Flavour Permutation Symmetry and Fermion Mixing

Paul Harrison*
University of Warwick

Seminar at University of Birmingham,

30th April, 2008

* With Dan Roythorne and Bill Scott, PLB 657 (2007) 210, arXiv:0709.1439

Outline of Talk

- Introduction
- What does the SM tell us about flavour?
- What do the Data tell us about flavour?
- Origin of Masses and Mixings in SM
- Plaquette Invariance and Flavour Permutation Symmetry
- Flavour Symmetric Mixing Observables
- Applications
- Conclusions

Thinking about Flavour

Gauge sector of SM is rather well-understood. Has 3 free observable parameters.

Thinking about Flavour

Gauge sector of SM is rather well-understood. Has 3 free observable parameters.
The flavour sector is very poorly understood. Has 20 (or 22) low energy observable (free) parameters. Accounts for huge phenomenological richness - hierarchies of:

- masses
- mixing angles
- lifetimes
- flavour oscillations
- CP violation
- etc...

Spent many years measuring some of these parameters.

Thinking about Flavour

Gauge sector of SM is rather well-understood. Has 3 free observable parameters.
The flavour sector is very poorly understood. Has 20 (or 22) low energy observable (free) parameters. Accounts for huge phenomenological richness - hierarchies of:

- masses
- mixing angles
- lifetimes
- flavour oscillations
- CP violation
- etc...

Spent many years measuring some of these parameters.
But (frustratingly) there still exists no convincing, accepted theory of flavour (and I'm not going to propose one today!).

Open Questions

What we don't know (yet) includes:

- Why 3 families?

Open Questions

What we don't know (yet) includes:

- Why 3 families?
- Why the flavour parameters take the values that they do?

Open Questions

What we don't know (yet) includes:

- Why 3 families?
- Why the flavour parameters take the values that they do?
- Whether neutrinos are Dirac or Majorana (a big problem if you want to construct a theory of quark and lepton flavour).

Open Questions

What we don't know (yet) includes:

- Why 3 families?
- Why the flavour parameters take the values that they do?
- Whether neutrinos are Dirac or Majorana (a big problem if you want to construct a theory of quark and lepton flavour).
- Whether the whole theory is embedded in some BSM theory - SUSY, strings, extra dimensions...We (most of us) assume it is so embedded, but we have no idea in what.

Many people make assumptions about the above and try to make viable models.

Open Questions

What we don't know (yet) includes:

- Why 3 families?
- Why the flavour parameters take the values that they do?
- Whether neutrinos are Dirac or Majorana (a big problem if you want to construct a theory of quark and lepton flavour).
- Whether the whole theory is embedded in some BSM theory - SUSY, strings, extra dimensions...We (most of us) assume it is so embedded, but we have no idea in what.

Many people make assumptions about the above and try to make viable models.
This is not our approach.

Our Approach

- Wanted to be more general.

Our Approach

- Wanted to be more general.
- Notwithstanding the open questions, try to see what we can say about flavour "BSM", taking only the data and the SM as our guide

Our Approach

- Wanted to be more general.
- Notwithstanding the open questions, try to see what we can say about flavour "BSM", taking only the data and the SM as our guide
- Make as few assumptions as possible (no prejudice, least likely to be wrong!).

Our Approach

- Wanted to be more general.
- Notwithstanding the open questions, try to see what we can say about flavour "BSM", taking only the data and the SM as our guide
- Make as few assumptions as possible (no prejudice, least likely to be wrong!).
- See what the data suggest - an experimentalist's approach.

Our Approach

- Wanted to be more general.
- Notwithstanding the open questions, try to see what we can say about flavour "BSM", taking only the data and the SM as our guide
- Make as few assumptions as possible (no prejudice, least likely to be wrong!).
- See what the data suggest - an experimentalist's approach.
- Very much work in progress.

Start with the Standard Model

What does SM tell us about flavour?

Start with the Standard Model

What does SM tell us about flavour?

Nothing!

Start with the Standard Model

What does SM tell us about flavour?

Nothing!

Well, almost.

Start with the Standard Model

What does SM tell us about flavour?

Nothing!

Well, almost.
Places two quarks in a weak isodoublet $\psi_{q}=\binom{u}{d}$ and two leptons: $\psi_{\ell}=\binom{\nu_{e}}{e}$.

Start with the Standard Model

What does SM tell us about flavour?

Nothing!

Well, almost.
Places two quarks in a weak isodoublet $\psi_{q}=\binom{u}{d}$ and two leptons: $\psi_{\ell}=\binom{\nu_{e}}{e}$.
They participate in the standard gauge-invariant Electroweak interaction, via covariant derivatives etc. (will not review).

Start with the Standard Model

What does SM tell us about flavour?

Nothing!

Well, almost.
Places two quarks in a weak isodoublet $\psi_{q}=\binom{u}{d}$ and two leptons: $\psi_{\ell}=\binom{\nu_{e}}{e}$.
They participate in the standard gauge-invariant Electroweak interaction, via covariant derivatives etc. (will not review).

Distinguished by their charges...

...and by their Masses

$$
\begin{aligned}
\mathcal{L}_{Y u k} & \sim c_{d} \bar{\psi}_{q L} \cdot \phi \cdot d_{R}+c_{u} \bar{\psi}_{q L} \cdot \tilde{\phi} \cdot u_{R} \\
& +c_{e} \bar{\psi}_{\ell L} \cdot \phi \cdot e_{R}+c_{\nu} \bar{\psi}_{\ell L} \cdot \tilde{\phi} \cdot \nu_{e R}(+ \text { any Majorana mass terms...) })
\end{aligned}
$$

with "Yukawa couplings" $c_{u}, c_{d}, c_{e}, c_{\nu}$ free parameters (to be determined by experiment).

...and by their Masses

$$
\begin{aligned}
\mathcal{L}_{Y u k} & \sim c_{d} \bar{\psi}_{q L} \cdot \phi \cdot d_{R}+c_{u} \bar{\psi}_{q L} \cdot \tilde{\phi} \cdot u_{R} \\
& +c_{e} \bar{\psi}_{\ell L} \cdot \phi \cdot e_{R}+c_{\nu} \bar{\psi}_{\ell L} \cdot \tilde{\phi} \cdot \nu_{e R}(+ \text { any Majorana mass terms...) })
\end{aligned}
$$

with "Yukawa couplings" $c_{u}, c_{d}, c_{e}, c_{\nu}$ free parameters (to be determined by experiment).

