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HiFFUTs for high temperature ultrasound

Flexural ultrasonic transducers have been widely used as proximity sensors and as part of industrial 
metrology systems. However, there is demand from industry for these transducers to have the capability 
to operate in both liquid and gas, at temperatures of 100-200°C and higher, significantly greater than 
those tolerated by current flexural transducers. Furthermore, flexural transducers tend to be designed for 
operation up to around 50 kHz, and the ability to operate at higher frequencies will open up new 
application and research areas. A limitation of current flexural transducers is the electromechanical 
driving element, usually a lead zirconate titanate piezoelectric ceramic, which experiences significantly 
reduced performance as temperature is increased. This investigation proposes a new type of flexural 
transducer, the HiFFUT, a high frequency flexural ultrasonic transducer, comprising a bismuth titanate 
ceramic for operation at high temperatures, that could be replaced by another suitable high Curie 
temperature piezoelectric material if required, bonded to the membrane with a high temperature adhesive. 
The dynamic characteristics of the HiFFUT are studied as a function of temperature, providing insights 
into its usefulness for industrial applications.
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1. INTRODUCTION 
The flexural ultrasonic transducer (FUT) is an ultrasound sensor principally utilised for industrial 

metrology, flow measurement, and proximity sensing applications. The fundamental operating principle of 

a FUT is through the bending of a compliant metallic membrane. The vibrating membrane of the FUT is 

the radiating face of a metal cap, in which a driver element is supported. This membrane is can be 

considered as a circular plate, constrained around its circumference, where the dynamic modes of this 

circular plate correlate with the modes of vibration of a FUT. The metal cap is usually fabricated from 

materials such as aluminium or titanium1, based on the physical properties of these metals, which exhibit 

the suitable compliance, density, and robustness for industrial applications. The high frequency flexural 

ultrasonic transducer (HiFFUT) is an evolution of the conventional FUT, specifically developed for multi-

mode operation at high frequencies, and in hostile environmental conditions. This study demonstrates 

fundamental developments of HiFFUTs, outlining a novel fabrication method, design for operation at high 

frequencies, and a demonstration of operation at temperatures exceeding those at which the conventional 

FUT can withstand. The composition of the HiFFUTs studied in this investigation is shown in Figure 1. 

 

 

 

 

 

 

 

Figure 1: The high frequency flexural ultrasonic transducer fabricated for this study. 

 

The activation of the driver element inside the metal cap generates the high frequency vibrations 

required to cause a bending of the metallic membrane, thereby producing the ultrasound signal. 

Traditionally, FUTs have been driven in two ways. The first is electromagnetically, through the inclusion 

of a wire coil inside the metal cap2, and the second is by using a piezoelectric ceramic disc1. This research 

focuses on HiFFUTs fabricated using piezoelectric ceramics. Piezoelectric FUTs produce an ultrasound 

signal in response to a voltage across the piezoelectric ceramic disc. This ceramic must be positioned 

precisely in the centre of the underside of the membrane, to generate the required vibration modes. FUTs 

are generally operated in their axisymmetric modes, examples of which are shown in Figure 2, referred to 

as the (0,0) and (1,0) modes. The nomenclature (x,y) refers to the nodal radius and diameter respectively, 

consistent with the literature1. The modes were simulated using PZFlex® finite element analysis software. 

 

 
Figure 2: Simulated mode shapes of a HiFFUT, for (a) the (0,0) mode, and (b) the (1,0) mode. 

 

At present, conventional FUTs are designed to operate in ultrasound applications at ambient 

environmental conditions, up to approximately 50 kHz. Strategies to raise the fundamental resonance 

frequencies of the axisymmetric modes, and to increase the resilience of the devices to high temperatures, 

are both investigated in this study. The long-term objective of this research is to develop an array of 

HiFFUTs and design solutions to address current limitations of FUTs. This investigation provides insights 

into the foundation of HiFFUT development, and in particular addresses the limitation of conventional 

FUTs to operate at high temperature levels.  
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2. EXPERIMENTAL PROCEDURE 

A. HIFFUT FABRICATION PROCESS 

Two high temperature HiFFUTs are designed, fabricated and tested in this study. The HiFFUTs were 

fabricated from titanium, designed with the resonance frequency of the (0,0) mode around 75 kHz, 

satisfying the high frequency ultrasound condition. In a flexural ultrasonic transducer, the piezoelectric 

ceramic ideally needs to be positioned central on the underside of the cap membrane, in order to generate 

the axisymmetric modes. One restriction of fabricating a transducer cap as a single component is the 

difficulty in positioning this ceramic. This is complicated by the fact that the HiFFUTs analysed in this 

study necessitate the use of high temperature epoxy resin (EPO-TEK® 353ND), which can withstand a 

temperature of 250°C continuously, or 350°C intermittently. This epoxy resin cures at 150°C for one hour 

to ensure a high quality bond. Therefore, not only does the ceramic need to be positioned precisely central 

on the cap membrane, but the compression rig must be able to survive the epoxy resin curing temperature. 

To address these challenges, the HiFFUTs were designed as two parts, where the side-wall and 

membrane were two individual components, shown in Figure 3(a). The advantage of producing the cap in 

two parts is that it allows the ceramic to be easily bonded to the membrane at the centre, prior to attachment 

to the side-wall. The side-wall geometry creates problems in centering the ceramic, and so this method is 

presented as a solution. The compression rig was designed for this study, and is shown in Figure 3(b). 

