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Outline of Talk

• Introduction

• What does the SM tell us about flavour?

• What do the Data tell us about flavour?

• Origin of Masses and Mixings in SM

• Plaquette Invariance and Flavour Permutation Symmetry

• Flavour Symmetric Mixing Observables

• Applications

• Conclusions

Paul Harrison University of Warwick Birmingham, 30th April 2008



3

Thinking about Flavour

Gauge sector of SM is rather well-understood. Has 3 free observable parameters.

Paul Harrison University of Warwick Birmingham, 30th April 2008



3

Thinking about Flavour

Gauge sector of SM is rather well-understood. Has 3 free observable parameters.

The flavour sector is very poorly understood. Has 20 (or 22) low energy observable

(free) parameters. Accounts for huge phenomenological richness - hierarchies of:

• masses

• mixing angles

• lifetimes

• flavour oscillations

• CP violation

• etc...

Spent many years measuring some of these parameters.

Paul Harrison University of Warwick Birmingham, 30th April 2008



3

Thinking about Flavour

Gauge sector of SM is rather well-understood. Has 3 free observable parameters.

The flavour sector is very poorly understood. Has 20 (or 22) low energy observable

(free) parameters. Accounts for huge phenomenological richness - hierarchies of:

• masses

• mixing angles

• lifetimes

• flavour oscillations

• CP violation

• etc...

Spent many years measuring some of these parameters.

But (frustratingly) there still exists no convincing, accepted theory of flavour (and I’m

not going to propose one today!).
Paul Harrison University of Warwick Birmingham, 30th April 2008
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Open Questions

What we don’t know (yet) includes:

• Why 3 families?

• Why the flavour parameters take the values that they do?

• Whether neutrinos are Dirac or Majorana (a big problem if you want to construct a

theory of quark and lepton flavour).

• Whether the whole theory is embedded in some BSM theory - SUSY, strings, extra

dimensions...We (most of us) assume it is so embedded, but we have no idea in

what.

Many people make assumptions about the above and try to make viable models.

This is not our approach.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Paul Harrison University of Warwick Birmingham, 30th April 2008



5

Our Approach

• Wanted to be more general.

• Notwithstanding the open questions, try to see what we can say about flavour

“BSM”, taking only the data and the SM as our guide

Paul Harrison University of Warwick Birmingham, 30th April 2008



5

Our Approach

• Wanted to be more general.

• Notwithstanding the open questions, try to see what we can say about flavour

“BSM”, taking only the data and the SM as our guide

• Make as few assumptions as possible (no prejudice, least likely to be wrong!).

Paul Harrison University of Warwick Birmingham, 30th April 2008



5

Our Approach

• Wanted to be more general.

• Notwithstanding the open questions, try to see what we can say about flavour

“BSM”, taking only the data and the SM as our guide

• Make as few assumptions as possible (no prejudice, least likely to be wrong!).

• See what the data suggest - an experimentalist’s approach.

Paul Harrison University of Warwick Birmingham, 30th April 2008



5

Our Approach

• Wanted to be more general.

• Notwithstanding the open questions, try to see what we can say about flavour

“BSM”, taking only the data and the SM as our guide

• Make as few assumptions as possible (no prejudice, least likely to be wrong!).

• See what the data suggest - an experimentalist’s approach.

• Very much work in progress.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Start with the Standard Model

What does SM tell us about flavour?

Nothing!
Well, almost.

Places two quarks in a weak isodoublet ψq =


u
d


 and two leptons: ψℓ =


νe

e


.

They participate in the standard gauge-invariant Electroweak interaction, via covariant

derivatives etc. (will not review).

Distinguished by their charges...

Paul Harrison University of Warwick Birmingham, 30th April 2008
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...and by their Masses

LY uk ∼ cd ψqL · φ · dR + cu ψqL · φ̃ · uR

+ ce ψℓL · φ · eR + cν ψℓL · φ̃ · νeR(+any Majorana mass terms...)

with “Yukawa couplings” cu, cd, ce, cν free parameters (to be determined by

experiment).
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...and by their Masses

LY uk ∼ cd ψqL · φ · dR + cu ψqL · φ̃ · uR

+ ce ψℓL · φ · eR + cν ψℓL · φ̃ · νeR(+any Majorana mass terms...)

with “Yukawa couplings” cu, cd, ce, cν free parameters (to be determined by

experiment).

