dimensions for optimal cut points
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Chang
UCSD FNALUCSB UNL NWBU Caltech LLR

Event selections

eµ category ee/µµ category
Preselection See previous slides

MLL - |MLL – MZ| > 10 GeV

MT2
MT2 > 25 GeV

(if MLL < 100 GeV) -

PT,4L, MET - Bin A, B, C
See right
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leading and subleading W lepton candidate and p

miss
T

in eµ category of events

Figure 13: Discriminating variables in eµ category of events after preselection.

p
miss
T range of 70 GeV < p

miss
T < 120 GeV but with pT,4` > 40 GeV are added as well. These

events are further binned in pT,4` of (40, 70, •)GeV. (i.e. Bin B and C.)

The summary of all the selections applied to ee/µµ category is also shown in Table 21. The
expected yields based on simulation after all the selections for the ee/µµ category are applied
are shown in Table 22. The total number of signal and background process events in the ee/µµ
category is also reported.

Based on the number of expected signal and background process events, a sensitivity estimate
can be assessed. Table 23 shows the sensitivity obtained from yields purely predicted by the
simulation. The ee/µµ category is less sensitive than the eµ category with sensitivity around
1.9s but when combined with eµ category, the overall analysis leads to approximately 4.2s.
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Figure 14: Discriminating variables in ee/µµ category of events after preselection.
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The summary of all the selections applied to ee/µµ category is also shown in Table 21. The
expected yields based on simulation after all the selections for the ee/µµ category are applied
are shown in Table 22. The total number of signal and background process events in the ee/µµ
category is also reported.

Based on the number of expected signal and background process events, a sensitivity estimate
can be assessed. Table 23 shows the sensitivity obtained from yields purely predicted by the
simulation. The ee/µµ category is less sensitive than the eµ category with sensitivity around
1.9s but when combined with eµ category, the overall analysis leads to approximately 4.2s.
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•Gain experience in deploying co-processors in local clusters with cloud native tools: 
docker image, kubernetes 
• Benchmark latency and scaling performance, compare with previous studies 
• Can be used for neutrino and cosmology experiments as of ~today—> next slide 

Edge data box at Feymann 
computing center

Docker container on server 
 (PCIe connection): 14 ± 25 ms

Fermilab computing 
cluster: 20 ± 30 ms

Local laptop: 68 ± 27 ms

CERN (Geneva): 168 ± 62 ms
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12 Javier Duarte et al.

Fig. 13: Standalone CPU inference time per image (top)
and images per second (bottom) as a function of batch
size for the TensorFlow o�cial ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed
line indicates a time of 10 ms, consistent with the on-
prem inference time of the Brainwave system.

rectly to either the remote or on-prem Brainwave per-
formance; however, they provide a useful characteriza-
tion of limiting performance. The purple GPU points
utilize the Brainwave implementation of ResNet-50

where, as with the Brainwave implementation on CPU,
a protobuf file is imported. This is what we would ex-
pect within CMSSW for custom models in the future and
represents the closest direct comparison of a GPU with
the Brainwave FPGA implementation. The other GPU
lines consist of the o�cial ResNet-50 as provided within
TensorFlow. The o�cial ResNet-50 can have better in-
ference times by factors of a few. An optimized version
of ResNet-50 is also available. It gives a 0–20% reduc-
tion in inference with respect to the o�cial ResNet-50.
All of the GPU benchmarks also follow the expected
trend for large image batch sizes, with an improvement
in the aggregate performance. The per-image latency
for a batch of one image is found to be anywhere from

5 to 10 times worse than the ultimate performance on
a GPU.

Fig. 14: Standalone GPU inference time per image (top)
and images per second (bottom) as a function of batch
size for the TensorFlow o�cial ResNet-50 model com-
pared with the Azure ResNet-50 model. The dashed
line indicates a time of 10 ms, consistent with the on-
prem inference time of the Brainwave system.