 

 
                                                               (a)                                              (b)                         

Figure 3: The fabrication of a HiFFUT, showing (a) the side-wall and membrane, and (b) the 

compression rig used to bond the transducer components together. 

 

Current FUTs incorporate lead zirconate titanate (such as PZT-5H), which is unsuitable at high 

temperatures, for example those exceeding around 80°C. To address this, both HiFFUTs were constructed 

using PZ46 (Meggitt), which is a form of bismuth titanate piezoelectric ceramic. PZ46 ceramic possesses 

a Curie temperature of 650°C, whereas the Curie temperature of PZT-5H, commonly used in FUTs, is 

around 190°C3. Temperature affects the electromechanical properties of piezoelectric ceramics3, and the 

maximum operational temperatures are lower than the Curie temperatures, in the order of 500-550°C for 

PZ46 (Ferroperm), and approximately 95°C for PZT-5H (Morgan Advanced Materials). However, there is 

a compromise, since lead zirconate titanate ceramics tend to possess piezoelectric properties of higher 

magnitude than bismuth titanate, where they can achieve greater output amplitude for a given input. Small 

amounts of epoxy resin were deposited on the bonding areas of the HiFFUTs, before a torque wrench was 

used to control the applied torque on the bolts in the compression rig. Once the curing time had elapsed, 

the HiFFUTs could be extracted from the rig, after which electrode connections were attached. 

B. MEASUREMENT OF HIFFUT PERFORMANCE 

The dynamic performance of the HiFFUTs was first studied using laser Doppler vibrometry (LDV) to 

verify the (0,0) mode shape, and an acoustic microphone to measure the amplitude-time spectrum at that 

mode. Each HiFFUT was then heated to 150°C in a laboratory furnace (Pyrotherm) in increments of 50°C, 

held at each temperature for 15 minutes, with its response monitored using an acoustic microphone. The 

complete experimental process is outlined in Figure 4, adapted from prior investigation4. 
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Figure 4: Experimental process for characterisation of HiFFUTs. 

3. EXPERIMENTAL RESULTS 
The (0,0) mode of HiFFUT 1 is shown in Figure 5(a) as an example, with a resonance frequency of 

74.5 kHz. The amplitude-time spectra for both HiFFUTs measured using the acoustic microphone prior to 

any temperature measurement are shown in Figure 5(b), for a burst sine excitation with nominal drive 

voltage of 20 VP-P, with 400 cycles. The HiFFUTs were positioned 65 mm from the microphone sensor. 

 

 

 

 

 

 

 

 

 

 

 

 

                                        

                                          (a)                                                                         (b) 

Figure 5: Resonance frequency measurement, showing (a) the (0,0) mode of HiFFUT 1 at 74.5 kHz 

from LDV, and (b) the amplitude-time spectrum for each HiFFUT from the acoustic microphone. 

 

The resonance frequencies of the HiFFUTs differ due to minor discrepancies in fabrication, such as the 

bonding pressure applied to the BiT ceramic. There is also around 100 Hz difference between the LDV and 

microphone resonance frequencies for HiFFUT 1, arising from the difference in clamping conditions 

required for the two tests. Low vibration output of the HiFFUTs in air was measured, approximately 0.5 Pa 

for HiFFUT 1 and 0.15 Pa for HiFFUT 2, at a distance of 65 mm from the microphone sensor for the 

nominal drive voltage of 20 VP-P. Efficiency must be improved in future HiFFUT designs, and research is 

currently undergoing on achieving this in other devices based on the flexural ultrasonic transducer5. 

The dynamic response of each HiFFUT as a function of temperature was measured. An amplitude-time 

spectrum was recorded at ambient room temperature, 50°C, 100°C, and 150°C. The response of each 

HiFFUT after 150°C was reached is shown in Figure 6(a), with the performance of HiFFUT 2 as a function 

of temperature measured at a distance of 300 mm displayed in Figure 6(b). The fast Fourier transform (FFT) 

was applied to the amplitude-time spectra to produce the results in Figure 6(b). 
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                                 (a)                                                                            (b) 

Figure 6: (a) The amplitude-time spectra for each HiFFUT measured post-thermal testing, and (b) dynamic 

performance as a function of temperature for HIFFUT 2, computed using the FFT. 

 

As each HiFFUT is heated, it undergoes thermal expansion of its different components, thus affecting 

the centre frequency and its dynamics. Despite the HiFFUTs remaining functional at high temperature, as 

shown in Figure 6, the performance of each is limited through thermally-induced frequency drift. The 

frequency of HiFFUT 1 dropped from 74.6 kHz to around 62.8 kHz, and from 74.3 kHz to approximately 

68.3 kHz for HiFFUT 2. The influence of temperature on the HiFFUT components requires further study. 

4. CONCLUSION  
The design, fabrication, and characterisation of two HiFFUTs for high temperature applications has 

been demonstrated. The HiFFUTs generate ultrasound at the desired frequency level, over a relatively wide 

temperature range, feasible for industrial applications. However, the HiFFUTs exhibit decreases in centre 

frequency with temperature and relatively low efficiency, and so design improvements are required. 
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