

Monte Carlo simulation of MPPC photosensors for the T2K experiment

PD09 Workshop, Shinshu University, 24th June 2009

Fabrice Retiere, Thomas Linder, Scott Oser, TRIUMF Antonin Vacheret, Imperial College London **Martin Haigh**, University of Warwick

Introduction

- A lot of experimental data is now available for MPPC devices.
- Very useful to build a complete model to describe MPPC behaviour:
 - Test the models used to describe individual device features.
 - Use in a detector simulation chain.
 - Extrapolate test-bench results.
- T2K/ND280 photosensor group now has a mature MPPC Monte-Carlo:
 - C++ object code. Standalone version depends on only the GSL libraries.
 - Finite 2D array of pixels => saturation effects.
 - Dark noise, crosstalk (CT) and afterpulsing (AP).
 - Voltage recovery.
 - Gain smearing.
 - Parameters set as quadratic functions of $V_{\text{bias}} V_{\text{bd}}$.

Simulation Framework

- Based on a time-ordered list of "free carriers" (T. Linder/S. Oser, TRIUMF).
 - Create initial list consisting of real incident photons and thermal carriers.
 - Step through the list in time order. Decide whether the carrier generates an avalanche, and if so add it to an output list.
 - If AP/CT are generated from an avalanche, add the AP/CT to the list of carriers and process them later, in time order.
- Stepping through the list in time order allows cascades of CT/AP to be dealt with naturally.
- Easy to incorporate voltage recovery:
 - recalculate pixel voltages before dealing with each carrier;
 - only need to store the previous voltage values and the time elapsed since the last carrier.

Simulation Framework

Dark noise and PDE

- Dark count rate (DCR) linear in overvoltage.
 - Carriers generated at initialization using correct dark rate for applied bias voltage.
 - Account for recovery effects carrier only fires pixel with probability $DCR(V_{pixel})/DCR(V_{applied})$.
- Exponential dependence of DCR on temperature. In simulation but need more data to tune it.
- PDE modelled as linear in overvoltage.
 - Detailed measurements at INR,
 Sheffield suggest PDE saturates.
 - Simulation will be modified to account for this, but it already fits low-light data well for a range of gains (see later).
 - Dependence on wavelength not yet implemented (not very important for ND280 Y11 light).
 - See D. Orme's talk for detail on PDE measurements.

Afterpulsing

- Based on TRIUMF data time distribution of delay between trigger and subsequent pulse.
- Data fitted well with a double exponential time distribution for AP.
 - Use same distribution in simulation.

- Validate by doing the same delay analysis for simulation results.
 - Good agreement between simulation and the input fit used to tune it.

Crosstalk

- 1,2,3 CT probabilities measured for different pixels at ICL.
 - Lower for edge and corner as they have fewer neighbours.
- Data doesn't uniquely define a microscopic model .
 - Choose something with a few parameters and tune to data.

Crosstalk model

- Relatively simple model:
 - Each pulse can only cause one crosstalk, but a crosstalk can cause further crosstalk - "cascade-only".
 - Total $P_{CT} = aV + bV^2$ (V is overvoltage of primary pixel).
 - Crosstalk pixel selected randomly; each candidate weighted by $e^{-r/Range}$, where r is distance from primary.
 - Only consider 5x5 grid centred on primary, for speed.
 - If candidate is off edge of device, get no CT.

CT cascade ends if Rand> $P_{\rm CT}$ or the cascade goes off the edge.

Tuning to data

- Data for total CT on pixel (5,5) used to fix total CT probability.
- Model fits quite well to data for all pixels, with Range=0.4 pixels.
 - Data for corner pixel appears to saturate. Not clear how to model this but not very important for bulk MPPC behaviour since it only affects a small number of pixels.

Recovery

- Pixel recovery time is finite since charge flow limited by quenching resistor.
 - Model a pixel as an RC series circuit.
 - Capacitor discharges when pixel fires.
 - R = 150 kΩ, C = 90 fF => intrinsic pixel recovery time $\tau_{\rm S}$ = RC = 13.5ns. Pixels will recover exponentially with decay constant $\tau_{\rm S}$ if the MPPC is connected to a voltage source.
- Actual recovery behaviour depends on details of readout circuit.
 - Simulation defines abstract interface to recovery model so a class describing the relevant readout circuit can be "plugged in".