After SSB,

$$
\begin{aligned}
m_{i} & =c_{i} \cdot(v e v) \\
m_{\nu} & =\frac{c_{\nu}^{2}(v e v)^{2}}{M_{M a j}}
\end{aligned}
$$

OR, if Majorana ν, then

...and by their Masses

$$
\begin{aligned}
\mathcal{L}_{Y u k} & \sim c_{d} \bar{\psi}_{q L} \cdot \phi \cdot d_{R}+c_{u} \bar{\psi}_{q L} \cdot \tilde{\phi} \cdot u_{R} \\
& +c_{e} \bar{\psi}_{\ell L} \cdot \phi \cdot e_{R}+c_{\nu} \bar{\psi}_{\ell L} \cdot \tilde{\phi} \cdot \nu_{e R}(+ \text { any Majorana mass terms...) }
\end{aligned}
$$

with "Yukawa couplings" $c_{u}, c_{d}, c_{e}, c_{\nu}$ free parameters (to be determined by experiment).

After SSB,

$$
\begin{aligned}
m_{i} & =c_{i} \cdot(v e v) \\
m_{\nu} & =\frac{c_{\nu}^{2}(v e v)^{2}}{M_{M a j}}
\end{aligned}
$$

OR, if Majorana ν, then
SM accommodates multiple copies of this - families/generations.
Then Yukawas, c_{i}, become arbitrary matrices: $Y_{\frac{2}{3}}, Y_{-\frac{1}{3}}, Y_{\ell}, Y_{\nu}$.

...and by their Masses

$$
\begin{aligned}
\mathcal{L}_{Y u k} & \sim c_{d} \bar{\psi}_{q L} \cdot \phi \cdot d_{R}+c_{u} \bar{\psi}_{q L} \cdot \tilde{\phi} \cdot u_{R} \\
& +c_{e} \bar{\psi}_{\ell L} \cdot \phi \cdot e_{R}+c_{\nu} \bar{\psi}_{\ell L} \cdot \tilde{\phi} \cdot \nu_{e R}(+ \text { any Majorana mass terms...) })
\end{aligned}
$$

with "Yukawa couplings" $c_{u}, c_{d}, c_{e}, c_{\nu}$ free parameters (to be determined by experiment).

After SSB,

$$
\begin{aligned}
m_{i} & =c_{i} \cdot(v e v) \\
m_{\nu} & =\frac{c_{\nu}^{2}(v e v)^{2}}{M_{M a j}}
\end{aligned}
$$

OR, if Majorana ν, then
SM accommodates multiple copies of this - families/generations.
Then Yukawas, c_{i}, become arbitrary matrices: $Y_{\frac{2}{3}}, Y_{-\frac{1}{3}}, Y_{\ell}, Y_{\nu}$.

And that's all!

And the Data? 3 Families $\Longrightarrow 2$ Quark Mass Spectra

Charge $=+\frac{2}{3}$

Charge $=-\frac{1}{3}$

The Data - 2 Lepton Mass Spectra

$$
\text { Charge }=-1
$$

-1

 $\left|\mathrm{m}_{2}^{2}-\mathrm{m}_{1}^{2}\right| \sim 8 \times 10^{-5} \mathrm{eV}^{2}$

Similarly not a "typical" random, arbitrary set of parameters

The Data - CKM Quark Mixing Matrix

- CKM matrix parameterises couplings of quark mass eigenstates to W.
- Shows tantalising "Wolfenstein" structure:

$$
|V| \sim{ }_{c} \begin{gathered}
d \\
t \\
t
\end{gathered}\left(\begin{array}{ccc}
\mathcal{O}(1) & \mathcal{O}(\lambda) & b \\
\mathcal{O}(\lambda) & \mathcal{O}\left(\lambda^{3}\right) \\
\mathcal{O}\left(\lambda^{3}\right) & \mathcal{O}\left(\lambda^{2}\right) \\
\mathcal{O}\left(\lambda^{2}\right) & \mathcal{O}(1)
\end{array}\right)
$$

- Elements not predictable in the SM - profoundly unsatisfactory.

Summary of Neutrino Oscillation Data

TriBimaximal Lepton Mixing

So, in leading approximation:

$$
\left.|U| \sim \mu \begin{array}{ccc}
\nu_{1} & \nu_{2} & \nu_{3} \\
e \\
\tau
\end{array} \begin{array}{ccc}
2 / \sqrt{6} & 1 / \sqrt{3} & 0 \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

PFH, D. Perkins and W.G. Scott, PLB 458 (1999) 79 and PLB 530 (2002) 167.

TriBimaximal Lepton Mixing

So, in leading approximation:

$$
\left.|U| \sim \begin{array}{ccc}
\nu_{1} & \nu_{2} & \nu_{3} \\
e \\
\tau \\
\tau \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

PFH, D. Perkins and W.G. Scott, PLB 458 (1999) 79 and PLB 530 (2002) 167.
Or (more realistically):

$$
U \simeq\left(\begin{array}{ccc}
\frac{2}{\sqrt{6}}(1-\epsilon) & \frac{1}{\sqrt{3}}(1+2 \epsilon) & U_{e 3} \\
-\frac{1}{\sqrt{6}}\left(1+2 \epsilon-\mu+\frac{3}{\sqrt{2}} U_{e 3}^{*}\right) & \frac{1}{\sqrt{3}}(1-\epsilon-\mu) & \frac{1}{\sqrt{2}}\left(1+\mu-\frac{1}{\sqrt{2}} U_{e 3}\right) \\
\frac{1}{\sqrt{6}}\left(1+2 \epsilon+\mu-\frac{3}{\sqrt{2}} U_{e 3}^{*}\right) & -\frac{1}{\sqrt{3}}(1-\epsilon+\mu) & \frac{1}{\sqrt{2}}\left(1-\mu+\frac{1}{\sqrt{2}} U_{e 3}\right)
\end{array}\right) .
$$

with

$$
-0.032<\epsilon<\underset{\text { University of Warwick }}{0.037 ;} \quad-0.18<\mu<0.21 ; \quad\left|U_{e 3}\right|<0.11
$$

TBM Defined by 3 Phenomenological Symmetries

- $C P$:

If $\operatorname{Im}\left(U_{e 3}\right)=0$, then U is real and $C P$ is conserved.

TBM Defined by 3 Phenomenological Symmetries

- $C P$:

If $\operatorname{Im}\left(U_{e 3}\right)=0$, then U is real and $C P$ is conserved.

- Democracy:

If $\epsilon=\mu=0$, then middle column is $\nu_{2}=\frac{1}{\sqrt{3}}(1,1,1)$
Explored in J.D. Bjorken, PFH, and W.G. Scott PRD 74 (2006) 073012.

TBM Defined by 3 Phenomenological Symmetries

- $C P$:

If $\operatorname{Im}\left(U_{e 3}\right)=0$, then U is real and $C P$ is conserved.

- Democracy:

If $\epsilon=\mu=0$, then middle column is $\nu_{2}=\frac{1}{\sqrt{3}}(1,1,1)$
Explored in J.D. Bjorken, PFH, and W.G. Scott PRD 74 (2006) 073012.

