BACK FROM THE DEAD

Steve Boi

100

NEUTRINO CROSS SECTIONS

1931-1986

WARWICK

A Drama in Three Acts

I. Neutrino Oscillations (exposition...)

- current status of knowledge
- future goals
- II. Neutrino Interactions (plot development)
 - implications for future oscillation studies
- III. Future Scattering Experiments (denouement)
 - SciBoone
 - MINERvA

Neutrinos

•Spin ¹⁄₂ neutral partners to the charged leptons

• 50 meV < mass < 3 eV

•Flavours mix, and oscillate during propagation

•Only interact (hence only generated or detected) through the weak interaction

• $\sigma \sim 10^{-4}$ fb @ 1 MeV

•Come with energies ranging from 3 meV up to 10^{16} eV

Neutrino Physics – Goals

- Understand mixing of neutrinos
 a non-mixing? CP violation?
- Understand neutrino mass

 absolute scale and hierarchy
- Understand v interactions
 new physics? new properties?
- Use neutrinos as probes
 nucleon, earth, sun, supernovae

Neutrino Physics – Goals

- Understand mixing of neutrinos

 a non-mixing? CP violation?
- Understand neutrino mass
 absolute scale and hierarchy
- Understand v interactions
 new physics? new properties?
- Use neutrinos as probes
 nucleon, earth, sun, supernovae

v Oscillations

A QM effect whereby neutrino mass states are non-diagonal linear combinations of neutrino weak states.

Or to put it another way, an effect whereby neutrinos of one flavour can oscillate to other flavours in flight.

This can only happen if neutrinos have mass

v Oscillations

If neutrinos have mass then

$$l \in e, \mu, \tau \quad |\nu_l \rangle = \sum_i U_{li} |\nu_i \rangle \quad i \in 1, 2, 3$$

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = U \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \Leftrightarrow U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{vmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{vmatrix}$$

 $c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij}$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta) \sin^2(1.27\Delta m_{ij}^2 \frac{L}{E})$$

If neutrinos have mass then

$$l \in e, \mu, \tau \quad |\nu_l \rangle = \sum_i U_{li} |\nu_i \rangle \quad i \in 1, 2, 3$$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \Leftrightarrow U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

Three angles $c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij}$
 $P(v_{\alpha} \rightarrow v_{\beta}) = \sin^{2}(2\theta) \sin^{2}(1.27\Delta m_{ij}^{2}\frac{L}{E})$

If neutrinos have mass then

$$l \in e, \mu, \tau \quad |\nu_l\rangle = \sum_i U_{li} |\nu_i\rangle \quad i \in 1, 2, 3$$

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\mu \\ v_\tau \end{pmatrix} = U \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} \Leftrightarrow U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

Two independent mass splittings – each with a sign $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^{2}(2\theta)\sin^{2}(1.27\Delta m_{ij}^{2})\frac{L}{F})$

If neutrinos have mass then

$$l \in e, \mu, \tau \quad |\nu_l\rangle = \sum_i U_{li} |\nu_i\rangle \quad i \in 1, 2, 3$$

$$\begin{pmatrix} v_{e} \\ v_{\mu} \\ v_{\tau} \end{pmatrix} = U \begin{pmatrix} v_{1} \\ v_{2} \\ v_{3} \end{pmatrix} \Leftrightarrow U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix}$$

A CP violating term $c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij}$

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta) \sin^2(1.27\Delta m_{ij}^2 \frac{L}{E})$$

What do we know?

Better measurements of known parameters
Is θ₂₃ = 45°?
Value of θ₁₃?
Value of δ_{CP}?
Mass heirarchy?
Absolute mass scale
Dirac vs Majorana

$$U_{MNSP} = \begin{pmatrix} 0.8 & 0.5 & \epsilon \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix} \Leftrightarrow U_{CKM} = \begin{pmatrix} 0.975 & 0.222 & 0.004 \\ 0.221 & 0.97 & 0.04 \\ 0.01 & 0.04 & 0.999 \end{pmatrix}$$

The Master Plan

 $\boldsymbol{\theta}_{_{13}}$ determines the next 15–30 years or so of the field

How to get to θ_{13} ?