Within CMSSW, we find that importing the protobuf
model of ResNet-50 can take approximately 5 min-
utes. Once the model is imported, subsequent infer-
ences take, on average, 1.75 seconds per inference. This
benchmark point can most closely be compared with
the standalone single-thread CPU performance that is
shown in Fig. 13, approximately 500 ms. The main dif-
ferences between the standalone performance and the
CMSSW tests are two-fold: the TensorFlow version (1.06
vs. 1.10) and the processor speed (2.6 GHz vs. 3.6 GHz).
It is not uncommon for hardware across the global com-
puting grid of the CMS experiment to vary in per-
formance significantly, which is another consideration
when deploying both on-prem and remote services.

data throughout compared to 56

Figure 13: Left: mean total time and distribution (in seconds) to process 5000 jet images through
ResNet-5� on the Brainwave system for di�erent numbers of simultaneous processes. The vertical
bars indicate the extrema. The horizontal axis scale is arbitrary. Right: Throughput of the FPGA
service as the number of inferences per second for di�erent numbers of simultaneous processes. The
error bars represent the standard deviation.

performance, we perform two types of tests. First, we do our own standalone python benchmark tests
with the azure-ML implementation of ResNet-5� as well as the TensorFlow implementation of the
ResNet-5� model. Here, we verify our results against the literature. While many more detailed
studies exist, these benchmarks validate our numbers against other similar tests. Second, we import
the ResNet-5�model file provided by Brainwave into CMSSW and perform inference on the local CPU
with the version of TensorFlow currently in the CMSSW release 1.

The standalone python benchmark results for CPUs are presented in Fig. 14. The CPU used in
these tests is an Intel i7 3.6 GHz. For the CPU, we compare the number of cores used for either
the Brainwave implementation of ResNet-5� or the conventional TensorFlow ResNet-5�. The
performance is shown versus the image batch size; as a reminder, particle physics applications can
vary in their batch sizes anywhere from O(1) � O(100) batches. As expected, the performance is
stable versus batch size. For both models, we observe roughly the same inference time, ranging from
roughly 180 ms to 500 ms. Additionally, we observe that the model inference time is close to optimal
when using 4 cores, with small improvements beyond.

Figure 15 shows the inference times on GPUs. It is important to note that the GPU used in
these tests, an NVidia GTX 1080 Ti, is connected directly to the CPU, rather than using RPC over a
network for communication. Therefore, these results cannot be compared directly even to the on-prem
Brainwave performance; however, they provide a useful characterization of limiting performance. The
blue GPU points utilize the Brainwave implementation of ResNet-5� where, as with the Brainwave
implementation on CPU, a protobuf file is imported. This is what we would expect within CMSSW

1It takes significant e�ort to adapt TensorFlow to be compatible with the multithreading pattern used in CMSSW, and
hence the latest version of TensorFlow is usually not available to be used in the experiment’s software.

– 16 –

Same setup as last page 
Single Service 

Parallel CPU jobs: 
5000 images/job

Comparable max data throughout: 600-700 images/sec

GPUBrainwave cloud service

NVidia GTX 1080 

TensorFlow v1.10 
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Neutrinos oscillate:
Lepton number not conserved

5

Next steps
Graph Neural Network based endcap muon triggers

Single muon and tau→3mu 

Next steps:
 Add gen information (pt, eta) in the training
 Define segment selection for a track-building
 Compute a muon PT regression
 Study efficiencies and rates
 Extend method to multi-object signatures: τ→3μ   

At the LHC 
What about in charged leptons? τ->3μ

SM: 
Currently:< 

10−25

10−8



M.LIUImproved lepton isolation definition 

• Smaller cone-size: 0.4—>0.3 
• Add lepton candidates to Isolation: 

improves rejection against heavy flavor 
decay (B→D→2 leptons + X), one of the 
leptons is selected as good lepton.

58
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10

(a) (b)

(c)

Figure 2: Prompt lepton versus non-prompt lepton efficiencies for various selections and def-
initions of the isolation criteria. Working points indicated as ”SS ID” and ”3L ID” refers to
lepton IDs for same-sign channel and three-lepton channel respectively. The isolation work-
ing points that the scale factors are provided by the POGs are indicated as well. (a) Prompt
central electron (i.e. |h| < 1.479) versus non-prompt electron efficiencies for various selections
and definitions of the isolation criteria. (b) Prompt forward electron (i.e. |h| � 1.479) versus
non-prompt electron efficiencies for various selections and definitions of the isolation criteria.
(c) Prompt muon versus non-prompt muon efficiencies for various selections and definitions
of the isolation criteria.