- $\mu-\tau$ Reflection Symmetry:

If $\operatorname{Re}\left(U_{e 3}\right)=0=\mu$, then $\left|U_{\mu i}\right|=\left|U_{\tau i}\right|$ and simulataneous $\mu-\tau$ swap and $C P$ transf. leaves observables invariant (PFH and W.G. Scott PLB 547 (2002) 219).

TBM Defined by 3 Phenomenological Symmetries

- $C P$:

If $\operatorname{Im}\left(U_{e 3}\right)=0$, then U is real and $C P$ is conserved.

- Democracy:

If $\epsilon=\mu=0$, then middle column is $\nu_{2}=\frac{1}{\sqrt{3}}(1,1,1)$
Explored in J.D. Bjorken, PFH, and W.G. Scott PRD 74 (2006) 073012.

- $\mu-\tau$ Reflection Symmetry:

If $\operatorname{Re}\left(U_{e 3}\right)=0=\mu$, then $\left|U_{\mu i}\right|=\left|U_{\tau i}\right|$ and simulataneous $\mu-\tau$ swap and $C P$ transf. leaves observables invariant (PFH and W.G. Scott PLB 547 (2002) 219).

- $C P$ and Democracy and $\mu-\tau$ Reflection Symmetry $\Rightarrow U_{e 3}=0=\epsilon=\mu \Rightarrow$ TBM mixing.

Discussion of TBM

TBM form is redolent of other symmetries:

- Taking $\nu_{e}, \nu_{\mu}, \nu_{\tau}$ to define the orientation of a cube, ν_{2} lies along its body diagonal
- Same coefficients form the $M=0$ subset of the $j \times j=1 \times 1$ set of Clebsch-Gordan Coeffts.

Several authors have built TBM into models,
eg. G. Altarelli and F. Feruglio, hep-ph/0512103
I. de Medeiros Varzielas, S. King and G. Ross, hep-ph/0512313
E. Ma PRD 73:057304, 2006 etc. $(A 4, D(27), \Sigma(81)$ groups etc.)

The Flavour problem

- The spectra of masses and mixings are today's analogues of the Lyman, Balmer and Paschen series. They show tantalising structure and yet are unexplained, and inexplicable within the prevailing (Standard) Model.
- The Wolfenstein and Tri-bimaximal formulae, provide correct (within exptl. errors) mathematical descriptions of the observed systematics of the mixing spectra, without any explanation at all.

While based on less precise data, are somewhat akin to the Rydberg formula.
The data demand explanation, but the SM has nothing to say about them.

Origin of Masses and Mixings in the SM

- In SM, they have common origin in fermion-Higgs "Yukawa couplings" (multiplied by Higgs Vevs).
- Will focus on leptons - consider 3 families of leptonic $S U(2)$ doublets:

$$
\psi_{a}=\binom{\nu_{a}}{\ell_{a}^{-}}, \quad \psi_{b}=\binom{\nu_{b}}{\ell_{\bar{b}}}, \quad \psi_{c}=\binom{\nu_{c}}{\ell_{c}^{-}}
$$

Each transforms among itself under $S U(2)$ weak transformations in usual way.

Origin of Masses and Mixings in the SM

- In SM, they have common origin in fermion-Higgs "Yukawa couplings" (multiplied by Higgs Vevs).
- Will focus on leptons - consider 3 families of leptonic $S U(2)$ doublets:

$$
\psi_{a}=\binom{\nu_{a}}{\ell_{a}^{-}}, \quad \psi_{b}=\binom{\nu_{b}}{\ell_{\bar{b}}^{-}}, \quad \psi_{c}=\binom{\nu_{c}}{\ell_{c}^{-}}
$$

Each transforms among itself under $S U(2)$ weak transformations in usual way.

- Define also three-component vectors in family-space:

$$
\underline{\psi}=\left(\begin{array}{l}
\psi_{a} \\
\psi_{b} \\
\psi_{c}
\end{array}\right) \quad \text { with } \quad \underline{\nu}=\left(\begin{array}{c}
\nu_{a} \\
\nu_{b} \\
\nu_{c}
\end{array}\right) \quad \underline{\ell}=\left(\begin{array}{c}
\ell_{a}^{-} \\
\ell_{b}^{-} \\
\ell_{c}^{-}
\end{array}\right)
$$

Origin of Masses and Mixings (contd.)

- Generalise earlier Yukawa couplings to 3 families:

$$
\mathcal{L}_{Y u k}=\left(\underline{\bar{\psi}}_{L} \cdot \phi\right) Y_{\ell} \underline{\ell}_{R}+\left(\underline{\bar{\psi}}_{L} \cdot \tilde{\phi}\right) Y_{\nu} \underline{\nu}_{R}+H . C .
$$

Origin of Masses and Mixings (contd.)

- Generalise earlier Yukawa couplings to 3 families:

$$
\mathcal{L}_{Y u k}=\left(\underline{\bar{\psi}}_{L} \cdot \phi\right) Y_{\ell} \underline{\ell}_{R}+\left(\underline{\bar{\psi}}_{L} \cdot \tilde{\phi}\right) Y_{\nu} \underline{\nu}_{R}+H . C .
$$

- After SSB, Dirac mass terms appear in Lagrangian:

$$
\mathcal{L}_{\text {mass }}=\underline{\underline{\ell}}_{L} M_{\ell} \underline{\ell}_{R}+\underline{\bar{\nu}}_{L} M_{D} \underline{\nu}_{R}+H . C .
$$

- $M_{\ell}=Y_{\ell} \cdot(v e v)$ and $M_{D}=Y_{\nu} \cdot(v e v)$, are arbitrary, 3×3 Dirac mass matrices.

Origin of Masses and Mixings (contd.)

- Generalise earlier Yukawa couplings to 3 families:

$$
\mathcal{L}_{Y u k}=\left(\underline{\bar{\psi}}_{L} \cdot \phi\right) Y_{\ell} \underline{\ell}_{R}+\left(\underline{\bar{\psi}}_{L} \cdot \tilde{\phi}\right) Y_{\nu} \underline{\nu}_{R}+H . C .
$$

- After SSB, Dirac mass terms appear in Lagrangian:

$$
\mathcal{L}_{\text {mass }}=\overline{\underline{\ell}}_{L} M_{\ell} \underline{\ell}_{R}+\underline{\bar{\nu}}_{L} M_{D} \underline{\nu}_{R}+H . C .
$$

- $M_{\ell}=Y_{\ell} \cdot($ vev $)$ and $M_{D}=Y_{\nu} \cdot(v e v)$, are arbitrary, 3×3 Dirac mass matrices.
- Charged-current weak interaction (same basis) is diagonal:

$$
\mathcal{L}_{c c}=g\left(\underline{\underline{\ell}}_{L} \cdot \underline{\nu}_{L}\right) W^{+}+H . C .
$$

Origin of Masses and Mixing (contd.)