After SSB, mi = ci.(vev).

OR, if Majorana ν, then mν = c2ν(vev)2

MMaj
.

SM accommodates multiple copies of this - families/generations.

Then Yukawas, ci, become arbitrary matrices: Y 2

3

, Y− 1

3

, Yℓ, Yν .

And that’s all!

Paul Harrison University of Warwick Birmingham, 30th April 2008
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And the Data? 3 Families =⇒ 2 Quark Mass Spectra

Charge = +2
3

Charge = −1
3

M
as

s 
(G

eV
)

-310

-210

-110

1

10

210

310

t ~ 174 GeV

c ~ 1.3 GeV

u ~ 0.005 GeV

3
2

M
as

s 
(G

eV
)

-310

-210

-110

1

10

b ~ 4.5 GeV

s ~ 0.175 GeV

d ~ 0.010 GeV

3
1- 

Apparently not a “typical” random, arbitrary set of parameters!
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The Data - 2 Lepton Mass Spectra
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Similarly not a “typical” random, arbitrary set of parameters
Paul Harrison University of Warwick Birmingham, 30th April 2008
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The Data - CKM Quark Mixing Matrix

• CKM matrix parameterises couplings of quark mass eigenstates to W .

• Shows tantalising “Wolfenstein” structure:

d s b

|V | ∼
u

c

t




O(1) O(λ) O(λ3)

O(λ) O(1) O(λ2)

O(λ3) O(λ2) O(1)




q    i
q     
 α

W+

i αV

• Elements not predictable in the SM - profoundly unsatisfactory.

.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Summary of Neutrino Oscillation Data
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TriBimaximal Lepton Mixing

So, in leading approximation:

ν1 ν2 ν3

|U | ∼
e

µ

τ
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PFH, D. Perkins and W.G. Scott, PLB 458 (1999) 79 and PLB 530 (2002) 167.
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TriBimaximal Lepton Mixing

So, in leading approximation:
ν1 ν2 ν3

|U | ∼
e

µ

τ
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PFH, D. Perkins and W.G. Scott, PLB 458 (1999) 79 and PLB 530 (2002) 167.

Or (more realistically):

U ≃
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 .

with

−0.032 < ǫ < 0.037; −0.18 < µ < 0.21; |Ue3| < 0.11.
Paul Harrison University of Warwick Birmingham, 30th April 2008
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TBM Defined by 3 Phenomenological Symmetries

• CP :

If Im(Ue3) = 0, then U is real and CP is conserved.
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If ǫ = µ = 0, then middle column is ν2 = 1√
3
(1, 1, 1)

Explored in J.D. Bjorken, PFH, and W.G. Scott PRD 74 (2006) 073012.

• µ− τ Reflection Symmetry:
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TBM Defined by 3 Phenomenological Symmetries

• CP :

If Im(Ue3) = 0, then U is real and CP is conserved.

• Democracy:

If ǫ = µ = 0, then middle column is ν2 = 1√
3
(1, 1, 1)

Explored in J.D. Bjorken, PFH, and W.G. Scott PRD 74 (2006) 073012.

• µ− τ Reflection Symmetry:

If Re(Ue3) = 0 = µ, then |Uµi| = |Uτi| and simulataneous µ− τ swap and CP

transf. leaves observables invariant (PFH and W.G. Scott PLB 547 (2002) 219).

• CP and Democracy and µ− τ Reflection Symmetry

⇒ Ue3 = 0 = ǫ = µ ⇒ TBM mixing.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Discussion of TBM

TBM form is redolent of other symmetries:

• Taking νe, νµ, ντ to define the ori-

entation of a cube, ν2 lies along its

body diagonal

• Same coefficients form the M = 0

subset of the j × j = 1 × 1 set of

Clebsch-Gordan Coeffts.

