# Flavour Permutation Symmetry and Quark Mixing: 

## Is the Unitarity Triangle Right?

Paul Harrison*<br>University of Warwick<br>SuperB Workshop, Isola d'Elba<br>1st June 2008

* With Dan Roythorne and Bill Scott, PLB 657 (2007) 210, arXiv:0709.1439 and arXiv:0805.3440


## Outline of Talk

- The Flavour Problem
- Plaquette Invariance and Flavour Permutation Symmetry
- Flavour Symmetric Mixing Observables
- Applications
- Conclusions


## The Flavour Problem

- SM has 20 (22) low energy flavour parameters (out of 25(27))
- They show tantalising structure, eg.
$d \quad s \quad b$
$\left.\left|V_{C K M}\right| \sim{ }_{c}^{u} \begin{array}{c}u \\ \mathcal{O}(1) \\ \mathcal{O}(\lambda) \\ \mathcal{O}\left(\lambda^{3}\right) \\ \mathcal{O}(\lambda) \\ \mathcal{O}(1) \\ \mathcal{O}\left(\lambda^{2}\right) \\ \mathcal{O}\left(\lambda^{3}\right) \\ \mathcal{O}\left(\lambda^{2}\right) \\ \mathcal{O}^{2}(1)\end{array}\right) \xrightarrow{\mathrm{q}_{\mathrm{i}}}$
$\begin{array}{lll}\nu_{1} & \nu_{2} & \nu_{3}\end{array}$

$$
\left.\left|U_{M N S}\right| \sim \begin{array}{c}
e \\
\mu \\
\tau \\
1 / \sqrt{6} \\
1 / \sqrt{6}
\end{array} \begin{array}{ccc}
2 / \sqrt{6} & 1 / \sqrt{3} & \lesssim 0.2 \\
1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right)
$$



- Are not predictable in the SM - profoundly unsatisfactory.


## Masses and Mixings have Common Origin

- in Quark and Lepton mass matrices: $M_{\frac{2}{3}}, M_{-\frac{1}{3}}, M_{\ell}, M_{\nu}$
- Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian


## Masses and Mixings have Common Origin

- in Quark and Lepton mass matrices: $M_{\frac{2}{3}}, M_{-\frac{1}{3}}, M_{\ell}, M_{\nu}$
- Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian
- Will work with their Hermitian Squares.
- eg. for neutrinos: $N=M_{\nu} M_{\nu}^{\dagger}$
- for charged leptons: $L=M_{\ell} M_{\ell}^{\dagger}$
- for charged $2 / 3$ quarks: $H_{\frac{2}{3}}=M_{\frac{2}{3}} M_{\frac{2}{3}}^{\dagger}$ etc.


## Masses and Mixings have Common Origin

- in Quark and Lepton mass matrices: $M_{\frac{2}{3}}, M_{-\frac{1}{3}}, M_{\ell}, M_{\nu}$
- Each is product of Higgs vev and Yukawa coupling matrix in Lagrangian
- Will work with their Hermitian Squares.
- eg. for neutrinos: $N=M_{\nu} M_{\nu}^{\dagger}$
- for charged leptons: $L=M_{\ell} M_{\ell}^{\dagger}$
- for charged $2 / 3$ quarks: $H_{\frac{2}{3}}=M_{\frac{2}{3}} M_{\frac{2}{3}}^{\dagger}$ etc.
- Diagonalise $U_{\nu} N U_{\nu}^{\dagger}=D_{\nu} \rightarrow$ eigenvalues (ie. masses-squared)
- Diagonalisation different for $L$ and $N \Rightarrow$ mixing, ie. $U_{M N S} \equiv U_{\ell} U_{\nu}^{\dagger}$.

Analogous for quarks: $U_{C K M} \equiv U_{-\frac{1}{3}} U_{\frac{2}{3}}^{\dagger}$.

## The Jarlskogian and Plaquette Invariance

Jarlskog's $C P$-violating invariant:

$$
J=\operatorname{Im}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right)
$$



## The Jarlskogian and Plaquette Invariance

Jarlskog's $C P$-violating invariant:

$$
J=\operatorname{Im}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right)
$$

Fascinating properties:


- Parameterises $C P$ violation
- Does not depend on which plaquette is used


## The Jarlskogian and Plaquette Invariance

Jarlskog's $C P$-violating invariant:

$$
J=\operatorname{Im}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right)
$$

Fascinating properties:


- Parameterises $C P$ violation
- Does not depend on which plaquette is used
- Simply related to the mass matrices:

$$
J=-i \frac{\operatorname{Det}[L, N]}{2 L_{\Delta} N_{\Delta}}
$$

$L_{\Delta}, N_{\Delta}$ are traces of polynomials in $L$ and $N$.