3.5 X background rejection for muons

Available isolation on the market

6

Chang
UCSD FNALUCSB UNL

The go-to isolation variable in CMS is the “relative isolation” variable

Lepton
charged 
hadrons

neutral 
hadrons photons

ΣPF cand’s PT in the cone – PU

Lepton PT
IsoRel =

Two variations possible:
➊ Change cone-size
      (typically 0.3 or 0.4)

➋ Change PU subtraction scheme
      (Effective area correction “EA” or ∆β correction “DB”)

Available isolation on the market

6

Chang
UCSD FNALUCSB UNL

The go-to isolation variable in CMS is the “relative isolation” variable

Lepton
charged 
hadrons

neutral 
hadrons photons

ΣPF cand’s PT in the cone – PU

Lepton PT
IsoRel =

Two variations possible:
➊ Change cone-size
      (typically 0.3 or 0.4)

➋ Change PU subtraction scheme
      (Effective area correction “EA” or ∆β correction “DB”)

CMS official 

Last presentation (Feb. 20)

5

Chang
UCSD FNALUCSB UNL

*See presentation by Hannsjörg Weber https://indico.cern.ch/event/706239/

Re-optimized a few cuts in the ID (details are in last presentation*)

PT,Ratio = PT,Lep / PT,JetClose-within-∆R<0.4
(If no jets found nearby, then PT,Ratio = 1)

The main change was the introduction of PT,Ratio variable
(Improved rejecting non-prompt muon rate by ~35%. Improvement is also significant in electron.)

5.4 W-polarization and quark-gluon composition 13

possible to distinguish the fermion and antifermion in the W decay, which restricts the distri-390

butions to 0  cos qJ  1. Figure 6 (b) shows the helicity angle between the two pruned subjets391

for a 600 GeV X resonance, differing from Fig. 6 (a) in that it includes reconstruction and accep-392

tance effects. The depletion of events at | cos qJ | ⇡ 1 is due to two acceptance effects. When393

qJ ⇡ 0, the partons would be overlapping and thus reconstruction of two subjets is difficult.394

When qJ ⇡ p, the one subjet tends to be much softer than the other and this can cause the395

loss or misidentification of the subjet originating from one of the W decay partons. It appears396

that transversely polarized W bosons decay with the quarks emitted closer to the direction of397

the W, and therefore can be used to determine the polarization of the W boson. Going further,398

the reconstructed cos qJ is compared to the parton-level information. The resolution on the an-399

gular distance between two subjets in the laboratory frame is approximately 10 mrad, which400

translates to a resolution of approximately 65 mrad on qJ in the W rest frame. The resolution401

remains relatively constant over a large range of W jet pT.402
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Figure 6: (a) Generator level cos qJ distributions for longitudinally and transversely polarized
W bosons. (b) Subjet angular observables after a selection on pruned jet mass of WL and WT

samples for jets with 250 < pT < 350 GeV.

Fig. 4 (b) compares the signal-to-background discrimination of the W tagger for pure WL and403

pure WT signal samples. We observe that the pruned jet mass selection is less efficient for404

WT; this is consistent with Fig. 6 (b), where the WT jets with | cos qJ | ⇡ 1 are removed by405

the pruned jet mass selection. This can be explained by a higher asymmetry in the pT of the406

two quarks from the WT decay, such that the pruning algorithm in a considerable fraction407

of events rejects the particles from the lower pT quark and yields a much lower jet mass. In408

addition, the DR separation between the partons for pure WL bosons is smaller on average409

than for WT bosons and is more likely to be accepted by a CA8 jet. Of the two effects, the410

dominant contribution depends on the transverse momentum of the W jet. For higher jet pT,411

the difference in the reconstructed cos qJ and DR between WL and WT becomes larger since the412

more QCD-like topology of the transversely polarized W bosons becomes important, i.e. it is413

easier to distinguish WL and WT. The t2/t1 discrimination power is also degraded for WT,414

although, to a smaller degree than the pruned jet mass.415

The composition of the QCD background also influences the discrimination of the variables416