Several authors have built TBM into models,

eg. G. Altarelli and F. Feruglio, hep-ph/0512103

I. de Medeiros Varzielas, S. King and G. Ross, hep-ph/0512313

E. Ma PRD 73:057304, 2006 etc. (A4, D(27), Σ(81) groups etc.)

Paul Harrison University of Warwick Birmingham, 30th April 2008
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The Flavour problem

• The spectra of masses and mixings are today’s analogues of the Lyman, Balmer

and Paschen series. They show tantalising structure and yet are unexplained, and

inexplicable within the prevailing (Standard) Model.

• The Wolfenstein and Tri-bimaximal formulae, provide correct (within exptl. errors)

mathematical descriptions of the observed systematics of the mixing spectra,

without any explanation at all.

While based on less precise data, are somewhat akin to the Rydberg formula.

The data demand explanation, but the SM has nothing to say about them.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Origin of Masses and Mixings in the SM

• In SM, they have common origin in fermion-Higgs “Yukawa couplings” (multiplied

by Higgs Vevs).

• Will focus on leptons – consider 3 families of leptonic SU(2) doublets:

ψa =


νa

ℓ−a


 , ψb =


νb

ℓ−b


 , ψc =


νc

ℓ−c




Each transforms among itself under SU(2) weak transformations in usual way.
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• In SM, they have common origin in fermion-Higgs “Yukawa couplings” (multiplied

by Higgs Vevs).

• Will focus on leptons – consider 3 families of leptonic SU(2) doublets:

ψa =


νa

ℓ−a


 , ψb =


νb

ℓ−b


 , ψc =


νc

ℓ−c




Each transforms among itself under SU(2) weak transformations in usual way.

• Define also three-component vectors in family-space:

ψ =




ψa

ψb

ψc


 with ν =




νa

νb

νc


 ℓ =




ℓ−a

ℓ−b

ℓ−c




Paul Harrison University of Warwick Birmingham, 30th April 2008



17

Origin of Masses and Mixings (contd.)

• Generalise earlier Yukawa couplings to 3 families:

LY uk = (ψ
L
· φ) Yℓ ℓR + (ψ

L
· φ̃) Yν νR +H.C.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Origin of Masses and Mixings (contd.)

• Generalise earlier Yukawa couplings to 3 families:

LY uk = (ψ
L
· φ) Yℓ ℓR + (ψ

L
· φ̃) Yν νR +H.C.

• After SSB, Dirac mass terms appear in Lagrangian:

Lmass = ℓ̄LMℓ ℓR + ν̄LMD νR +H.C.
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Origin of Masses and Mixings (contd.)

• Generalise earlier Yukawa couplings to 3 families:

LY uk = (ψ
L
· φ) Yℓ ℓR + (ψ

L
· φ̃) Yν νR +H.C.

• After SSB, Dirac mass terms appear in Lagrangian:

Lmass = ℓ̄LMℓ ℓR + ν̄LMD νR +H.C.

• Mℓ = Yℓ · (vev) and MD = Yν · (vev), are arbitrary, 3 × 3 Dirac mass matrices.

• Charged-current weak interaction (same basis) is diagonal:

Lcc = g(ℓ̄L . νL)W+ +H.C.
l- a

ν   a

W-

1

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Origin of Masses and Mixing (contd.)

• For Majorana neutrinos, light ν mass matrix is Mν = MT
DM

−1
MajMD (complex

symmetric).
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Origin of Masses and Mixing (contd.)

• For Majorana neutrinos, light ν mass matrix is Mν = MT
DM

−1
MajMD (complex

symmetric).

• Useful to work with Hermitian mass matrices. Define:

– for charged leptons: L = MℓM
†
ℓ OR L = MℓU

ℓ
R etc.

– for neutrinos: N = MνM
†
ν OR N = MDM

†
D OR N = MDU

ν
R etc.
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Origin of Masses and Mixing (contd.)

• For Majorana neutrinos, light ν mass matrix is Mν = MT
DM

−1
MajMD (complex

symmetric).

• Useful to work with Hermitian mass matrices. Define:

– for charged leptons: L = MℓM
†
ℓ OR L = MℓU

ℓ
R etc.

– for neutrinos: N = MνM
†
ν OR N = MDM

†
D OR N = MDU

ν
R etc.

