Cross section Measurements in the T2K ND280 Detector

ST2K

Steve Boyd on behalf of the T2K Collaboration

Cross section Measurements in the T2K ND280 Detector

- •T2K Introduction / Signals and Backgrounds
- The Near Detector Suite
- A brief look at prospects for...
 - Charged current Quasi-elastic
 - •Inclusive Neutral Current π^0
 - Charged current coherent pion production
- Near Detector Status

Better measurement of 23-sector : $v_{\mu} \rightarrow v_{\nu}$

 $\delta(\sin^2(2\theta_{23})) \approx 0.01(0.04)$ $\delta(m_{23}^2) \approx 10^{-4}(10^{-3})$

Detection of v_{e} appearance : $v_{\mu} \rightarrow v_{e}$

 $\sin^2(2\theta_{13}) < 0.008(90\% CL)(0.14)$

T2K Layout

<u>XT2K</u>

T2K Layout

<u>) XT2K</u>-

Signals and Backgrounds

 v_{μ} disappearance :

S: QE: $v_{\mu} + n \rightarrow \mu + p$

 \rightarrow can reconstruct v energy

B : non-QE

<u>), T2K</u>

 \rightarrow inelastic background

Systematic Error Source	Limit	Detectors	
Beam direction	<1 mrad	INGRID, ND280, MuMon	
Flux shape	<10%	ND280, NA61, INGRID	
μ energy scale	< 2%	ND280	
μ momentum resolution	<10%	ND280	
nonQE/QE ratio	<10%	ND280	

Signals and Backgrounds

JI2K

v_e appearance :

 $\mathbf{S}: \mathbf{v}_{\mu} \to \mathbf{v}_{e} \qquad \mathbf{v}_{e} + N \to e^{-} + X$

B: Beam $\nu_e + N \rightarrow e^- + X$ $\nu_\mu + N \rightarrow \pi^0 + X$

Systematic Error Source	Limit	Detectors
Beam direction	<1 mrad	INGRID, ND280, MuMon
Flux shape	<10%	ND280, NA61, INGRID
v _e component (≈ 0.5%)	<10% (relative)	ND280, NA61

NC 1 π^0 cross section <10% ND280

Near Detectors

<u>XT2K</u>

P0D

Designed to study π^0 production in NC and CC on water target

40 XY Brass/Scint tracking planes Interspersed water volumes fiducial mass : C/O : 1.8t / 0.9t

5.7 X_0 Forward and

Back γ stops

Coarse $5X_0$ thick surrounding Pb/Scint calorimeter to tag γ leakage/ mip tagging

<u>) XT2K</u>

Tracker (FGD/TPC)

Designed to study exclusive final states (CC and NC)

5σ e/μ separation
 charge/momentum measurement
 σ_p/p < 10%
 high resolution tracking

•fine grained tracker and target

FGDs

ST2K

•2 x 1.3 ton active target

I cm² scintillator bar + WLS fibre readout
 water cross section using subtraction

Tracker ECAL :

<u>XT2K</u>

ECAL

Entire inner volume surrounder by lead scintillator sampling calorimeter
Improve CCQE efficiency by tagging high angle tracks
Improve beam v_e measurement
Cosmic/Magnet event veto

POD ECAL :

Coarse lead scintillator sampling calorimeter around P0D
 γ/μ tagger

CC QE

Recent data has shown this channel to be more complicated than it seems...

Q² shape issue common to K2K, MiniBooNE, SciBooNE, MINOS,... Cross section uncertainty dominated by axial form factor – usually modelled as a dipole (?)

$$F_{A}(Q^{2}) = F_{A}(0) (1 + Q^{2} / M_{A}^{2})^{-2}$$

Axial mass measured from Q² distribution

Experiment	Target	$M_A^{(GeV/c^2)}$
MiniBooNE	С	1.35 ± 0.17
MINOS	Fe	1.19 ± 0.15
NOMAD	С	1.07 ± 0.05
K2K	H_2^0	1.20 ± 0.12
K2K	С	1.14 ± 0.11
Past World Av.	D ₂	1.02 ± 0.03

CCQE Event Rates

PRELIMINARY

	Experiment	Target	CCQE
2	T2K	C/O	300k/150k ┥
5	SciBooNE*	С	11k
Ì	MiniBooNE*	С	112k
	MINERvA	С	800k
	MINOS*	Fe	210k
	NOMAD*	С	7k
	K2K (SciBar)*	С	5k
	K2K (SciFi)*	0	7k