M.LIUPixel detector of CMS at the LHC
Need to cope with more challenging LHC 
environment in Run 2 & Run 3 (300 fb−1) until 
HL-LHC upgrade (2023). 
Module designed to reduce dynamic 
inefficiency 
Digital readout chip (ROC). Faster readout. 
Geometry design: ensure tracking and vertex 
quality 
Added layers, channels doubled 
Services: reduce material budget 
CO2 cooling, DCDC powering, Service 
electronics out of tracker volume.

59 M.Liu 

The new pixel detector 
•  Installation during February/March 2017.  
•  A smooth transition was needed from installation to 

physics data taking: sensor technology, pixel size and 
module concept very similar. 

•  Move from analog to digital readout chip (ROC)          
� reduced buffer overflow, avoid hit inefficiency. 

•  Move closer to the beam (2.9 cm instead of 4.4 cm)     
� improve vertex reconstruction. 

•  Move from 3- to 4-hit coverage (one additional 
forward disk and barrel layer)              
� increase redundancy and track finding efficiency. 

•  New bi-phase CO2 cooling system 
•  Move service electronics further away from 

interaction point. 
 � reduce material budget/mass. 

2017/09/05 Hannsjörg Weber (Fermilab) 5 

upgrade 

Phase1 upgrade improvements !
•  Present detector designed for 1034cm-2s-1 and     

25ns bunch spacing!
•  Expect twice as much before LS3 (2024)!

–  50 pileup events, hit rates of ~600MHz/cm2!

Ø  Improve redundancy: from 3 to 4 layers (BPIX),   
from 2 to 3 disks on each end (FPIX); impacting 
tracking efficiency and purity!

Ø  Move closer to beam: improve vertexing and b-
tagging!

Ø  Avoid hit inefficiency of up to 16% due to buffer 
overflow in readout chip (ROC) with new digital 
ROC!

Ø  Reduce mass: use CO2 cooling instead of 
water-glycol!

!

8/4/16!Petra Merkel | CMS Phase1 Pixel Upgrade!4!

Katja Klein The Phase-1 Upgrade of the CMS Pixel Detector 3

So why upgrade?

Material budget

R
ad

ia
tio

n 
le

ng
th

K

Current pixel detector  
x Upgrade pixel detector

Tracking efficiency

ttbar sample, 50 pileup events

• Present pixel detector was designed for 1�1034 cm-2s-1 @ 25ns bunch spacing
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Î Low redundancy (3 layers) Æ impact on tracking efficiency and fake rate
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FPIX Phase I Upgrade Cooling!

23 May 2016!FPIX Laser Welding!4!

•  Six stainless steel CO2 cooling loops per Half Cylinder !
•  Supply! !Half Disk! !Return!

•  Eight welds per loop !
–  2 on Supply tube, 4 on Half Disk tube, 2 on Return tube!
–  48 welds per Half Cylinder!
–  192 welds in all of FPIX!

Half	Disks	

Interac(on	
Point	

Port	Cards	DC-DC	
Converters	Filter	

Boards	End	Flange	

Supply	Lines	
Return	Lines	

FPIX	HALF	CYLINDER	

Beam	Line	

CCU	

Ancillary	electronics	used	to	preheat	
CO2	from	liquid	to	two-phase	

M.Liu Half cylinders and service electronics 60

PoS(ICHEP2016)741

CMS Forward Pixel Upgrade Electronics and System Testing Hannsjörg Weber

1. The CMS phase-1 pixel detector upgrade

The present CMS pixel detector will be replaced with an upgraded pixel system [1] in the
LHC year-end shutdown 2016/2017. The upgrade of the pixel detector has been designed to cope
with the higher luminosities expected in the coming years, and in particular after the next LHC
shutdown. The new upgraded detector will have higher tracking efficiency and lower mass with
four barrel layers and three forward/backward disks to provide a hit coverage up to |h |= 2.5. The
forward part of the pixel detector (FPIX) contains 672 pixel modules mounted on twelve half disks,
each disk made out of two rings. These disks are mounted on four mechanical half-cylinders, two
on each side of the interaction point.

