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Introduction
● A lot of experimental data is now available for MPPC devices.

● Very useful to build a complete model to describe MPPC behaviour:

– Test the models used to describe individual device features.

– Use in a detector simulation chain.

– Extrapolate test-bench results.

● T2K/ND280 photosensor group now has a mature MPPC Monte-Carlo:

– C++ object code. Standalone version depends on only the GSL libraries.

– Finite 2D array of pixels => saturation effects.

– Dark noise, crosstalk (CT) and afterpulsing (AP).

– Voltage recovery.

– Gain smearing.

– Parameters set as quadratic functions of V
bias

 – V
bd

.
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Simulation Framework
● Based on a time-ordered list of “free carriers” (T. Linder/S. Oser, TRIUMF).

– Create initial list consisting of real incident photons and thermal carriers.

– Step through the list in time order. Decide whether the carrier generates an 
avalanche, and if so add it to an output list.

– If AP/CT are generated from an avalanche, add the AP/CT to the list of carriers 
and process them later, in time order.

● Stepping through the list in time order allows cascades of CT/AP to be dealt with 
naturally.

● Easy to incorporate voltage recovery:

– recalculate pixel voltages before dealing with each carrier;

– only need to store the previous voltage values and the time elapsed since the 
last carrier.
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Simulation Framework
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Dark noise and PDE
● Dark count rate (DCR) linear in overvoltage.

– Carriers generated at initialization using correct dark 
rate for applied bias voltage.

– Account for recovery effects – carrier only fires pixel 
with probability DCR(V

pixel
)/DCR(V

applied
).

● Exponential dependence of DCR on temperature. In 
simulation but need more data to tune it.

● PDE modelled as linear in overvoltage.

– Detailed measurements at INR,
Sheffield suggest PDE saturates.

– Simulation will be modified to account
for this, but it already fits low-light data
well for a range of gains (see later).

– Dependence on wavelength not yet
implemented (not very important for
ND280 Y11 light).

– See D. Orme's talk for detail on PDE 
measurements.

F. Retiere et al,
TRIUMF
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Afterpulsing

● Based on TRIUMF data – time distribution of 
delay between trigger and subsequent pulse.

● Data fitted well with a double exponential 
time distribution for AP.

– Use same distribution in simulation.

● Validate by doing the same delay analysis for 
simulation results.

– Good agreement between simulation 
and the input fit used to tune it.

τ
s
 = 17.7 ns τ

L
 = 70.9 ns
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Crosstalk
● 1,2,3 CT probabilities measured for different 

pixels at ICL.

– Lower for edge and corner as they have 
fewer neighbours.

● Data doesn't uniquely define a microscopic 
model .

– Choose something with a few parameters 
and tune to data.

Corner (1,1)

Normal (5,5) Edge (1,5)
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Crosstalk model
● Relatively simple model:

– Each pulse can only cause one crosstalk, but a crosstalk can cause further 
crosstalk - “cascade-only”.

– Total P
CT

 = aV+bV2 (V is overvoltage of primary pixel).

– Crosstalk pixel selected randomly; each candidate weighted by e-r/Range, where r is 
distance from primary.

– Only consider 5x5 grid centred on primary, for speed. 

– If candidate is off edge of device, get no CT.

CT cascade ends if Rand>P
CT 

or the 
cascade goes off the edge. 
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● Data for total CT on pixel (5,5) used to fix total CT probability.

● Model fits quite well to data for all pixels, with Range=0.4 pixels.

– Data for corner pixel appears to saturate. Not clear how to model this but not very 
important for bulk MPPC behaviour since it only affects a small number of pixels.

Corner
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Data
Model 
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Recovery

● Pixel recovery time is finite since charge flow limited by quenching resistor.

– Model a pixel as an RC series circuit.

– Capacitor discharges when pixel fires.

– R = 150 kΩ, C = 90 fF => intrinsic pixel recovery time τ
S
 = RC = 13.5ns. 

Pixels will recover exponentially with decay constant τ
S
 if the MPPC is connected 

to a voltage source.

● Actual recovery behaviour depends on details of readout circuit.

– Simulation defines abstract interface to recovery model so a class describing the 
relevant readout circuit can be “plugged in”.

...N
pix

R
pix

MPPC equivalent circuit

to external 
bias/readout
circuit

C
pix
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TFB Electronics
● Several subdetectors in the ND280 near detector use the Trip-T Front-end Board (TFB) 

for readout.

– Uses the Trip-t ASIC developed for the D0 experiment.

– MPPC bias voltage on a common line for all channels. Gains controlled by a trim 
voltage on “ground” pin of each MPPC.

– MPPC charge split capacitively into high/low gain channels.