(*)Numbers corrected for quoted purity

MINOS: M. Dorman, NuInt09 MiniBooNE : T. Katori, Nuint09 SciBooNE : J.L. Alcaraz-Aunion, NuInt09 NOMAD : V. Lyubushkin, NuInt09 K2K : F. Sanchez, NuInt07 Phys. Rev. D 74, 052002 Nominal 5 yr (10²¹ POT/yr) in - Tracker

Efficiency ~ 70% ; purity ~ 84%

•Only high-statistics measurement on Oxygen.

Statistical error < 1%

•Systematic errors being evaluated.

Work continuing to optimise CCQE selection

Beam Monitoring

Steve Boyd / WIN09

<u>XT2K</u>

Beam Monitoring

Muon monitor

Hadronic cross sections

<u>XT2K</u>

Steve Boyd / WIN09

Inclusive NC π^0

Steve Boyd / WIN09

<u>XT2K</u>

Inclusive NC π^0

<u>) († 2. k</u>-

Steve Boyd / WIN09

5 year , 1x10²¹ POT/yr $\epsilon_{\pi 0} \sim 55\%$; purity ~ 60%

P0D Event Rate		
Event Type	C/Pb/Brass	Water
NC π^0	20k	8k
NC multi π ⁰	6k	6k
v-Background	10k	4k
External Background	0.4k	0.3k
Systematic Source	Size	
multi-π0 production	15%	
Background σ	20%	
External Background	50%	
Fiducial Volume	3%	
Weighted Total	8%	

*SciBooNE see some indication of a signal in antineutrino running.

<u>XT2K</u>

Assumes 30% efficiency, 30% systematic error

Status of ND280 Detector

1 EM PODule

<u>) XT2K</u>

P0D being installed now

INGRID Complete

Field mapping underway

SMRD Installed

Both FGDs shipped 2of 3 TPCs complete

DSECAL in Japan 40% of rest by end of the year

Summary

•T2K Near Detector suite will provide the largest measurement of sub-GeV neutrino cross sections on oxygen to date

P0D designed to look at inclusive π⁰ production
Tracker will look at exclusive final states
Flux shape and absolute normalisation constrained by a system of flux monitors and new hadron production cross section measurements

•Lot's of activity to build and install subdetectors in the NOMAD magnet. Build is largely on-schedule. Subdetectors being commissioned – installation in magnet in Nov, 2009

•First beam particles have been put on the T2K target and first muons seen in muon monitor. Beamline up and running!

Backup Slides

Steve Boyd / WIN09

First Beam

First protons on target, and decay muons detected on April 23rd 2009

Steve Boyd / WIN09

<u>XT2K</u>___

INGRID

16 modules in the shape of a cross.
Each module is an iron/scintillator calorimeter

Steve Boyd / WIN09

<u>) XT2K</u>

NA61

<u>ST2K</u>

150 -

100

50

 Large acceptance spectrometer •Measure secondary π/K production cross sections •Will run 30 GeV protons on thin / thick C targets RWICK

Steve Boyd / WIN09

0.4

0.3

p [GeV/c]

NA61

<u>ST2K</u>

T2K

 $13\,\mathrm{m}$ MTPC-L ToF-L VERTEX MAGNETS VTX-1 VTX-2 BEAM TARGET 2007/9PSĎ ToF-F VTPC-2 VTPC-1 new BPD-1.2.3 20072008 2009GTPC He BEAM PIPE **TPC Readout** MTPC-R 2008 ToF-R Upgrade

Estimate δ(F/N) < 3%, absolute flux < 5%
Thin target π⁻,p data almost ready
More thin target, and thick target running this year

Steve Boyd / WIN09

MPPC

Active area ~ 1.0-2.0 mm²
Gain ~ 10⁶
Fast (<1ns pulses possible)
PDE ~ 10-15%
Bias voltage ~ 70 V
Cross-talk/Afterpulsing effects
Strong temperature dependence

Mechanically robust

Better matched to WLS spectrum

Insensitive to magnetic fields.

Same cost (per channel) as MAPMTs

Steve Boyd / WIN09

JT2K