2. Establishing a full readout chain for the forward pixel detector

The principle of the readout chain of the upgrade is largely unchanged from that of the current
detector. The system can be separated into two systems: A front-end part, comprised of pixel mod-
ules and readout and control electronics that are located on the half-cylinders inside the detector, as
well as a back-end part outside the CMS detector whose front-end electronics control the detector
via optical fiber connections. The on-detector readout electronics consist of three major parts: the
pixel module itself, readout boards called portcards, as well as a control and communication unit
(CCU board). The back-end infrastructure of the current pixel detector, based on the VME stan-
dard, will be replaced by a µTCA system. Both the portcards as well as the CCU board receive
clock and control data via optical fibers from front-end controller (FEC) boards located in a µTCA
crate, while the pixel data are sent to front-end driver (FED) boards located in the same crate. The
conversion from electrical to optical signals is performed on small converter boards connected to
the portcards.

While the FPIX modules are tested at a dedicated stand, both the portcards and CCU boards
are tested within the full readout chain. For this, a group of 14 pixel modules are connected to a
portcard at a time. The portcard itself is controlled by the CCU board using the I2C protocol. The
calibration signals from the FEC board go to the modules through the portcard. The pixel data are
sent via the portcard to a FED board. A portcard together with a 14 module stand, a CCU board,
and a µTCA crate are shown in Fig. 1.
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Figure 1: Left: a portcard with 14 connected pixel modules, middle: a CCU board, right: a µTCA crate
containing FEC and FED boards.

1

CCU
• Portcard: 

• Distributes power and bias voltages, clock, trigger 
and calibration signals to modules. Programs 
Modules (TBM and ROCs)

• Electric/optical Converters mounted 
• Digital opto-hybrid (DOH): Optical—>Electrical
• Pixel opto-hybrid (POH): Electrical—>Optical

• CCU:Communication & Control Unit 
• uTCA crate hosting front-end controller/drivers.



M.LIUFPIX assembly at Fermilab 
One page general plan: modules, assembly, ship to cern, 
reassembly, commissioning, calibration, ready for installation 
Detector scheduled to be installed during extended end of year 
stop. 
Need a well calibrated detector to ensure smooth transition from 
commissioning to data-taking. 
Multiple testing sites for developing calibration procedure and 
training 
Streamlined calibration procedure.  
Experience and tools from Phase 0  
Experts good availability. 

FPIX Detector Assembly!

8/4/16!Petra Merkel | CMS Phase1 Pixel Upgrade!8!

Outer Disk 1 Insertion

19 July 2016 S.Grünendahl – Pixel Phase 1 Integration 
Meeting 5

Inner Disk 1 Insertion

19 July 2016 S.Grünendahl – Pixel Phase 1 Integration 
Meeting 6

DCDC installation/testing 
•  This part is relatively trivial as the board is already assembled. Only installation. 
•  Test of each DCDC converter group by turning it off/on and reading out its power-status 

bit using the control mechanism through the CCU board. 

2016/7/19 Hannsjörg Weber (Fermilab) 12 

The cables in this 
region still need to 
be dressed. 

M.Liu 61

All four half-cylinders tested with full DAQ readout chain at Fermilab



M.LIUchallenge: build the detectors! 62

LHC nominal

• CMS Phase 0 detector designed for LHC 
nominal luminosity 
• Tracking efficiency drops to 80% at 

PU=40 
• Phase 1 pixel : designed for LHC Run 2 & 

Run 3 data-taking(300 fb−1) until HL-LHC 
upgrade (2024). 

• Improved module design, geometry, 
material budget.

M.LIU

The new pixel detector 
•  Installation during February/March 2017.  
•  A smooth transition was needed from installation to 

physics data taking: sensor technology, pixel size and 
module concept very similar. 

•  Move from analog to digital readout chip (ROC)          
� reduced buffer overflow, avoid hit inefficiency. 

•  Move closer to the beam (2.9 cm instead of 4.4 cm)     
� improve vertex reconstruction. 