TFB Electronics

- Several subdetectors in the ND280 near detector use the Trip-T Front-end Board (TFB) for readout.
 - Uses the Trip-t ASIC developed for the D0 experiment.
 - MPPC bias voltage on a common line for all channels. Gains controlled by a trim voltage on "ground" pin of each MPPC.
 - MPPC charge split capacitively into high/low gain channels.
 - Readout cycle follows ND280 beam structure 23 x 540 ns integration "timeslices" with 50 ns reset time in between.

TFB Electronics

- Developed a SPICE model including MPPC and its interface to the TFB.
 - Suppose we discharge some of the pixels, all at t=0. Then the MPPC is equivalent to two RC series circuits, corresponding to the unfired and the fired pixels.

Recovery: SPICE short-time prediction

- Recovery for fired pixels close to exponential with intrinsic time constant τ_s .
 - Pixels don't fully recover (for short times) if signal is large. Unfired pixels also drained.
 - Looks fairly simple => try and model short-time behaviour analytically.

Recovery: Local Capacitor Model

- Ignore bias source and just consider local capacitor C_s .
 - Fairly simple equivalent circuit.
 - Analytic solution for pixel voltages $V_i(t)$ is a single exponential to leading order.
 - Time constant τ_1 same as intrinsic recovery time.
 - Equalization of voltage between pixels and C_s
 =>unfired pixels are drained slightly for large signals

Small since

Initial voltage Final voltage $V_{i}(t) = V_{i}(0)e^{-t/\tau_{1}} + (V_{S}(0) - \frac{A\tau_{2}}{C_{S}})(1 - e^{-t/\tau_{1}}) + \frac{A(\tau_{2}/C_{S} - R_{S})}{1 - \tau_{1}/\tau_{2}}(e^{-t/\tau_{2}} - e^{-t/\tau_{1}})$

$$\tau_{1} = R_{pix} C_{pix}, \ \tau_{2} = \frac{R_{pix}/N_{pix} + R_{S}}{1/C_{S} + 1/C_{pix} N_{pix}}, \ A = \frac{V_{S}(0) - \sum_{i} V_{i}(0)/N_{pix}}{R_{pix}/N_{pix} + R_{S}}$$

Recovery: Local Capacitor Model

- Local capacitor model reproduces short-time SPICE result very well (for ~1 TFB cycle).
- Long-time results not so important for analysis.
- Inter-timeslice effects are also present and not included in the model.
- Local capacitor model simple enough to put into MC.

Comparison to data – dark noise

Comparison to data – low light

Saturation

- Use simulation to predict response to high level illumination.
- Decay time of Y11 fibre used in ND280 is 7ns – same timescale as sensor recovery.
 =>saturation will depend on details of recovery model.
- Compare TFB model with recovery from voltage source (pixels recover independently with timescale τ_s = 13.5 ns).

Saturation

- MPPC response is fairly linear over ND280 physics range.
- Linearity curve depends quite strongly on the time distribution of incoming light.

Conclusion

- The T2K/ND280 collaboration have developed a simulation containing all MPPC features.
- Models for individual features based on characterisation measurements.
- MPPC behaviour well-validated for low-light data.
- Recovery of pixel voltage for the ND280 TFB electronics has been studied and implemented in simulation.
- Saturation response looks sensible but must be compared to real data.
- There is room to make some elements a little more sophisticated, but simulation is basically complete.

Simulation Framework

Afterpulsing

- Measured using a waveform analysis study.
 - Measure time between a trigger pulse and next pulse.
 - Distribution fitted assuming AP time distribution is a double exponential $P(t) = Ae^{t/\tau_s} + Be^{t/\tau_L}$.
 - Probabilities scale as overvoltage². Time constants independent of voltage.

F. Retiere et al, TRIUMF