- For Majorana neutrinos, light ν mass matrix is $M_{\nu}=M_{D}^{T} M_{M a j}^{-1} M_{D}$ (complex symmetric).

Origin of Masses and Mixing (contd.)

- For Majorana neutrinos, light ν mass matrix is $M_{\nu}=M_{D}^{T} M_{M a j}^{-1} M_{D}$ (complex symmetric).
- Useful to work with Hermitian mass matrices. Define:
- for charged leptons: $L=M_{\ell} M_{\ell}^{\dagger}$ OR $L=M_{\ell} U_{R}^{\ell}$ etc.
- for neutrinos: $N=M_{\nu} M_{\nu}^{\dagger}$ OR $N=M_{D} M_{D}^{\dagger}$ OR $N=M_{D} U_{R}^{\nu}$ etc.

Origin of Masses and Mixing (contd.)

- For Majorana neutrinos, light ν mass matrix is $M_{\nu}=M_{D}^{T} M_{M a j}^{-1} M_{D}$ (complex symmetric).
- Useful to work with Hermitian mass matrices. Define:
- for charged leptons: $L=M_{\ell} M_{\ell}^{\dagger}$ OR $L=M_{\ell} U_{R}^{\ell}$ etc.
- for neutrinos: $N=M_{\nu} M_{\nu}^{\dagger}$ OR $N=M_{D} M_{D}^{\dagger}$ OR $N=M_{D} U_{R}^{\nu}$ etc.
- Diagonalise: $U_{\nu} N U_{\nu}^{\dagger}=D_{\nu} \rightarrow$ eigenvalues (eg. masses-squared), "physical" states.

Origin of Masses and Mixing (contd.)

- For Majorana neutrinos, light ν mass matrix is $M_{\nu}=M_{D}^{T} M_{\text {Maj }}^{-1} M_{D}$ (complex symmetric).
- Useful to work with Hermitian mass matrices. Define:
- for charged leptons: $L=M_{\ell} M_{\ell}^{\dagger}$ OR $L=M_{\ell} U_{R}^{\ell}$ etc.
- for neutrinos: $N=M_{\nu} M_{\nu}^{\dagger}$ OR $N=M_{D} M_{D}^{\dagger}$ OR $N=M_{D} U_{R}^{\nu}$ etc.
- Diagonalise: $U_{\nu} N U_{\nu}^{\dagger}=D_{\nu} \rightarrow$ eigenvalues (eg. masses-squared), "physical" states.
- Diagonalisation different for L and $N \Rightarrow$ mixing, ie.

$$
\mathcal{L}_{c c}=g\left(\underline{\underline{\ell}}_{L}^{m} U_{M N S} \underline{\nu}_{L}^{m}\right) W^{+}+H . C .
$$

where $U_{M N S} \equiv U_{\ell} U_{\nu}^{\dagger}$ is the lepton mixing matrix. NB. Analogous for quarks.

Jarlskog (ie. Weak Basis) Covariance

- However L and N are not observable. Under a simultaneous change of weak basis:

$$
L^{\prime}=U_{J} L U_{J}^{\dagger} \text { and } N^{\prime}=U_{J} N U_{J}^{\dagger}
$$

have same eigenvalues and same mixing matrix:

$$
U_{M N S}^{\prime}=U_{\ell}\left(U_{J}^{\dagger} U_{J}\right) U_{\nu}^{\dagger}=U_{M N S}
$$

- ie. Masses and mixing angles are "Jarlskog-invariant", even though mass matrices transform.

Jarlskog (ie. Weak Basis) Covariance

- However L and N are not observable. Under a simultaneous change of weak basis:

$$
L^{\prime}=U_{J} L U_{J}^{\dagger} \text { and } N^{\prime}=U_{J} N U_{J}^{\dagger}
$$

have same eigenvalues and same mixing matrix:

$$
U_{M N S}^{\prime}=U_{\ell}\left(U_{J}^{\dagger} U_{J}\right) U_{\nu}^{\dagger}=U_{M N S}
$$

- ie. Masses and mixing angles are "Jarlskog-invariant", even though mass matrices transform.
- New basis is just as good a starting point...
- Allows, eg. freedom to "push" mixing into neutrinos or charged leptons

Jarlskog (ie. Weak Basis) Covariance

- However L and N are not observable. Under a simultaneous change of weak basis:

$$
L^{\prime}=U_{J} L U_{J}^{\dagger} \text { and } N^{\prime}=U_{J} N U_{J}^{\dagger}
$$

have same eigenvalues and same mixing matrix:

$$
U_{M N S}^{\prime}=U_{\ell}\left(U_{J}^{\dagger} U_{J}\right) U_{\nu}^{\dagger}=U_{M N S}
$$

- ie. Masses and mixing angles are "Jarlskog-invariant", even though mass matrices transform.
- New basis is just as good a starting point...
- Allows, eg. freedom to "push" mixing into neutrinos or charged leptons
- Jarlskog urges (1985): "important results can't be frame-dependent" and reiterates (hep-ph/0606050): "you should be able to formulate it in an invariant form"
- We adopt Jarlskog's prescription as a principle!

Historical Attempts to Constrain Fermion Masses and Mixings

- Inspired by phenomenological relationships in quark mixing, eg.

$$
\tan \theta_{C} \simeq 0.23 \simeq \sqrt{\frac{m_{d}}{m_{s}}} ; \quad \tan \theta_{c b} \simeq 0.04 \simeq \sqrt{\frac{m_{d}}{m_{b}}}
$$

and common origin of masses and mixings. Many attempts made to relate them.

- Best known is by H. Fritzsch from 1977 and 1978: mass matrices:

$$
M^{\frac{2}{3}}=\left(\begin{array}{ccc}
0 & a & 0 \\
a^{*} & 0 & b \\
0 & b^{*} & c
\end{array}\right) ; \quad M^{-\frac{1}{3}}=\left(\begin{array}{ccc}
0 & \alpha & 0 \\
\alpha^{*} & 0 & \beta \\
0 & \beta^{*} & \gamma
\end{array}\right)
$$

- Predicts (after approximations) above θ_{C} relation, but also

$$
\tan \theta_{c b}>\sqrt{\frac{m_{s}}{m_{b}}}-\sqrt{\frac{m_{c}}{m_{t}}} \simeq 0.09, \quad \text { (now excluded) }
$$

How does Fritzsch Ansatz work?

- Mass matrices encode 10 pieces of information (6 masses and 4 mixing parameters) using only 6 magnitudes and one phase, $\Longrightarrow 3$ constraints.
- Spawned many refinements, some phenomenologically successful.
- Modern models appeal to "flavour symmetries" to enforce zeroes or other "textures".
- Many build-in supersymmetry and/or complicated Higgs structures etc.

