

Lei Kang¹, Andrew Feeney¹, Riliang Su², David Lines², Axel Jäger³, Han Wang³, Yavor Arnaudov¹, Sivaram Nishal Ramadas⁴, Mario Kupnik³, and Steve Dixon¹

¹University of Warwick, Department of Physics, Coventry CV4 7AL, United Kingdom

19th December 2017, International Congress on Ultrasonics, Hawaii, USA

²Diagnostic Sonar Ltd, Livingston EH54 7BX, United Kingdom

³Technische Universität Darmstadt, Department of Electrical Engineering and Information Technology, 64283 Darmstadt, Germany ⁴Honeywell, United Kingdom

Background and Motivation

- **Ultrasonic transit-time flow measurement** is affected by the beam drift effect which reduces the accuracy and range.
- The flexural ultrasonic transducer exploits plate bending modes, generates and receives ultrasound efficiently in fluids, and is low cost requiring a low voltage supply.
- The flexural ultrasonic phased array enables a sound beam to be adjusted electronically and dynamically, measurement through multiple paths, and is a potentially economic and low voltage solution for flow measurement with higher accuracy and larger range.

Design and Optimisation

3D Axisymmetric Finite Element Model

(0,0) mode: PZT/Mem=0.92

(1,0) mode: PZT/Mem=0.53

Phased Array Fabrication

Electrical Characterisation

Centre frequency of typical array elements, kHz

	Column 1	Column 2	Column 3	Column 4
Row A	50.44	49.53	49.71	49.90
Row B	49.00	49.88	50.08	49.18
Row C	48.64	48.46	49.14	48.28
Row D	47.03	47.37	47.47	47.29

- The back plate not only enhances the mechanical robustness of the array, but also improves the performance of the array in terms of its amplitude, mode purity, and mechanical crosstalk.
- Average -6 dB bandwidth: 1.5 kHz.

Laser Doppler Vibrometry

- The phased array is supported on an XY table.
- The array can be driven by either a phased array controller or a function generator.
- The out-of-plane displacement amplitude of the array is detected by a Polytec laser Doppler vibrometer.

Flow Measurement

Single transducer

Flow Measurement

 \overline{t}_{uv} : averaged time of flight measured upstream;

 \overline{t}_{down} : averaged time of flight measured downstream;

c: velocity of ultrasound;

 \overline{v}_p : averaged flow velocity over the projection of ultrasonic path on cross-section of pipe;

D: inner diameter of pipe;

 θ : an angle between ultrasonic path and diameter of pipe;

 \overline{f}_A : averaged flow velocity over cross-section area of pipe;

 k_c : meter factor.

$$\overline{t}_{up} = \frac{1}{16} \times \sum_{i=17}^{32} \overline{t}_{up(1,i)}$$

$$\overline{t}_{down} = \frac{1}{16} \times \sum_{i=17}^{32} \overline{t}_{down(i,1)}$$

$$\left[\overline{t}_{down} = \frac{D}{\sin(\theta) \times [c + \overline{v}_p \cos(\theta)]}\right]$$

$$\overline{t}_{up} = \frac{D}{\sin(\theta) \times [c - \overline{v}_p \cos(\theta)]}$$

$$\overline{v}_{A} = \frac{D}{\sin(2\theta)} \times \frac{\overline{t}_{up} - \overline{t}_{down}}{\overline{t}_{up} \times \overline{t}_{down}} \times k_{c}$$

Summary and Future Research

Summary

- The design, fabrication and characterisation of two-dimensional flexural ultrasonic phased arrays are presented.
- Flow measurement is demonstrated, and it is shown that the optimum steering angle of the array varies with the change of flow rate.
- Phased arrays are a potentially economical and low-voltage solution for flow measurement with high accuracy.

Future Research

- Compare various data processing techniques to further improve accuracy.
- Perform multi-path flow measurement.

Acknowledgement

 I would like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC) Grant Number EP/N025393/1, and the European Union SACUT project (Ref. No. 612118), under the Marie Curie Industry-Academia Pathways & Partnership (IAPP), FP7 IAPP 2013 GA612118.