• Diagonalise: UνNU
†
ν = Dν → eigenvalues (eg. masses-squared), “physical” states.
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Origin of Masses and Mixing (contd.)

• For Majorana neutrinos, light ν mass matrix is Mν = MT
DM

−1
MajMD (complex

symmetric).

• Useful to work with Hermitian mass matrices. Define:

– for charged leptons: L = MℓM
†
ℓ OR L = MℓU

ℓ
R etc.

– for neutrinos: N = MνM
†
ν OR N = MDM

†
D OR N = MDU

ν
R etc.

• Diagonalise: UνNU
†
ν = Dν → eigenvalues (eg. masses-squared), “physical” states.

• Diagonalisation different for L and N ⇒ mixing, ie.

Lcc = g (ℓ̄m
L UMNS ν

m
L )W+ +H.C. l- i

ν   
 α

W-

i αU

where UMNS ≡ UℓU
†
ν is the lepton mixing matrix. NB. Analogous for quarks.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Jarlskog (ie. Weak Basis) Covariance

• However L and N are not observable. Under a simultaneous change of weak basis:

L′ = UJLU
†
J and N ′ = UJNU

†
J

have same eigenvalues and same mixing matrix:

U ′
MNS = Uℓ(U

†
JUJ)U †

ν = UMNS

• ie. Masses and mixing angles are “Jarlskog-invariant”, even though mass matrices

transform.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Jarlskog (ie. Weak Basis) Covariance

• However L and N are not observable. Under a simultaneous change of weak basis:

L′ = UJLU
†
J and N ′ = UJNU

†
J

have same eigenvalues and same mixing matrix:

U ′
MNS = Uℓ(U

†
JUJ)U †

ν = UMNS

• ie. Masses and mixing angles are “Jarlskog-invariant”, even though mass matrices

transform.

• New basis is just as good a starting point...

• Allows, eg. freedom to “push” mixing into neutrinos or charged leptons

• Jarlskog urges (1985): “important results can’t be frame-dependent” and reiterates

(hep-ph/0606050): “you should be able to formulate it in an invariant form”

• We adopt Jarlskog’s prescription as a principle!
Paul Harrison University of Warwick Birmingham, 30th April 2008
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Historical Attempts to Constrain Fermion Masses and Mixings

• Inspired by phenomenological relationships in quark mixing, eg.

tan θC ≃ 0.23 ≃
√
md

ms

; tan θcb ≃ 0.04 ≃
√
md

mb

and common origin of masses and mixings. Many attempts made to relate them.

• Best known is by H. Fritzsch from 1977 and 1978: mass matrices:

M
2

3 =




0 a 0

a∗ 0 b

0 b∗ c


 ; M− 1

3 =




0 α 0

α∗ 0 β

0 β∗ γ




• Predicts (after approximations) above θC relation, but also

tan θcb >

√
ms

mb

−
√
mc

mt

≃ 0.09, (now excluded).

Paul Harrison University of Warwick Birmingham, 30th April 2008
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How does Fritzsch Ansatz work?

• Mass matrices encode 10 pieces of information (6 masses and 4 mixing

parameters) using only 6 magnitudes and one phase, =⇒ 3 constraints.

• Spawned many refinements, some phenomenologically successful.

• Modern models appeal to “flavour symmetries” to enforce zeroes or other

“textures”.

• Many build-in supersymmetry and/or complicated Higgs structures etc.

Paul Harrison University of Warwick Birmingham, 30th April 2008



21

How does Fritzsch Ansatz work?

• Mass matrices encode 10 pieces of information (6 masses and 4 mixing

parameters) using only 6 magnitudes and one phase, =⇒ 3 constraints.

• Spawned many refinements, some phenomenologically successful.

• Modern models appeal to “flavour symmetries” to enforce zeroes or other

“textures”.

• Many build-in supersymmetry and/or complicated Higgs structures etc.

• However, generally assume that ∃ a “special” basis, in which the mass matrices

take some “particular” form (which limits number of parameters to < 10).

• “Specialness” of this basis is never explained.

• Since 1905, we have been alert to excessive reliance on a given frame or basis.