For 1 GeV beam

One component – Long Baseline Experiments

 $P(v_{\mu} - v_{e})$ at new off-axis Superbeam

An appearance experiment

An appearance experiment

Uncertainties in σ cancel, right?

Um....no, actually

Event Samples are different Near to far, so Uncertainties In cross sections Won't cancel

If signal is small, worry about background prediction (v_e flux and NC xsection) If signal is big, worry about signal cross sections

The Effect of Ignorance

Toy MC Analysis of v_e appearance experiment assuming θ_{13} just below current limit

Process	Event s	QE	RES	СОН	DIS	on 0.014 Current σ Errors
δσ/σ		20%	40%	100%	20%	 0.012 - ····· σ Errors after MINERνA 5 - E 5 - C 0.1 - Statistical (ED) to Eval
Signal v _e sin²20 13=0.1	175	5 5%	35%	n/i	10%	
NC	15.4	0	50%	20%	30%	0.004
$\nu_{\mu}CC$	3.6	0	65%	n/i	35%	0.002
Beam ν_e	19.1	50%	40%	n/i	10%	0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.
					/	sîn²2Ə ₁₃
						-wawa Systematic Error

from Cross sections

Statistical Errors

Come on – 20%, 50,%, 100%? The cross sections can't be *that* poorly understood, can they?

What is in the sims now?

Most present knowledge comes from the old bubble chamber data (FNAL, CERN, ANL, BNL, Serpukhov)
Low neutrino fluxes, low statistics
Data sometimes conflicting
Very important in constraining MC

CC Quasielastics

•2 body interaction allows neutrino energy reconstruction

15-20% uncertainty
Less well-known in threshold region
Low E data mostly on D₂

CC 1π production

 $\nu_{\mu} \boldsymbol{p} \rightarrow \mu^{-} \pi^{+} \boldsymbol{p}(\Delta^{++})$ $v_{\mu} n \rightarrow \mu n \pi^+$

Background to QE signal

v_{e} appearance in T2K

Detection Principle

NC 1 π^0 Production

$\nu N \rightarrow \nu \Delta \rightarrow \nu N \pi^0$

Major background to $v_{e}^{}$ appearance search in T2K

NC 1 π^0 Resonance

2 Measurements at 2 GeV

Total world data < 500 events

NC 1 π^0 Coherent

Coherent production off nucleus, keeping nucleus intact Forward emitted π low Q²

~ 20% of resonant rate

but look at the errors....

Can it get any worse?

World Data for Antineutrinos

Nuclear Effects

Neutrinos typically interact with a **bound** nucleon

Simplest and most common model is basic Fermi gas

•Fermi momentum model •Pauli blocking

Modifies the scattering angle and momentum spectra of outgoing final state.

Nuclear effects largest at low E_v, low Q²

Nuclear Effects

Fermi surface modelling Pion absorption/rescattering Final state mass effects Nucleon rescattering

Nuclear effects studied in charged lepton scattering.

But, there are signs in the data that nuclear effects for neutrinos are different than for charged lepton interactions.

Good Grief! Something must be done!

APS Joint Study on Neutrino Physics – 2006

 NEW HIGH-PRECISION CROSS-SECTION EXPERIMENTS SHOULD BE UNDERTAKEN.

cancel some of the uncertainty in cross sections, the better and more precise solution is to actually measure the cross sections better than currently known once and for all! We encourage that the experiments necessary for this be carried out.

SciBooNE

University of Colorado **Columbia University** Fermi National Accelerator Laboratory High Energy Accelerator Research Organization (KEK) Imperial College London* Indiana University Institute for Cosmic Ray Research Kyoto University* Los Alamos National Laboratory Louisiana State University **Purdue University Calumet** Università degli Studi di Roma and INFN-Roma Saint Mary's University of Minnesota Tokyo Institute of Technology Universidad de Valencia

Universitat Autonoma de Barcelona

University of Cincinnati

Spokespeople:

T. Nakaya, Kyoto University M.O. Wascko, Imperial College

SciBooNE

Physics Motivation

CHANNEL	ν		Anti-v
CCQE		39k	7.5k
$\text{CC1}\pi^+$		24k	2k
$NC1\pi^0$		9k	1.3k
NC Coherent		0.8k	0.3k

More data than the current global dataset on anti-neutrinos

Detector Technology

Scintillator-WLS fibre technology

Schedule

SciBooNE already running!
2 years from formation of collaboration to first data!