How does Fritzsch Ansatz work?

- Mass matrices encode 10 pieces of information (6 masses and 4 mixing parameters) using only 6 magnitudes and one phase, $\Longrightarrow 3$ constraints.
- Spawned many refinements, some phenomenologically successful.
- Modern models appeal to "flavour symmetries" to enforce zeroes or other "textures".
- Many build-in supersymmetry and/or complicated Higgs structures etc.
- However, generally assume that \exists a "special" basis, in which the mass matrices take some "particular" form (which limits number of parameters to <10).
- "Specialness" of this basis is never explained.
- Since 1905, we have been alert to excessive reliance on a given frame or basis.
- We seek, instead, a Jarskog-invariant description of mixing.

Flavour-Symmetric Jarlskog Invariants

- "Usual" observables are not flavour-symmetric. eg. the electron mass, m_{e}, (electron label) and $\left|U_{e 3}\right|$ (flavour and mass labels).
- Jarlskog showed how to write flavour-symmetric invariant observables.

Flavour-Symmetric Jarlskog Invariants

- "Usual" observables are not flavour-symmetric. eg. the electron mass, m_{e}, (electron label) and $\left|U_{e 3}\right|$ (flavour and mass labels).
- Jarlskog showed how to write flavour-symmetric invariant observables.
- Examples are (in an arbitrary weak-basis, primes dropped):
$\operatorname{Tr}(L)=m_{e}+m_{\mu}+m_{\tau} ; \quad \operatorname{Tr}\left(L^{2}\right)=m_{e}^{2}+m_{\mu}^{2}+m_{\tau}^{2} ; \quad \operatorname{Tr}\left(L^{3}\right)=m_{e}^{3}+m_{\mu}^{3}+m_{\tau}^{3}$
which form a complete set.

Flavour-Symmetric Jarlskog Invariants

- "Usual" observables are not flavour-symmetric. eg. the electron mass, m_{e}, (electron label) and $\left|U_{e 3}\right|$ (flavour and mass labels).
- Jarlskog showed how to write flavour-symmetric invariant observables.
- Examples are (in an arbitrary weak-basis, primes dropped):
$\operatorname{Tr}(L)=m_{e}+m_{\mu}+m_{\tau} ; \quad \operatorname{Tr}\left(L^{2}\right)=m_{e}^{2}+m_{\mu}^{2}+m_{\tau}^{2} ; \quad \operatorname{Tr}\left(L^{3}\right)=m_{e}^{3}+m_{\mu}^{3}+m_{\tau}^{3}$ which form a complete set.
- All traces of polynomials of L and N are invariant (and FS), eg.:

$$
\operatorname{Tr}\left(L^{\prime} N^{\prime}\right)=\operatorname{Tr}\left(U L U^{\dagger} U N U^{\dagger}\right)=\operatorname{Tr}\left(U L N U^{\dagger}\right)=\operatorname{Tr}\left(L N U^{\dagger} U\right)=\operatorname{Tr}(L N)
$$

etc.

- But typically depend in a complicated way on masses and mixing matrix elements.

The Jarlskogian and Plaquette Invariance

Jarlskog's $C P$-violating invariant:

$$
J=\operatorname{Im}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right)
$$

$$
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2}^{*} & U_{e 3} \\
U_{\mu 1}^{*} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)
$$

The Jarlskogian and Plaquette Invariance

Jarlskog's $C P$-violating invariant:

$$
J=\operatorname{Im}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right)
$$

$$
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2}^{*} & U_{e 3} \\
U_{\mu 1}^{*} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)
$$

Fascinating properties:

- Parameterises $C P$ violation
- Does not depend on which plaquette is used

The Jarlskogian and Plaquette Invariance

Jarlskog's $C P$-violating invariant:

$$
J=\operatorname{Im}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right)
$$

$$
\left(\begin{array}{ccc}
U_{e 1} & U_{e 2}^{*} & \psi_{e 3} \\
U_{\mu 1}^{*} & U_{\mu 2} & \psi_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & \Psi_{\tau 3}
\end{array}\right)
$$

Fascinating properties:

- Parameterises $C P$ violation
- Does not depend on which plaquette is used
- Simply related to the mass matrices:

$$
J=-i \frac{\operatorname{Det}[L, N]}{2 L_{\Delta} N_{\Delta}}
$$

L_{Δ}, N_{Δ} are traces of polynomials in L and N.

Are there Other Plaquette Invariants?

Are there Other Plaquette Invariants?

Yes!

Are there Other Plaquette Invariants?

Yes!

- J samples information uniformly across U
- it is flavour - symmetric (FS).

Are there Other Plaquette Invariants?

Yes!

- J samples information uniformly across U
- it is flavour - symmetric (FS).
- Clearly, any function of the $U_{\alpha i}$, symmetrised over all flavour labels, and reduced to a function of only elements of a single plaquette is plaquette-invariant.

Are there Other Plaquette Invariants?

Yes!

- J samples information uniformly across U
- it is flavour - symmetric (FS).
- Clearly, any function of the $U_{\alpha i}$, symmetrised over all flavour labels, and reduced to a function of only elements of a single plaquette is plaquette-invariant.
- Working with observables, find that, like J, FS functions of the mixing matrix can always be expressed as simple functions of the mass matrices.
- Will introduce an elemental set
- can be used for the flavour-symmetric description of any mixing scheme.

The $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group

- 6 perms. of ℓ flavour indices and 6 of ν "flavour" labels (ie. ν mass eigenstate indices) constitute the $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group (FPG).

The $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group

- 6 perms. of ℓ flavour indices and 6 of ν "flavour" labels (ie. ν mass eigenstate indices) constitute the $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group (FPG).
- Introduce the observable P matrix:

$$
P=\left(\begin{array}{lll}
\left|U_{e 1}\right|^{2} & \left|U_{e 2}\right|^{2} & \left|U_{e 3}\right|^{2} \\
\left|U_{\mu 1}\right|^{2} & \left|U_{\mu 2}\right|^{2} & \left|U_{\mu 3}\right|^{2} \\
\left|U_{\tau 1}\right|^{2} & \left|U_{\tau 2}\right|^{2} & \left|U_{\tau 3}\right|^{2}
\end{array}\right)
$$

- Parameterises mixing (up to the sign of J).