• We seek, instead, a Jarskog-invariant description of mixing.
Paul Harrison University of Warwick Birmingham, 30th April 2008
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Flavour-Symmetric Jarlskog Invariants

• “Usual” observables are not flavour-symmetric. eg. the electron mass, me,

(electron label) and |Ue3| (flavour and mass labels).

• Jarlskog showed how to write flavour-symmetric invariant observables.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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• “Usual” observables are not flavour-symmetric. eg. the electron mass, me,

(electron label) and |Ue3| (flavour and mass labels).

• Jarlskog showed how to write flavour-symmetric invariant observables.

• Examples are (in an arbitrary weak-basis, primes dropped):

Tr(L) = me +mµ +mτ ; Tr(L2) = m2
e +m2

µ +m2
τ ; Tr(L3) = m3

e +m3
µ +m3

τ

which form a complete set.

Paul Harrison University of Warwick Birmingham, 30th April 2008



22

Flavour-Symmetric Jarlskog Invariants

• “Usual” observables are not flavour-symmetric. eg. the electron mass, me,

(electron label) and |Ue3| (flavour and mass labels).

• Jarlskog showed how to write flavour-symmetric invariant observables.

• Examples are (in an arbitrary weak-basis, primes dropped):

Tr(L) = me +mµ +mτ ; Tr(L2) = m2
e +m2

µ +m2
τ ; Tr(L3) = m3

e +m3
µ +m3

τ

which form a complete set.

• All traces of polynomials of L and N are invariant (and FS), eg.:

Tr(L′N ′) = Tr(ULU †UNU †) = Tr(ULNU †) = Tr(LNU †U) = Tr(LN)

etc.

• But typically depend in a complicated way on masses and mixing matrix elements.
Paul Harrison University of Warwick Birmingham, 30th April 2008
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The Jarlskogian and Plaquette Invariance

Jarlskog’s CP -violating invariant:

J = Im(UαiU
∗
αjU

∗
βiUβj)




Ue1 U∗
e2 Ue3

U∗
µ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3
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The Jarlskogian and Plaquette Invariance

Jarlskog’s CP -violating invariant:

J = Im(UαiU
∗
αjU

∗
βiUβj)




Ue1 U∗
e2 Ue3

U∗
µ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3




Fascinating properties:

• Parameterises CP violation

• Does not depend on which plaquette is used

• Simply related to the mass matrices:

J = −i Det[L,N ]

2L∆N∆

L∆, N∆ are traces of polynomials in L and N .

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Are there Other Plaquette Invariants?
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Are there Other Plaquette Invariants?

Yes!

• J samples information uniformly across U

- it is flavour − symmetric (FS).

• Clearly, any function of the Uαi, symmetrised over all flavour labels,

and reduced to a function of only elements of a single plaquette

is plaquette-invariant.

• Working with observables, find that, like J , FS functions of the mixing matrix can

always be expressed as simple functions of the mass matrices.

• Will introduce an elemental set

– can be used for the flavour-symmetric description of any mixing scheme.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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The S3ℓ × S3ν Flavour Permutation Group

• 6 perms. of ℓ flavour indices and 6 of ν “flavour” labels (ie. ν mass eigenstate

indices) constitute the S3ℓ × S3ν Flavour Permutation Group (FPG).
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P =
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The S3ℓ × S3ν Flavour Permutation Group

• 6 perms. of ℓ flavour indices and 6 of ν “flavour” labels (ie. ν mass eigenstate

indices) constitute the S3ℓ × S3ν Flavour Permutation Group (FPG).

• Introduce the observable P matrix:

P =




|Ue1|2 |Ue2|2 |Ue3|2

|Uµ1|2 |Uµ2|2 |Uµ3|2

|Uτ1|2 |Uτ2|2 |Uτ3|2




– Parameterises mixing (up to the sign of J).

– Transforms as a (reducible) 3 × 3 (natural representation) of FPG.

– Rows and columns each sum to unity (a magic square)

⇒ completely specified by elements of any P -plaquette.

– Each P -plaquette transforms as (irreducible) 2 × 2 of FPG.
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Singlets Under FPG?