## Are there Other Plaquette Invariants?

## Are there Other Plaquette Invariants?

Yes!

## Are there Other Plaquette Invariants?

## Yes!

- $J$ samples information uniformly across $U$
- it is flavour - symmetric (FS).


## Are there Other Plaquette Invariants?

## Yes!

- $J$ samples information uniformly across $U$
- it is flavour - symmetric (FS).
- Clearly, any function of the $U_{\alpha i}$, symmetrised over all flavour labels, and reduced to a function of only elements of a single plaquette is plaquette-invariant.


## Are there Other Plaquette Invariants?

## Yes!

- $J$ samples information uniformly across $U$
- it is flavour - symmetric (FS).
- Clearly, any function of the $U_{\alpha i}$, symmetrised over all flavour labels, and reduced to a function of only elements of a single plaquette is plaquette-invariant.
- Working with observables, find that, like $J$, FS functions of the mixing matrix can always be expressed as simple functions of the mass matrices.
- Will introduce an elemental set
- can be used for the flavour-symmetric description of any mixing scheme.


## The $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group

- 6 perms. of $\ell$ flavour indices and 6 of $\nu$ "flavour" labels (ie. $\nu$ mass eigenstate indices) constitute the $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group (FPG).


## The $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group

- 6 perms. of $\ell$ flavour indices and 6 of $\nu$ "flavour" labels (ie. $\nu$ mass eigenstate indices) constitute the $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group (FPG).
- Introduce the observable $P$ matrix:

$$
P=\left(\begin{array}{lll}
\left|U_{e 1}\right|^{2} & \left|U_{e 2}\right|^{2} & \left|U_{e 3}\right|^{2} \\
\left|U_{\mu 1}\right|^{2} & \left|U_{\mu 2}\right|^{2} & \left|U_{\mu 3}\right|^{2} \\
\left|U_{\tau 1}\right|^{2} & \left|U_{\tau 2}\right|^{2} & \left|U_{\tau 3}\right|^{2}
\end{array}\right)
$$

- Parameterises mixing (up to the sign of $J$ ).


## The $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group

- 6 perms. of $\ell$ flavour indices and 6 of $\nu$ "flavour" labels (ie. $\nu$ mass eigenstate indices) constitute the $S 3_{\ell} \times S 3_{\nu}$ Flavour Permutation Group (FPG).
- Introduce the observable $P$ matrix:

$$
P=\left(\begin{array}{lll}
\left|U_{e 1}\right|^{2} & \left|U_{e 2}\right|^{2} & \left|U_{e 3}\right|^{2} \\
\left|U_{\mu 1}\right|^{2} & \left|U_{\mu 2}\right|^{2} & \left|U_{\mu 3}\right|^{2} \\
\left|U_{\tau 1}\right|^{2} & \left|U_{\tau 2}\right|^{2} & \left|U_{\tau 3}\right|^{2}
\end{array}\right)
$$

- Parameterises mixing (up to the sign of $J$ ).
- Transforms as a (reducible) $3 \times 3$ (natural representation) of FPG.
- Rows and columns each sum to unity (a magic square)
$\Rightarrow$ completely specified by elements of any $P$-plaquette.
- Each $P$-plaquette transforms as (irreducible) $2 \times 2$ of FPG.


## Singlets Under FPG?

- $J$ is prototype FS observable - invariant under even members of the FPG; flips sign under odd members; ie. $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$.