The $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group

- 6 perms. of ℓ flavour indices and 6 of ν "flavour" labels (ie. ν mass eigenstate indices) constitute the $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group (FPG).
- Introduce the observable P matrix:

$$
P=\left(\begin{array}{lll}
\left|U_{e 1}\right|^{2} & \left|U_{e 2}\right|^{2} & \left|U_{e 3}\right|^{2} \\
\left|U_{\mu 1}\right|^{2} & \left|U_{\mu 2}\right|^{2} & \left|U_{\mu 3}\right|^{2} \\
\left|U_{\tau 1}\right|^{2} & \left|U_{\tau 2}\right|^{2} & \left|U_{\tau 3}\right|^{2}
\end{array}\right)
$$

- Parameterises mixing (up to the sign of J).
- Transforms as a (reducible) 3×3 (natural representation) of FPG.
- Rows and columns each sum to unity (a magic square)
\Rightarrow completely specified by elements of any P-plaquette.
- Each P-plaquette transforms as (irreducible) 2×2 of FPG.

Singlets Under FPG?

- J is prototype FS observable - invariant under even members of the FPG; flips sign under odd members; ie. $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$.

Singlets Under FPG?

- J is prototype FS observable - invariant under even members of the FPG; flips sign under odd members; ie. $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$.
- Search for other singlets: $\mathbf{1} \times \mathbf{1}, \mathbf{1} \times \overline{\mathbf{1}}$ etc.
- Find simple polynomials of elements of P
- (anti-)symmetrise over flavour labels

Singlets Under FPG?

- J is prototype FS observable - invariant under even members of the FPG; flips sign under odd members; ie. $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$.
- Search for other singlets: $\mathbf{1} \times \mathbf{1}, \mathbf{1} \times \overline{\mathbf{1}}$ etc.
- Find simple polynomials of elements of P
- (anti-)symmetrise over flavour labels
- Simple representation theory \rightarrow
- 1st order in $P: \quad \exists$ no non-trivial singlets
- 2nd order: \quad one each of $\overline{1} \times \overline{1}$ and $\mathbf{1} \times \mathbf{1}$
- 3rd order: one each of all four singlets
$-\geq$ 4th order: multiple instances of each
- Will stay at ≤ 3 rd order. Clearly four are sufficient.

Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and "offset" in 1×1 case):

$$
\begin{aligned}
\mathcal{G}=\frac{1}{2}\left[\sum_{\alpha i}\left(P_{\alpha i}\right)^{2}-1\right] & \mathcal{F}
\end{aligned}=\operatorname{Det} P
$$

where $L_{\gamma k}=\left(P_{\alpha i}+P_{\beta j}-P_{\beta i}-P_{\alpha j}\right)$.

Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and "offset" in 1×1 case):

$$
\begin{aligned}
\mathcal{G}=\frac{1}{2}\left[\sum_{\alpha i}\left(P_{\alpha i}\right)^{2}-1\right] & \mathcal{F}
\end{aligned}=\operatorname{Det} P
$$

where $L_{\gamma k}=\left(P_{\alpha i}+P_{\beta j}-P_{\beta i}-P_{\alpha j}\right)$.

- \mathcal{F} and \mathcal{A} need no offset (they are anti-symmetric).
- Reach extremum for no mixing
- 0 for trimaximal mixing

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- All normalised to maximum value $=1$ (no mixing).
- \mathcal{G} and \mathcal{C} offset to zero for maximal mixing

$$
P=\left(\begin{array}{lll}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

Properties and Values

Observable	Order	Symmetry:	Theor.	Exptl. Range	Exptl. Range
Name	in P	$S 3_{\ell} \times S 3_{\nu}$	Range	for Leptons	for Quarks
\mathcal{F}	2	$\overline{\mathbf{1}} \times \overline{\mathbf{1}}$	$(-1,1)$	$(-0.14,0.12)$	$(0.893,0.896)$
\mathcal{G}	2	$\mathbf{1} \times \mathbf{1}$	$(0,1)$	$(0.15,0.23)$	$(0.898,0.901)$
\mathcal{A}	3	$\overline{\mathbf{1}} \times \overline{\mathbf{1}}$	$(-1,1)$	$(-0.065,0.052)$	$(0.848,0.852)$
\mathcal{C}	3	$\mathbf{1} \times \mathbf{1}$	$\left(-\frac{1}{27}, 1\right)$	$(-0.005,0.057)$	$(0.848,0.852)$

Properties and values of FS observables. Experimentally allowed ranges estimated ($90 \% \mathrm{CL}$) from compilations of current experimental results (neglect any correlations between the input quantities).

FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^{m}}:=L^{m}-\frac{1}{3} \operatorname{Tr}\left(L^{m}\right)$ (similarly for $\widetilde{N^{m}}$).

Now define Jarlskog-invariant:

$$
\widetilde{T}_{m n}:=\operatorname{Tr}\left(\widetilde{L^{m}} \widetilde{N^{n}}\right), \quad m, n=1,2 .
$$

\widetilde{T} Completely equivalent to P (for known lepton masses).

FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^{m}}:=L^{m}-\frac{1}{3} \operatorname{Tr}\left(L^{m}\right)$ (similarly for $\widetilde{N^{m}}$).

Now define Jarlskog-invariant:

$$
\widetilde{T}_{m n}:=\operatorname{Tr}\left(\widetilde{L^{m}} \widetilde{N^{n}}\right), \quad m, n=1,2
$$

\widetilde{T} Completely equivalent to P (for known lepton masses).
Find:

$$
\mathcal{F} \equiv \operatorname{Det} P=3 \frac{\operatorname{Det} \widetilde{T}}{L_{\Delta} N_{\Delta}} ; \quad\left[c f . J=-i \frac{\operatorname{Det}[L, N]}{2 L_{\Delta} N_{\Delta}}\right]
$$

FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^{m}}:=L^{m}-\frac{1}{3} \operatorname{Tr}\left(L^{m}\right)$ (similarly for $\widetilde{N^{m}}$).

Now define Jarlskog-invariant:

$$
\widetilde{T}_{m n}:=\operatorname{Tr}\left(\widetilde{L^{m}} \widetilde{N^{n}}\right), \quad m, n=1,2
$$

\widetilde{T} Completely equivalent to P (for known lepton masses).
Find:

$$
\begin{gathered}
\mathcal{F} \equiv \operatorname{Det} P=3 \frac{\operatorname{Det} \widetilde{T}}{L_{\Delta} N_{\Delta}} ; \quad\left[c f . J=-i \frac{\operatorname{Det}[L, N]}{2 L_{\Delta} N_{\Delta}}\right] \\
\mathcal{G}=\frac{\widetilde{T}_{m n} \widetilde{T}_{p q} \mathcal{L}^{m p} \mathcal{N}^{n q}}{\left(L_{\Delta} N_{\Delta}\right)^{2}} ; \quad \mathcal{C}, \mathcal{A}=\frac{\widetilde{T}_{m n} \widetilde{T}_{p q} \widetilde{T}_{r s} \mathcal{L}_{\mathcal{C}, \mathcal{A}}^{(m p r)} \mathcal{N}_{\mathcal{C}, \mathcal{A}}^{(n q s)}}{\left(L_{\Delta} N_{\Delta}\right)^{K_{\mathcal{C}, \mathcal{A}}}}
\end{gathered}
$$

The $\mathcal{L}(\mathcal{N})$ are simple functions of traces of $\widetilde{L^{m}}\left(\widetilde{N^{m}}\right) . \quad K_{\mathcal{C}}\left(K_{\mathcal{A}}\right)=2(3)$.