• J is prototype FS observable - invariant under even members of the FPG;

flips sign under odd members; ie. 1 × 1.
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Singlets Under FPG?

• J is prototype FS observable - invariant under even members of the FPG;

flips sign under odd members; ie. 1 × 1.

• Search for other singlets: 1 × 1, 1 × 1 etc.

– Find simple polynomials of elements of P

– (anti-)symmetrise over flavour labels

• Simple representation theory→

– 1st order in P : ∃ no non-trivial singlets

– 2nd order: one each of 1 × 1 and 1 × 1

– 3rd order: one each of all four singlets

– ≥ 4th order: multiple instances of each

• Will stay at ≤ 3rd order. Clearly four are sufficient.

Paul Harrison University of Warwick Birmingham, 30th April 2008
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Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and “offset” in 1 × 1 case):

G =
1

2
[
∑

αi

(Pαi)
2 − 1 ] F = DetP

C =
3

2
[
∑

αi

(Pαi)
3 −

∑

αi

(Pαi)
2 ] + 1 A =

1

18

∑

γk

(Lγk)
3

where Lγk = (Pαi + Pβj − Pβi − Pαj).
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Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and “offset” in 1 × 1 case):

G =
1

2
[
∑

αi

(Pαi)
2 − 1 ] F = DetP

C =
3

2
[
∑

αi

(Pαi)
3 −

∑

αi

(Pαi)
2 ] + 1 A =

1

18

∑

γk

(Lγk)
3

where Lγk = (Pαi + Pβj − Pβi − Pαj).

• F and A need no offset (they are anti-symmetric).

– Reach extremum for no mixing

– 0 for trimaximal mixing

• All normalised to maximum value = 1 (no mixing).

• G and C offset to zero for maximal mixing

P =




1 0 0

0 1 0

0 0 1




P =




1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3
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Properties and Values

Observable Order Symmetry: Theor. Exptl. Range Exptl. Range

Name in P S3ℓ × S3ν Range for Leptons for Quarks

F 2 1×1 (−1, 1) (−0.14, 0.12) (0.893, 0.896)

G 2 1×1 (0, 1) (0.15, 0.23) (0.898, 0.901)

A 3 1×1 (−1, 1) (−0.065, 0.052) (0.848, 0.852)

C 3 1×1 (− 1
27 , 1) (−0.005, 0.057) (0.848, 0.852)

Properties and values of FS observables. Experimentally allowed ranges estimated

(90% CL) from compilations of current experimental results (neglect any correlations

between the input quantities).
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FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: L̃m := Lm − 1
3
Tr(Lm)

(similarly for Ñm).

Now define Jarlskog-invariant:

T̃mn := Tr(L̃mÑn), m, n = 1, 2.

T̃ Completely equivalent to P (for known lepton masses).
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3
Tr(Lm)

(similarly for Ñm).

Now define Jarlskog-invariant:

T̃mn := Tr(L̃mÑn), m, n = 1, 2.

T̃ Completely equivalent to P (for known lepton masses).

Find:

F ≡ DetP = 3
Det T̃

L∆N∆

;

[
cf. J = −i Det[L,N ]

2L∆N∆

]
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FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: L̃m := Lm − 1
3
Tr(Lm)

(similarly for Ñm).

Now define Jarlskog-invariant:

T̃mn := Tr(L̃mÑn), m, n = 1, 2.

T̃ Completely equivalent to P (for known lepton masses).

Find:

F ≡ DetP = 3
Det T̃

L∆N∆

;

[
cf. J = −i Det[L,N ]

2L∆N∆

]

G =
T̃mn T̃pq Lmp N nq

(L∆N∆)2
; C,A =

T̃mn T̃pq T̃rs L(mpr)
C,A N (nqs)

C,A
(L∆N∆)KC,A

The L (N ) are simple functions of traces of L̃m (Ñm). KC (KA) = 2(3).
Paul Harrison University of Warwick Birmingham, 30th April 2008



30

Application: Flavour-symmetric Descriptions of Mixing

MNS Matrix:

ν1 ν2 ν3

|U | ∼
e

µ

τ




2/
√

6 1/
√

3 ǫ

1/
√

6 1/
√

3 1/
√

2

1/
√

6 1/
√

3 1/
√

2




⇒ F = 0, C = 0, A = 0, G = 1
6
(1 − 3ǫ2)2.
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Application: Flavour-symmetric Descriptions of Mixing

MNS Matrix:

ν1 ν2 ν3

|U | ∼
e

µ

τ




2/
√

6 1/
√

3 ǫ

1/
√

6 1/
√

3 1/
√

2

1/
√

6 1/
√

3 1/
√

2




⇒ F = 0, C = 0, A = 0, G = 1
6
(1 − 3ǫ2)2.

Where is flavour-symmetry?
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Where is Flavour Symmetry?

• It is spontaneously broken
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Where is Flavour Symmetry?

• It is spontaneously broken

• There exist 36 equally valid “solutions” of the TBM form, related to each other by

allowed permutations of the rows and columns of the mixing matrix.

• eg.

ν1 ν2 ν3

|U | ∼
e

µ

τ




1/
√

3 2/
√

6 ǫ

1/
√

3 1/
√

6 1/
√

2

1/
√

3 1/
√

6 1/
√

2
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FS Descriptions of Several Mixing Schemes

Particular mixing schemes and their corresponding descriptions in terms of constraints
on FS mixing observables, and symmetries.

Mixing Ansatz F G C A Corresponding 18J2 B D
Symmetries

No Mixing 1 1 1 1 CP 0 0 0

Tribimaximal Mixing∗ 0 1
6 0 0 Dem., µ-τ , CP 0 0 1

12
√

3

Trimaximal Mixing 0 0 0 0 Dem., µ-τ 1
6 0 0

S3 Group Mixing∗ 0 – 0 – Democracy – 0 –
Two Equal P -Rows∗ 0 – – 0 e.g. µ-τ – 0 –
Two Equal P -Columns 0 – – 0 e.g. 1-2 – – 0

Altarelli-Feruglio∗ 0 – 6G−1
8 0 µ-τ , CP 0 0 –

Tri-χmaximal Mixing∗ 0 – 0 0 Dem., µ-τ – 0 –

Tri-φmaximal Mixing∗ 0 1
6 0 – Dem., CP 0 0 –

Bi-maximal Mixing 0 1
8 − 1

32 0 CP , µ-τ , 1-2 0 0 0
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FS Descriptions of Several Mixing Schemes

Particular mixing schemes and their corresponding descriptions in terms of constraints
on FS mixing observables, and symmetries.

Mixing Ansatz F G C A Corresponding 18J2 B D
Symmetries

No Mixing 1 1 1 1 CP 0 0 0

Tribimaximal Mixing∗ 0 1
6 0 0 Dem., µ-τ , CP 0 0 1

12
√

3

Trimaximal Mixing 0 0 0 0 Dem., µ-τ 1
6 0 0

S3 Group Mixing∗ 0 – 0 – Democracy – 0 –
Two Equal P -Rows∗ 0 – – 0 e.g. µ-τ – 0 –
Two Equal P -Columns 0 – – 0 e.g. 1-2 – – 0

Altarelli-Feruglio∗ 0 – 6G−1
8 0 µ-τ , CP 0 0 –

Tri-χmaximal Mixing∗ 0 – 0 0 Dem., µ-τ – 0 –

Tri-φmaximal Mixing∗ 0 1
6 0 – Dem., CP 0 0 –

Bi-maximal Mixing 0 1
8 − 1

32 0 CP , µ-τ , 1-2 0 0 0

• Setting for example, F2 + C2 + A2 + J2 = 0 provides a FS, JI constraint on the
mass matrices (and, by extrapolation, on a combination of vevs times Yukawas).
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FS Descriptions of Several Mixing Schemes

Particular mixing schemes and their corresponding descriptions in terms of constraints
on FS mixing observables, and symmetries.