## Singlets Under FPG?

- $J$ is prototype FS observable - invariant under even members of the FPG; flips sign under odd members; ie. $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$.
- Search for other singlets: $\mathbf{1} \times \mathbf{1}, \mathbf{1} \times \overline{\mathbf{1}}$ etc.
- Find simple polynomials of elements of $P$
- (anti-)symmetrise over flavour labels


## Singlets Under FPG?

- $J$ is prototype FS observable - invariant under even members of the FPG; flips sign under odd members; ie. $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$.
- Search for other singlets: $\mathbf{1} \times \mathbf{1}, \mathbf{1} \times \overline{\mathbf{1}}$ etc.
- Find simple polynomials of elements of $P$
- (anti-)symmetrise over flavour labels
- Simple representation theory $\rightarrow$
- 1st order in $P: \quad \exists$ no non-trivial singlets
- 2nd order: $\quad$ one each of $\overline{1} \times \overline{1}$ and $\mathbf{1} \times \mathbf{1}$
- 3rd order: one each of all four singlets
$-\geq$ 4th order: multiple instances of each
- Will stay at $\leq 3$ rd order. Clearly four are sufficient.


## Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and "offset" in $1 \times 1$ case):

$$
\begin{array}{rl}
\mathcal{G}=\frac{1}{2}\left[\sum_{\alpha i}\left(P_{\alpha i}\right)^{2}-1\right] & \mathcal{F}=\operatorname{Det} P \\
\mathcal{C}=\frac{3}{2}\left[\sum_{\alpha i}\left(P_{\alpha i}\right)^{3}-\sum_{\alpha i}\left(P_{\alpha i}\right)^{2}\right]+1 & \mathcal{A}=\frac{1}{18} \sum_{\gamma k}\left(L_{\gamma k}\right)^{3}
\end{array}
$$

where $L_{\gamma k}=\left(P_{\alpha i}+P_{\beta j}-P_{\beta i}-P_{\alpha j}\right)$.

## Elemental Set of FS Mixing Observables

Define themselves, up to normalisation (and "offset" in $1 \times 1$ case):

$$
\begin{aligned}
\mathcal{G}=\frac{1}{2}\left[\sum_{\alpha i}\left(P_{\alpha i}\right)^{2}-1\right] & \mathcal{F}
\end{aligned}=\operatorname{Det} P
$$

where $L_{\gamma k}=\left(P_{\alpha i}+P_{\beta j}-P_{\beta i}-P_{\alpha j}\right)$.

- $\mathcal{F}$ and $\mathcal{A}$ need no offset (they are anti-symmetric).
- Reach extremum for no mixing
- 0 for trimaximal mixing

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- All normalised to maximum value $=1$ (no mixing).
- $\mathcal{G}$ and $\mathcal{C}$ offset to zero for maximal mixing

$$
P=\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)
$$

## Properties and Values

| Observable | Order | Symmetry: | Theor. | Exptl. Range | Exptl. Range |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Name | in $P$ | $S 3_{\ell} \times S 3_{\nu}$ | Range | for Leptons | for Quarks |
| $\mathcal{F}$ | 2 | $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$ | $(-1,1)$ | $(-0.14,0.12)$ | $(0.893,0.896)$ |
| $\mathcal{G}$ | 2 | $\mathbf{1} \times \mathbf{1}$ | $(0,1)$ | $(0.15,0.23)$ | $(0.898,0.901)$ |
| $\mathcal{A}$ | 3 | $\overline{\mathbf{1}} \times \overline{\mathbf{1}}$ | $(-1,1)$ | $(-0.065,0.052)$ | $(0.848,0.852)$ |
| $\mathcal{C}$ | 3 | $\mathbf{1} \times \mathbf{1}$ | $\left(-\frac{1}{27}, 1\right)$ | $(-0.005,0.057)$ | $(0.848,0.852)$ |

Properties and values of FS observables. Experimentally allowed ranges estimated ( $90 \% \mathrm{CL}$ ) from compilations of current experimental results (neglect any correlations between the input quantities).

## FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^{m}}:=L^{m}-\frac{1}{3} \operatorname{Tr}\left(L^{m}\right)$ (similarly for $\widetilde{N^{m}}$ ).

Now define Jarlskog-invariant:

$$
\widetilde{T}_{m n}:=\operatorname{Tr}\left(\widetilde{L^{m}} \widetilde{N^{n}}\right), \quad m, n=1,2
$$

$\widetilde{T}$ Completely equivalent to $P$ (for known lepton masses).

## FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^{m}}:=L^{m}-\frac{1}{3} \operatorname{Tr}\left(L^{m}\right)$ (similarly for $\widetilde{N^{m}}$ ).