Application: Flavour-symmetric Descriptions of Mixing

MNS Matrix:

$$
\left.\begin{array}{c}
\nu_{1} \\
e \\
|U| \sim \mu \\
\tau
\end{array} \begin{array}{c}
\nu_{2} \\
\nu_{3} \\
2 / \sqrt{6} \\
1 / \sqrt{6} \\
1 / \sqrt{6} \\
1 / \sqrt{3}
\end{array}\right] \begin{gathered}
1 / \sqrt{2} \\
\Rightarrow \mathcal{F}=0, \quad \mathcal{C}=0, \quad \mathcal{A}=0, \quad \mathcal{G}=\frac{1}{6}\left(1-3 \epsilon^{2}\right)^{2} .
\end{gathered}
$$

Application: Flavour-symmetric Descriptions of Mixing

MNS Matrix:

$$
\begin{aligned}
& \begin{array}{lll}
\nu_{1} & \nu_{2} & \nu_{3}
\end{array} \\
& |U| \sim \mu\left(\begin{array}{ccc}
e \\
\tau \\
\tau \\
2 / \sqrt{6} & 1 / \sqrt{3} & \epsilon \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right) \\
& \Rightarrow \mathcal{F}=0, \quad \mathcal{C}=0, \quad \mathcal{A}=0, \quad \mathcal{G}=\frac{1}{6}\left(1-3 \epsilon^{2}\right)^{2} .
\end{aligned}
$$

Where is flavour-symmetry?

Where is Flavour Symmetry?

- It is spontaneously broken

Where is Flavour Symmetry?

- It is spontaneously broken
- There exist 36 equally valid "solutions" of the TBM form, related to each other by allowed permutations of the rows and columns of the mixing matrix.
- eg.

$$
\left.|U| \sim \begin{array}{ccc}
\nu_{1} & \nu_{2} & \nu_{3} \\
e \\
\tau
\end{array} \begin{array}{ccc}
1 / \sqrt{3} & 2 / \sqrt{6} & \epsilon \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2}
\end{array}\right)
$$

FS Descriptions of Several Mixing Schemes

Particular mixing schemes and their corresponding descriptions in terms of constraints on FS mixing observables, and symmetries.

Mixing Ansatz	\mathcal{F}	\mathcal{G}	\mathcal{C}	\mathcal{A}	Corresponding Symmetries	$18 J^{2}$	\mathcal{B}	\mathcal{D}
No Mixing	1	1	1	1	$C P$	0	0	0
Tribimaximal Mixing*	0	$\frac{1}{6}$	0	0	Dem., $\mu-\tau, C P$	0	0	$\frac{1}{12 \sqrt{3}}$
Trimaximal Mixing	0	0	0	0	Dem., $\mu-\tau$	$\frac{1}{6}$	0	0
S3 Group Mixing*	0	-	0	-	Democracy	-	0	-
Two Equal P-Rows*	0	-	-	0	e.g. $\mu-\tau$	-	0	-
Two Equal P-Columns	0	-	-	0	e.g. $1-2$	-	-	0
Altarelli-Feruglio*	0	-	$\frac{6 \mathcal{G}-1}{8}$	0	$\mu-\tau, C P$	0	0	-
Tri- χ maximal Mixing*	0	-	0	0	Dem., $\mu-\tau$	-	0	-
Tri- ϕ maximal Mixing*	0	$\frac{1}{6}$	0	-	Dem., $C P$	0	0	-
Bi-maximal Mixing	0	$\frac{1}{8}$	$-\frac{1}{32}$	0	$C P, \mu-\tau, 1-2$	0	0	0

FS Descriptions of Several Mixing Schemes

Particular mixing schemes and their corresponding descriptions in terms of constraints on FS mixing observables, and symmetries.

Mixing Ansatz	\mathcal{F}	\mathcal{G}	\mathcal{C}	\mathcal{A}	Corresponding Symmetries	$18 J^{2}$	\mathcal{B}	\mathcal{D}
No Mixing	1	1	1	1	$C P$	0	0	0
Tribimaximal Mixing*	0	$\frac{1}{6}$	0	0	Dem., $\mu-\tau, C P$	0	0	$\frac{1}{12 \sqrt{3}}$
Trimaximal Mixing	0	0	0	0	Dem., $\mu-\tau$	$\frac{1}{6}$	0	0
S3 Group Mixing*	0	-	0	-	Democracy	-	0	-
Two Equal P-Rows*	0	-	-	0	e.g. $\mu-\tau$	-	0	-
Two Equal P-Columns	0	-	-	0	e.g. $1-2$	-	-	0
Altarelli-Feruglio*	0	-	$\frac{6 \mathcal{G}-1}{8}$	0	$\mu-\tau, C P$	0	0	-
Tri- χ maximal Mixing*	0	-	0	0	Dem., $\mu-\tau$	-	0	-
Tri- ϕ maximal Mixing*	0	$\frac{1}{6}$	0	-	Dem., $C P$	0	0	-
Bi-maximal Mixing	0	$\frac{1}{8}$	$-\frac{1}{32}$	0	$C P, \mu-\tau, 1-2$	0	0	0

- Setting for example, $\mathcal{F}^{2}+\mathcal{C}^{2}+\mathcal{A}^{2}+J^{2}=0$ provides a FS, JI constraint on the mass matrices (and, by extrapolation, on a combination of vevs times Yukawas).

FS Descriptions of Several Mixing Schemes

Particular mixing schemes and their corresponding descriptions in terms of constraints on FS mixing observables, and symmetries.

Mixing Ansatz	\mathcal{F}	\mathcal{G}	\mathcal{C}	\mathcal{A}	Corresponding Symmetries	$18 J^{2}$	\mathcal{B}	\mathcal{D}
No Mixing	1	1	1	1	$C P$	0	0	0
Tribimaximal Mixing*	0	$\frac{1}{6}$	0	0	Dem., $\mu-\tau, C P$	0	0	$\frac{1}{12 \sqrt{3}}$
Trimaximal Mixing	0	0	0	0	Dem., $\mu-\tau$	$\frac{1}{6}$	0	0
S3 Group Mixing*	0	-	0	-	Democracy	-	0	-
Two Equal P-Rows*	0	-	-	0	e.g. $\mu-\tau$	-	0	-
Two Equal P-Columns	0	-	-	0	e.g. $1-2$	-	-	0
Altarelli-Feruglio*	0	-	$\frac{6 \mathcal{G}-1}{8}$	0	$\mu-\tau, C P$	0	0	-
Tri- χ maximal Mixing*	0	-	0	0	Dem., $\mu-\tau$	-	0	-
Tri- ϕ maximal Mixing*	0	$\frac{1}{6}$	0	-	Dem., $C P$	0	0	-
Bi-maximal Mixing	0	$\frac{1}{8}$	$-\frac{1}{32}$	0	$C P, \mu-\tau, 1-2$	0	0	0

- Setting for example, $\mathcal{F}^{2}+\mathcal{C}^{2}+\mathcal{A}^{2}+J^{2}=0$ provides a FS, JI constraint on the mass matrices (and, by extrapolation, on a combination of vevs times Yukawas).
- Such constraints may be "easily" implemented in BSM models, and allow the spontaneous breaking of flavour symmetry.