– Readout cycle follows ND280 beam structure – 23 x 540 ns integration “timeslices” 
with 50 ns reset time in between.
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● Developed a SPICE model including MPPC and its interface to the TFB. 

– Suppose we discharge some of the pixels, all at t=0. Then the MPPC is equivalent 
to two RC series circuits, corresponding to the unfired and the fired pixels.

Fired pixels

Unfired pixels
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Recovery: SPICE short-time prediction

MPPC recovery (SPICE, 1 pixel fired) MPPC recovery (SPICE, 666 pixels fired)

Pixel didn't fire
Pixel did fire Pixel didn't fire

Pixel did fire

● Recovery for fired pixels close to exponential with intrinsic time constant τ
S
.

– Pixels don't fully recover (for short times) if signal is large. Unfired pixels also  
drained.

– Looks fairly simple => try and model short-time behaviour analytically.
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Recovery: Local Capacitor Model
● Ignore bias source and just consider local capacitor C

S
.

– Fairly simple equivalent circuit.

– Analytic solution for pixel voltages V
i
(t) is a single 

exponential to leading order.

– Time constant τ
1
 same as intrinsic recovery time.

– Equalization of voltage between pixels and C
S

=>unfired pixels are drained slightly for large signals.

C
S

R
S

R
pix

C
pix

R
pix

C
pix

. . . 

N
pix

V i t =V i 0e
−t /1V S 0−

A2
C S

1−e−t /1
A2/C S−RS 

1−1 /2
e−t /2−e−t /1

1=R pixC pix , 2=
R pix /N pixRS
1/C S1/C pix N pix
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V S 0−∑V i 0/N pix

R pix /N pixRS
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≈ τ
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Initial voltage Final voltage
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Time / s

Recovery: Local Capacitor Model
● Local capacitor model reproduces short-time SPICE result very well (for ~1 TFB cycle).

● Long-time results not so important for analysis.

● Inter-timeslice effects are also present and not included in the model.

● Local capacitor model simple enough to put into MC.

Ju
nc

tio
n 

vo
lta

ge
 /

 V
no

m
in

al

Time / s

Ju
nc

tio
n 

vo
lta

ge
 /

 V
no

m
in

al

Trip-t recovery (long-time) Trip-t recovery (short-time)



  

Martin Haigh, University of Warwick

Comparison to data – dark noise

Simulation
Data
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Comparison to data – low light

Simulation
Data
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Saturation

● Use simulation to predict 
response to high level 
illumination.

● Decay time of Y11 fibre used in 
ND280 is 7ns – same timescale 
as sensor recovery.
=>saturation will depend on 
details of recovery model.

● Compare TFB model with 
recovery from voltage source 
(pixels recover independently 
with timescale τ

S
 = 13.5 ns).

Voltage source model
Local capacitor model

τ
light

 = 50ns

τ
light

 = 7ns

τ
light

 = 0

ND280 physics range
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 /

 p
e

Incident photons
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Saturation

τ
light

 = 50ns
τ

light
 = 7ns

τ
light

 = 0

● MPPC response is fairly 
linear over ND280 
physics range.

● Linearity curve depends 
quite strongly on the time 
distribution of incoming 
light.
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Conclusion

● The T2K/ND280 collaboration have developed a simulation containing all 
MPPC features.

● Models for individual features based on characterisation measurements.

● MPPC behaviour well-validated for low-light data.

● Recovery of pixel voltage for the ND280 TFB electronics has been studied 
and implemented in simulation.

● Saturation response looks sensible but must be compared to real data.

● There is room to make some elements a little more sophisticated, but 
simulation is basically complete.
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Simulation Framework

Simulation

Initialise simulationInput parameters
●Gate length
●Noise/PDE/resolution/
 recovery parameters
●Voltage/temperature
●Array size

Incoming photons
●Time
●Pixel

Potential hits
●Time
●Pixel
●Type (DCR/CT/AP/photon)

Pixel voltages

Generate dark noise

Get incoming photons

Update pixel voltages

Process hits

Generate CT/AP
 from hit

Set pixel voltage = 0

Avalanches
●Time
●Gain

Output avalanches

More hits?

Does pixel fire?

Process hits

Yes
No

Yes

No
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Afterpulsing
● Measured using a waveform analysis study.

– Measure time between a trigger pulse and next 
pulse.

– Distribution fitted assuming AP time distribution is a 
double exponential                                .

– Probabilities scale as overvoltage2. Time constants 
independent of voltage.

t

τ
s
 = 17.7 ns

τ
L
 = 70.9 ns

P t =Ae
t /SBe

t /L

F. Retiere et al, TRIUMF
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