Now define Jarlskog-invariant:

$$
\widetilde{T}_{m n}:=\operatorname{Tr}\left(\widetilde{L^{m}} \widetilde{N^{n}}\right), \quad m, n=1,2 .
$$

$\widetilde{T}$ Completely equivalent to $P$ (for known lepton masses).
Find:

$$
\mathcal{F} \equiv \operatorname{Det} P=3 \frac{\operatorname{Det} \widetilde{T}}{L_{\Delta} N_{\Delta}} ; \quad\left[c f . J=-i \frac{\operatorname{Det}[L, N]}{2 L_{\Delta} N_{\Delta}}\right]
$$

## FSMOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^{m}}:=L^{m}-\frac{1}{3} \operatorname{Tr}\left(L^{m}\right)$ (similarly for $\widetilde{N^{m}}$ ).
Now define Jarlskog-invariant:

$$
\widetilde{T}_{m n}:=\operatorname{Tr}\left(\widetilde{L^{m}} \widetilde{N^{n}}\right), \quad m, n=1,2
$$

$\widetilde{T}$ Completely equivalent to $P$ (for known lepton masses).
Find:

$$
\begin{gathered}
\mathcal{F} \equiv \operatorname{Det} P=3 \frac{\operatorname{Det} \widetilde{T}}{L_{\Delta} N_{\Delta}} ; \quad\left[c f . J=-i \frac{\operatorname{Det}[L, N]}{2 L_{\Delta} N_{\Delta}}\right] \\
\mathcal{G}=\frac{\widetilde{T}_{m n} \widetilde{T}_{p q} \mathcal{L}^{m p} \mathcal{N}^{n q}}{\left(L_{\Delta} N_{\Delta}\right)^{2}} ; \quad \mathcal{C}, \mathcal{A}=\frac{\widetilde{T}_{m n} \widetilde{T}_{p q} \widetilde{T}_{r s} \mathcal{L}_{\mathcal{C}, \mathcal{A}}^{(m p r)} \mathcal{N}_{\mathcal{C}, \mathcal{A}}^{(n q s)}}{\left(L_{\Delta} N_{\Delta}\right)^{n_{\mathcal{C}, \mathcal{A}}}}
\end{gathered}
$$

The $\mathcal{L}(\mathcal{N})$ are simple functions of traces of $\widetilde{L^{m}}\left(\widetilde{N^{m}}\right) . \quad n_{\mathcal{C}}\left(n_{\mathcal{A}}\right)=2(3)$.

## Application: Flavour-symmetric Descriptions of Mixing



## Where is Flavour Symmetry?

- It is spontaneously broken


## Where is Flavour Symmetry?

- It is spontaneously broken
- There exist 36 equally valid "solutions" of the TBM form, related to each other by allowed permutations of the rows and columns of the mixing matrix.
- eg.

$$
\left.|U| \sim \begin{array}{ccc}
\nu_{1} & \nu_{2} & \nu_{3} \\
e \\
{ }_{\tau}
\end{array} \begin{array}{ccc}
1 / \sqrt{3} & 2 / \sqrt{6} & \epsilon \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & 1 / \sqrt{6} & 1 / \sqrt{2}
\end{array}\right)
$$

## Another Application:

## Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.

## Another Application:

## Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.
What feature do quark and lepton mixing matrices have in common?

## Another Application:

## Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.
What feature do quark and lepton mixing matrices have in common?

- Each has at least one "small" ele- $\left|V_{C K M}\right| \sim\left(\begin{array}{ccc}\sim \lambda & \sim 1 & \sim \lambda^{2} \\ \sim \lambda^{3} & \sim \lambda^{2} & \sim 1\end{array}\right), ~\left(\begin{array}{cc}\sim 1\end{array}\right)$.
ment.
- What is the flavour-symmetric expression of this?

$$
\left|U_{M N S}\right| \sim\left(\begin{array}{ccc}
2 / \sqrt{6} & 1 / \sqrt{3} & \epsilon \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

## Another Application:

## Partially Unified FS Description of Quark and Lepton Mixings

Unified Description of quark and lepton mixings is desirable.
What feature do quark and lepton mixing matrices have in common?