A Further Application

- What feature do quark and lepton mixing matrices have in common?
- Each has at least one "small" ele-

$$
\left|V_{C K M}\right| \sim\left(\begin{array}{ccc}
\sim 1 & \sim \lambda & \sim \lambda^{3} \\
\sim \lambda & \sim 1 & \sim \lambda^{2} \\
\sim \lambda^{3} & \sim \lambda^{2} & \sim 1
\end{array}\right)
$$

ment.

- What is the flavour-symmetric ex- $\left|U_{M N S}\right| \sim\left(\begin{array}{ccc}2 / \sqrt{6} & 1 / \sqrt{3} & \epsilon \\ \text { pression of this? } \\ 1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\ 1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}\end{array}\right)$

A Further Application

- What feature do quark and lepton mixing matrices have in common?
- Each has at least one "small" ele-

$$
\left|V_{C K M}\right| \sim\left(\begin{array}{ccc}
\sim 1 & \sim \lambda & \sim \lambda^{3} \\
\sim \lambda & \sim 1 & \sim \lambda^{2} \\
\sim \lambda^{3} & \sim \lambda^{2} & \sim 1
\end{array}\right)
$$ ment.

- What is the flavour-symmetric ex-

$$
\left|U_{M N S}\right| \sim\left(\begin{array}{ccc}
2 / \sqrt{6} & 1 / \sqrt{3} & \epsilon \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

≥ 1 zero \Rightarrow CP-conservation $\Longrightarrow J=0$.
But need two constraints - find:

$$
2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right)=0 \text { and } J=0 \Longrightarrow \quad \text { at least one zero }
$$

A Further Application (Cont.)

- NB. Consider K-matrix: $K_{\gamma k}=\operatorname{Re}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right) \quad$ (cf. $\left.J\right)$.

A Further Application (Cont.)

- NB. Consider K-matrix: $K_{\gamma k}=\operatorname{Re}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right) \quad$ (cf. $\left.J\right)$.
- Noticed that $2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right) \equiv \operatorname{Det} K$
- Both MNS and CKM mixing matrices satisfy $\operatorname{Det} K=0$ (within errors)

A Further Application (Cont.)

- NB. Consider K-matrix: $K_{\gamma k}=\operatorname{Re}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right) \quad(c f . J)$.
- Noticed that $2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right) \equiv \operatorname{Det} K$
- Both MNS and CKM mixing matrices satisfy $\operatorname{Det} K=0$ (within errors)
- Conjecture: MNS and CKM constrained according to the same FS JI condition:

$$
\operatorname{Det} K=0 ; \quad J \text { small. }
$$

- \Longrightarrow FS prediction: if $\operatorname{Det} K=0$, then as $J \rightarrow 0$, at least one UT angle $\rightarrow 90^{\circ}$.

A Further Application (Cont.)

- NB. Consider K-matrix: $K_{\gamma k}=\operatorname{Re}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right) \quad(c f . J)$.
- Noticed that $2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right) \equiv \operatorname{Det} K$
- Both MNS and CKM mixing matrices satisfy $\operatorname{Det} K=0$ (within errors)
- Conjecture: MNS and CKM constrained according to the same FS JI condition:

$$
\operatorname{Det} K=0 ; \quad J \text { small. }
$$

- \Longrightarrow FS prediction: if $\operatorname{Det} K=0$, then as $J \rightarrow 0$, at least one UT angle $\rightarrow 90^{\circ}$.

For quarks: $\operatorname{Det} K=0 \Longrightarrow\left(90^{\circ}-\alpha\right)=\bar{\eta} \lambda^{2}=1^{\circ} \pm 0.2^{\circ}$
cf. $\left(90^{\circ}-\alpha\right)=0_{-7^{\circ}}^{\circ}$ experimentally.
For leptons: $\operatorname{Det} K=0 \Longrightarrow\left(90^{\circ}-\delta\right)=\frac{\left|U_{e 3}\right|}{\sqrt{2}} \lesssim 8^{\circ}(\operatorname{good}$ for $C P V)$.

Summary

- Experimentally, flavour parameters appear anything but arbitrary
- SM does not, and cannot predict them - profoundly unsatisfactory

Summary

- Experimentally, flavour parameters appear anything but arbitrary
- SM does not, and cannot predict them - profoundly unsatisfactory
- Minimal disruption to SM suggests models of masses and mixings should be Jarlskog (weak-basis) invariant

Summary

- Experimentally, flavour parameters appear anything but arbitrary
- SM does not, and cannot predict them - profoundly unsatisfactory
- Minimal disruption to SM suggests models of masses and mixings should be Jarlskog (weak-basis) invariant
- Have defined $S 3_{\ell} \times S 3_{\nu}$-symmetric, JI, mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation

Summary

- Experimentally, flavour parameters appear anything but arbitrary
- SM does not, and cannot predict them - profoundly unsatisfactory
- Minimal disruption to SM suggests models of masses and mixings should be Jarlskog (weak-basis) invariant
- Have defined $S 3_{\ell} \times S 3_{\nu}$-symmetric, JI, mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these $=0$!

Summary

- Experimentally, flavour parameters appear anything but arbitrary
- SM does not, and cannot predict them - profoundly unsatisfactory
- Minimal disruption to SM suggests models of masses and mixings should be Jarlskog (weak-basis) invariant
- Have defined $S 3_{\ell} \times S 3_{\nu}$-symmetric, JI, mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these $=0$!
- Can use these to implement FS and JI constraints on flavour observables, and make testable conjectures

Summary

- Experimentally, flavour parameters appear anything but arbitrary
- SM does not, and cannot predict them - profoundly unsatisfactory
- Minimal disruption to SM suggests models of masses and mixings should be Jarlskog (weak-basis) invariant
- Have defined $S 3_{\ell} \times S 3_{\nu}$-symmetric, JI, mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these $=0$!
- Can use these to implement FS and JI constraints on flavour observables, and make testable conjectures
- More speculatively, such quantities could be used to implement models of spontaneous flavour violation.