Mixing Ansatz F G C A Corresponding 18J2 B D
Symmetries

No Mixing 1 1 1 1 CP 0 0 0

Tribimaximal Mixing∗ 0 1
6 0 0 Dem., µ-τ , CP 0 0 1

12
√

3

Trimaximal Mixing 0 0 0 0 Dem., µ-τ 1
6 0 0

S3 Group Mixing∗ 0 – 0 – Democracy – 0 –
Two Equal P -Rows∗ 0 – – 0 e.g. µ-τ – 0 –
Two Equal P -Columns 0 – – 0 e.g. 1-2 – – 0

Altarelli-Feruglio∗ 0 – 6G−1
8 0 µ-τ , CP 0 0 –

Tri-χmaximal Mixing∗ 0 – 0 0 Dem., µ-τ – 0 –

Tri-φmaximal Mixing∗ 0 1
6 0 – Dem., CP 0 0 –

Bi-maximal Mixing 0 1
8 − 1

32 0 CP , µ-τ , 1-2 0 0 0

• Setting for example, F2 + C2 + A2 + J2 = 0 provides a FS, JI constraint on the
mass matrices (and, by extrapolation, on a combination of vevs times Yukawas).

• Such constraints may be ”easily” implemented in BSM models, and allow the
spontaneous breaking of flavour symmetry.
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A Further Application

• What feature do quark and lepton

mixing matrices have in common?

• Each has at least one “small” ele-

ment.

• What is the flavour-symmetric ex-

pression of this?

|VCKM | ∼




∼ 1 ∼ λ ∼ λ3

∼ λ ∼ 1 ∼ λ2

∼ λ3 ∼ λ2 ∼ 1




|UMNS | ∼
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√

6 1/
√

3 ǫ
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√
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√
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1/
√
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√
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√

2
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mixing matrices have in common?
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pression of this?
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6 1/
√

3 ǫ
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√

6 1/
√
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1/
√

6 1/
√

3 1/
√
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≥ 1 zero ⇒ CP-conservation =⇒ J = 0.

But need two constraints - find:

2A + F(F2 − 2C − 1) = 0 and J = 0 =⇒ at least one zero
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A Further Application (Cont.)

• NB. Consider K-matrix: Kγk = Re(UαiU
∗
αjU

∗
βiUβj) (cf. J).
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∗
βiUβj) (cf. J).

• Noticed that 2A + F(F2 − 2C − 1) ≡ DetK

• Both MNS and CKM mixing matrices satisfy DetK = 0 (within errors)

• Conjecture: MNS and CKM constrained according to the same FS JI condition:

DetK = 0; J small.

• =⇒ FS prediction: if DetK = 0, then as J → 0, at least one UT angle → 90◦.
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A Further Application (Cont.)

• NB. Consider K-matrix: Kγk = Re(UαiU
∗
αjU

∗
βiUβj) (cf. J).

• Noticed that 2A + F(F2 − 2C − 1) ≡ DetK

• Both MNS and CKM mixing matrices satisfy DetK = 0 (within errors)

• Conjecture: MNS and CKM constrained according to the same FS JI condition:

DetK = 0; J small.

• =⇒ FS prediction: if DetK = 0, then as J → 0, at least one UT angle → 90◦.

For quarks: DetK = 0 =⇒ (90◦ − α) = ηλ2 = 1◦ ± 0.2◦

. cf. (90◦ − α) = 0◦+3◦

−7◦ experimentally.

For leptons: DetK = 0 =⇒ (90◦ − δ) = |Ue3|√
2
<∼ 8◦ (good for CPV ).
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Summary

• Experimentally, flavour parameters appear anything but arbitrary

• SM does not, and cannot predict them - profoundly unsatisfactory
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Summary

• Experimentally, flavour parameters appear anything but arbitrary

• SM does not, and cannot predict them - profoundly unsatisfactory

• Minimal disruption to SM suggests models of masses and mixings should be

Jarlskog (weak-basis) invariant

• Have defined S3ℓ × S3ν-symmetric, JI, mass and/or mixing observables.

• “Simplest” set defines itself up to normalisation

• Remarkably, leptonic mixing is consistent with 3 of these = 0!

• Can use these to implement FS and JI constraints on flavour observables, and

make testable conjectures

• More speculatively, such quantities could be used to implement models of

spontaneous flavour violation.

Paul Harrison University of Warwick Birmingham, 30th April 2008