MINERvA

- D. Drakoulakos, P. Stamoulis, G. Tzanakos, M. Zois University of Athens, Greece
- D. Casper#, J. Dunmore, C. Regis, B. Ziemer University of California, Irvine
- C. Castromonte, H. da Motta, M. Vaz, J.L. Palomino Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
- E. Paschos University of Dortmund
- D. Boehnlein, D. A. Harris#, N. Grossman, J.G. Morfin*, A. Pla-Dalmau, P. Rubinov, P. Shanahan *Fermi National Accelerator Laboratory*
- J. Felix, G. Moreno, M. Reyes, G. Zavala
- Universidad de Guanajuato -- Instituto de Fisica, Guanajuato, Mexico
- I. Albayrak, M.E. Christy, C.E. Keppel, V. Tvaskis Hampton University
- R. Burnstein, O. Kamaev, N. Solomey Illinois Institute of Technology
- S. Kulagin Institute for Nuclear Research, Russia
- I. Niculescu. G. Niculescu James Madison University
- R. Gran University of Minnesota-Duluth
- G. Blazey, M.A.C. Cummings, V. Rykalin Northern Illinois University
- W.K. Brooks, A. Bruell, R. Ent, D. Gaskell, W. Melnitchouk, S. Wood Jefferson Lab
- D. Buchholz, J. Hobbs, H. Schellman Northwestern University

- L. Aliaga, J.L. Bazo, A. Gago, Pontificia Universidad Catolica del Peru
- S. Boyd, S. Dytman, M.-S. Kim, D. Naples, V. Paolone University of Pittsburgh
- S. Avvakumov, A. Bodek, R. Bradford, H. Budd, J. Chvojka, R. Flight, S. Manly, K. McFarland*, J. Park, W. Sakumoto, J. Steinman University of Rochester
- R. Gilman, C. Glasshausser, X. Jiang, G. Kumbartzki, R. Ransome#, E. Schulte *Rutgers University*
- A. Chakravorty Saint Xavier University
- S. Kopp, L. Loiacono, M. Proga University of Texas-Austin
- D. Cherdack, H. Gallagher, T. Kafka, W.A. Mann, W. Oliver *Tufts University*
- R. Ochoa, O. Pereyra, J. Solano Universidad Nacional de Ingenieria. Lima, Peru
- J.K. Nelson#, R.M. Schneider, D.S. Damiani The College of William and Mary
- * Co-Spokespersons
- # MINERvA Executive Committee

A collaboration of ~80 Particle, Nuclear,

and Theoretical physicists from 23 Institutions

Detector design

- Active core is segmented solid scintillator
 - Tracking (including low momentum recoil protons)
 - Particle identification by energy deposition (dE/dx)
 - 3 ns (RMS) per hit timing (track direction, identify stopped K^{\pm})
- Core surrounded by electromagnetic and hadronic calorimeters
 - Photon (π⁰) & hadron energy measurement
- Upstream region has simultaneous
 C, Fe, Pb, He targets to study nuclear effects
- MINOS Near
 Detector
 as muon catcher

Detector Design 2

Position

Installed in front of the MINOS Near Detector at FNAL

NuMI Neutrino Beam

Detection Technology

Blue emitting extruded triangular scintillator bars
Wavelength shifting fibre glued into central hole

•Clear fiber in light tight cables takes light to PMT

Why this technology?

Nature of neutrino physics requires massive target
Need to detect short tracks → active target
Tried and tested

•dE/dx in scintillator can be used for particle ID •Reasonable hit resolution (3 mm) using charge weighted position from triangle doublets.