•  Move from 3- to 4-hit coverage (one additional 
forward disk and barrel layer)              
� increase redundancy and track finding efficiency. 

•  New bi-phase CO2 cooling system 
•  Move service electronics further away from 

interaction point. 
 � reduce material budget/mass. 

2017/09/05 Hannsjörg Weber (Fermilab) 5 

upgrade 
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SlideManuel Franco Sevilla Searching for physics beyond the Standard Model in the LHC era

CMS and the SM zoo: Higgs
The Higgs boson (H) decays in various ways 

➡ Most common: H→bb (58%) 
➡ Cleanest: H→γγ and H→ZZ*→µ+µ-µ+µ-

14

H → ZZ* → µ+µ-µ+µ-

Many ways to reconstruct the Higgs, 
but it is produced rarely!
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γγ 0.2%

WW
22%

gg 9%
!! 6%

cc 3% ZZ 3%

�Recording the events: trigger

�Exploiting background reduction handles

�Predicting the remaining background

�Understanding uncertainties on the prediction

� Interpreting the results!

22

Analysis strategy
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p 1, m 1

p 2, m 2

P , M

Figure 39.1: Definitions of variables for two-body decays.

39.4.2. Two-body decays :
In the rest frame of a particle of mass M , decaying into 2 particles labeled 1 and 2,

E1 =
M2 − m2

2 + m2
1

2M
, (39.15)

|p1| = |p2|

=
[(

M2 − (m1 + m2)2
) (

M2 − (m1 − m2)2
)]1/2

2M
, (39.16)

and
dΓ =

1
32π2 |M |2 |p1|

M2 dΩ , (39.17)

where dΩ = dφ1d(cos θ1) is the solid angle of particle 1. The invariant mass M can be
determined from the energies and momenta using Eq. (39.2) with M = Ecm.

39.4.3. Three-body decays :

p 1, m 1

p 3, m 3

P , M p 2, m 2

Figure 39.2: Definitions of variables for three-body decays.

Defining pij = pi + pj and m2
ij = p2

ij , then m2
12 + m2

23 + m2
13 = M2 + m2

1 + m2
2 + m2

3

and m2
12 = (P − p3)2 = M2 + m2

3 − 2ME3, where E3 is the energy of particle 3 in the
rest frame of M . In that frame, the momenta of the three decay particles lie in a plane.
The relative orientation of these three momenta is fixed if their energies are known. The
momenta can therefore be specified in space by giving three Euler angles (α, β, γ) that
specify the orientation of the final system relative to the initial particle [1]. Then

dΓ =
1

(2π)5
1

16M
|M |2 dE1 dE2 dα d(cosβ) dγ . (39.18)

July 30, 2010 14:36

Construct invariant mass from decay products

Higgs boson decays 

39. Kinematics 1

39. KINEMATICS
Revised January 2000 by J.D. Jackson (LBNL) and June 2008 by
D.R. Tovey (Sheffield).

Throughout this section units are used in which ! = c = 1. The
following conversions are useful: !c = 197.3 MeV fm, (!c)2 = 0.3894
(GeV)2 mb.

39.1. Lorentz transformations

The energy E and 3-momentum p of a particle of mass m form a 4-vector p = (E,p)
whose square p2 ≡ E2 − |p|2 = m2. The velocity of the particle is β = p/E. The energy
and momentum (E∗,p∗) viewed from a frame moving with velocity βf are given by

(
E∗

p∗‖

)
=

(
γf −γfβf

−γfβf γf

) (
E
p‖

)
, p∗

T
= pT , (39.1)

where γf = (1− β2
f )−1/2 and pT (p‖) are the components of p perpendicular (parallel) to

βf . Other 4-vectors, such as the space-time coordinates of events, of course transform in
the same way. The scalar product of two 4-momenta p1 · p2 = E1E2 − p1 · p2 is invariant
(frame independent).

