Skip to main content

Research News

Temperature-Dependent Photoluminescence Characteristics of GeSn Epitaxial Layers

We propose a suitable explanation for Germanium Tin epitaxial heterostructures temperature-dependent photoluminescence that is based upon the so far disregarded optical activity of dislocations.

Wed 13 September 2017, 10:02 | Tags: Research

Influence of ambient conditions on the evolution of wettability properties of aluminium alloys

Collaboration between the the Universidad Politecnica de Madrid, University of Birmingham and the Warwick XPS Facility has studied the evolution of surface chemistry and the associated wettability of laser-patterned aluminum alloys under abient conditions.

Mon 14 August 2017, 15:47 | Tags: Research

Neutrinos help to understand the dominance of matter over antimatter in the Universe

New results from the T2K experiment, in which Warwick is a key collaborator, have strengthened previous hints of a difference in the behaviour of neutrinos and antineutrinos . Neutrinos and antineutrinos come in three types (or flavours) and are capable of changing flavour as they travel from source to detector in a process known as 'flavour oscillations'. The recent analysis indicates that neutrinos and antineutrinos flavour oscillate with different probabilities. These results will help us shed light on the question of why the universe is dominated by matter, with very little observed antimatter.

Wed 09 August 2017, 08:49 | Tags: Research

Rare-earth/transition-metal magnetic interactions in pristine and (Ni,Fe)-doped YCo5 and GdCo5

It is important to understand the fundamental physics of rare-earth transition-metal magnets, which are used in much of today’s technology, so that new materials can be identified which will reduce our dependence on the economically-volatile and environmentally-damaging rare earths. A recurring challenge is how to make the connection between what is measured in the lab, and what is happening in the material itself at the atomic level, i.e. the behaviour of individual electrons and nuclei. In this collaborative work [C E Patrick, S Kumar et al., Phys. Rev. Materials 1, 02411 (2017)] between theorists and experimentalists based at Warwick and STFC Daresbury, we use “first-principles” computational modelling to explain experimental measurements on the magnetic materials YCo5 and GdCo5.

Tue 01 August 2017, 11:10 | Tags: Research

Doubly charming discovery by LHCb

The LHCb collaboration has announced the discovery of a new particle, the Ξcc++ state. Just like the protons that circulate in the Large Hadron Collider, the new particle is a baryon, composed of three quarks bound together by the strong force. However, unlike the proton which is made from three light quarks (two up quarks and a down quark), the Ξcc++ contains one up quark and two charm quarks. This discovery opens the door for novel investigations of the strong force that binds hadrons together.

Fri 07 July 2017, 12:41 | Tags: Research

Spin-polarized electric current in silicene nanoribbons induced by atomic adsorption

The field of spintronics is rapidly developing from its roots in magnetic metal multilayers. In recent years, two-dimensional (2D) materials came to the forefront and advances in this field are expected to occur based on hybrid systems. A plethora of novel 2D materials offers fascinating fundamental properties for spin transport and controlled spin-light interaction. In this context, silicene is a particularly promising candidate for the design of spintronic devices. In the paper, we show how disorder, normally associated with reduced charge transport characteristics, can be used in silicence to enhance spin transport.

Fri 07 July 2017, 08:53 | Tags: Research

Older news