V

Event Rates

Fiducial Mass : 3 ton CH, 0.6 ton C, 1 ton Fe, 1 ton Pb

<u>Total Event rate</u>		<u>Physics Event rate in CH</u>		
Target	CC v Rate	Process	Rate	
СН	8.6 M	QE	0.8 M	
С	1.4 M	1 pion	1.6 M	
Fe	2.9 M	Transition	2.0 M	
Ph	2.9 M	DIS	4 M	

* For one beam scenario

CCQE Cross section

High efficiency and purity (~ 77% and ~ 74% resp.) Nuclear Effects can be studied in nuclear targets Deviation from dipole form factors can be studied

Coherent pion cross section

MINERvA Schedule

- 2008:
 - Build and test 20-frame prototype above ground
 - Start building full detector (108 frames)
 - Build Test beam detector, run in the fall
- 2009:
 - Finish building full detector
 - Install as early as possible
 - End of 2009: take data with MINOS
- 2010:
 - Low Energy Neutrino Data taking
- 2011 and beyond:
 - Medium Energy Neutrino data with NOvA(???)

Theoretical work

Conclusion

	NOW	FUTURE
CCQE	15-20%	5%
NC π0	25-40%	<10%
$CC \pi +$	25-40%	5%
CC π0	25-40%	5%
Coherent π	100%	5-10%
Inclusive	>10%	5-10%

Conclusion

There are known knowns. There are things we know we know. We also know there are known unknowns. That is to say, We know there are some things we do not know. But there are also unknown unknowns. The ones we don't know we don't know.

D. Rumsfeld, American Poet

QE Cross section

QE cross section can be written in terms of nucleon FF

$$\langle N'| J_{\mu} | N \rangle = \overline{u}(N') \left[\gamma_{\mu} F_{\nu}(q^2) + \frac{i\sigma_{\mu\nu} q^{\nu} \xi F_{\nu}^2(q^2)}{2M} + \gamma_5 \gamma_{\mu} F_A(q^2) \right] u(N)$$

Form factors describe the nuclear structure.

 $F_v(q^2)$ is the vector form factor. It's related to the electric charge distribution of the nucleon and is measured well in electron scattering.

Historically represented by the dipole form

But known not to be

QE Cross section

QE cross section can be written in terms of nucleon FF

$$\langle N'| J_{\mu} | N \rangle = \overline{u}(N') \left[\gamma_{\mu} F_{\nu}(q^2) + \frac{i\sigma_{\mu\nu} q^{\nu} \xi F_{\nu}^2(q^2)}{2M} + \gamma_5 \gamma_{\mu} F_A(q^2) \right] u(N)$$

Form factors describe the nuclear structure.

 $F_A(q^2)$ is the axial-vector form factor. It's related to the helicity structure of the nucleon and not known well at all. It can only be measured in neutrino interactions.

$$F_A(q^2) \sim \frac{g_A}{1 + \frac{Q^2}{M_A^2}}$$

Function of a single parameter called the "axial mass" (M_A)

Measurement of M_{Δ}

Argonne (1969) Argonne (1973) **CERN (1977)** Argonne (1977) **CERN (1979)** BNL (1980) BNL (1981) Argonne (1982) Fermilab (1983) BNL (1986) BNL (1987) BNL (1990) Average 0.85

Parameter must be measured
Simulation use average derived using a deuterium target
Is this right when using an iron target?

World Average : $M_A = 1.03 \pm 0.02$

Form factor shape (MINERvA)

QE scattering, ν_{μ} , $F_A(Q^2)/dipole$, $M_A=1.014~GeV$

Nuclear Effects

Nuclear effects change as a function of A

 Presence of axial current affects shadowing

•NUTeV sees smaller nuclear effects at high-x than charged lepton scattering

•Different nuclear effects for valence and sea (F_2, xF_3)
An appearance experiment

An appearance experiment

Ambiguities

- For any one energy and baseline, you don't get the whole story...
- Need two energies, or two baselines, and at least one baseline needs to be long enough to see matter effects
- Need high precision measurements of EVERYTHING

Ambiguities

- For any one energy and baseline, you don't get the whole story...
- Need two energies, or two baselines, and at least one baseline needs to be long enough to see matter effects
- Need high precision measurements of EVERYTHING

Yes. Yes, it can.

 $v_{\mu} \mathbf{n} \rightarrow v_{\mu} \mathbf{n} \pi^{0}$