39.2. Center-of-mass energy and momentum

In the collision of two particles of masses m1 and m2 the total center-of-mass energy
can be expressed in the Lorentz-invariant form

Ecm =
[
(E1 + E2)2 − (p1 + p2)

2
]1/2

,

=
[
m2

1 + m2
2 + 2E1E2(1 − β1β2 cos θ)

]1/2
, (39.2)

where θ is the angle between the particles. In the frame where one particle (of mass m2)
is at rest (lab frame),

Ecm = (m2
1 + m2

2 + 2E1 lab m2)1/2 . (39.3)
The velocity of the center-of-mass in the lab frame is

βcm = plab/(E1 lab + m2) , (39.4)
where plab ≡ p1 lab and

γcm = (E1 lab + m2)/Ecm . (39.5)

The c.m. momenta of particles 1 and 2 are of magnitude

pcm = plab
m2

Ecm
. (39.6)

For example, if a 0.80 GeV/c kaon beam is incident on a proton target, the center of mass
energy is 1.699 GeV and the center of mass momentum of either particle is 0.442 GeV/c.
It is also useful to note that

Ecm dEcm = m2 dE1 lab = m2 β1 lab dplab . (39.7)

K. Nakamura et al., JPG 37, 075021 (2010) (http://pdg.lbl.gov)
July 30, 2010 14:36
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Higgs boson discovery: decay modes of 
lower backgrounds (WW/ZZ/γγ).
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�Recording the events: trigger

�Exploiting background reduction handles

�Predicting the remaining background

�Understanding uncertainties on the prediction

� Interpreting the results!
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Analysis strategy
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6 Javier Duarte et al.

Fig. 3: A comparison of QCD (left) and top (right) jet images averaged over 5,000 jets.

Fig. 4: The ROC curves showing the performance of
the floating point and quantized versions (before fine-
tuning, after fine-tuning, and using the Brainwave ser-
vice) of the ResNet-50 top tagging model.

Model Accuracy AUC 1/"B("S = 30%)
Floating point 0.9009 0.9797 670.8

Quant. 0.8413 0.9754 414.6
Quant., f.t. 0.9296 0.9825 970.7
Brainwave 0.9257 0.9821 934.8

Brainwave, f.t. 0.9348 0.9830 999.6

Table 1: The performance of the evaluated models on
the top tagging dataset.

rameters and operations. However, it should be noted
that the best-performing models to date (ResNeXt50
and a directed graph CNN) [32,24] are within a factor
of a few in size with respect to the ResNet-50 model.
We emphasize here that this study is a proof-of-concept
for the physics performance and that there are many
other very challenging, computationally intensive algo-

rithms where machine learning is being explored. We
anticipate that for these looming challenges, the size of
the models will continue to grow to meet the demands
of new experiments.

3.3 Neutrino flavor identification at NOvA

Neutrino event classification can also benefit from ac-
celerating the inference of large ML models. In this
section, due to a lack of publicly available neutrino
datasets, we do not fully quantify the performance of
a particular model. Instead, we present a workflow to
demonstrate that this work is applicable beyond the
LHC.

We illustrate the type of classification task needed
for neutrino experiments by using simulated neutrino
events and cosmic data from the NOvA experiment.
NOvA pioneered the application of convolutional neu-
ral networks (CNN) in particle physics in 2016 by be-
coming the first experiment to use a CNN in a pub-
lished result [7,35]. In our study, we use transfer learn-
ing with ResNet-50 to distinguish between the di↵er-
ent detector signatures associated with various neutrino
interaction types and associated backgrounds. We ex-
tract features from neutrino interaction events using
the ResNet-50 featurizer (pre-trained using the Ima-
geNet dataset [36]) and retrain the final fully connected
classifier layers to perform neutrino event classification.
Specifically, 500,000 simulated neutrino events with cos-
mic data overlays were used for training, with the fol-
lowing five categories: charged current electron neu-
trino, charged current muon neutrino, charged current
tau neutrino, neutral current neutrino interactions, and
cosmic ray tracks. These events are highly amenable to
classification by CNN architectures such as ResNet-50.

Re-train Res-Net 50 to tag top jets 65

Better

Quantized model Brainwave’s 
implementation of ResNet50 on 
FPGA

State of art performance 
achieved with quantized ResNet 
50 on BrainWave service

Emulation

30% signal eff.