- Each has at least one "small" ele- $\left|V_{C K M}\right| \sim\left(\begin{array}{ccc}\sim \lambda & \sim 1 & \sim \lambda^{2} \\ \sim \lambda^{3} & \sim \lambda^{2} & \sim 1\end{array}\right)$
- What is the flavour-symmetric expression of this?

$$
\left|U_{M N S}\right| \sim\left(\begin{array}{ccc}
2 / \sqrt{6} & 1 / \sqrt{3} & \epsilon \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2} \\
1 / \sqrt{6} & 1 / \sqrt{3} & 1 / \sqrt{2}
\end{array}\right)
$$

$\geq 1$ zero $\Rightarrow$ CP-conservation $\Longrightarrow J=0$. But need two constraints.

## FS Condition for One Mixing Zero

After some work, find

$$
\Longrightarrow 2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right)=0 \text { and } J=0
$$

- Manifestly FS, but not "neat"


## FS Condition for One Mixing Zero

After some work, find

$$
\Longrightarrow 2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right)=0 \text { and } J=0
$$

- Manifestly FS, but not "neat"
- Now, consider $K$-matrix: $K_{\gamma k}=\operatorname{Re}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right) \quad$ (cf. $\left.J\right)$.
- Familiar from $C P$ conserving parts of interference terms in penguin dominated rates


## FS Condition for One Mixing Zero

After some work, find

$$
\Longrightarrow 2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right)=0 \text { and } J=0
$$

- Manifestly FS, but not "neat"
- Now, consider $K$-matrix: $K_{\gamma k}=\operatorname{Re}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right) \quad$ (cf. $\left.J\right)$.
- Familiar from $C P$ conserving parts of interference terms in penguin dominated rates
- In fact $2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right) \equiv 54 \operatorname{Det} K$


## FS Condition for One Mixing Zero

After some work, find

$$
\Longrightarrow 2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right)=0 \text { and } J=0
$$

- Manifestly FS, but not "neat"
- Now, consider $K$-matrix: $K_{\gamma k}=\operatorname{Re}\left(U_{\alpha i} U_{\alpha j}^{*} U_{\beta i}^{*} U_{\beta j}\right) \quad$ (cf. $\left.J\right)$.
- Familiar from $C P$ conserving parts of interference terms in penguin dominated rates
- In fact $2 \mathcal{A}+\mathcal{F}\left(\mathcal{F}^{2}-2 \mathcal{C}-1\right) \equiv 54 \operatorname{Det} K$

So

$$
\operatorname{Det} K=0 \text { and } J=0
$$

is condition we want

## FS Condition for One Small Element

- For one small element, relax (slightly) one condition or both.
- For quark mixing, know that $J \neq 0$ (but small)


## FS Condition for One Small Element

- For one small element, relax (slightly) one condition or both.
- For quark mixing, know that $J \neq 0$ (but small)
- How about Det $K$ ?

$$
\left|\operatorname{Det} K_{q} /(\operatorname{Det} K)_{\max }\right| \lesssim 3 \times 10^{-7}
$$

- Leptons also consistent with Det $K$ small or zero.


## FS Condition for One Small Element

- For one small element, relax (slightly) one condition or both.
- For quark mixing, know that $J \neq 0$ (but small)
- How about Det $K$ ?

$$
\left|\operatorname{Det} K_{q} /(\operatorname{Det} K)_{\max }\right| \lesssim 3 \times 10^{-7}
$$

- Leptons also consistent with Det $K$ small or zero.
- Conjecture: MNS and CKM constrained according to the same FS condition:

$$
\operatorname{Det} K=0 ; \quad J \text { small. }
$$

Unified, partial description of quark and lepton mixings.

## Predictions

- Det $K=0 ; J$ small $\Longrightarrow$ as $J \rightarrow 0$, at least one UT angle $\rightarrow 90^{\circ}$.
- Get precise prediction for one unitarity angle in terms of other mixing elements.
- Doesn't tell us which angle, but the data do.


## Predictions

- $\operatorname{Det} K=0 ; J$ small $\Longrightarrow$ as $J \rightarrow 0$, at least one UT angle $\rightarrow 90^{\circ}$.
- Get precise prediction for one unitarity angle in terms of other mixing elements.
- Doesn't tell us which angle, but the data do.
- For quarks, predict:

$$
\left.\begin{array}{rl}
-\cos \alpha & \simeq\left(90^{\circ}-\alpha\right)
\end{array}\right)=\bar{\eta} \lambda^{2}=1^{\circ} \pm 0.2^{\circ} .
$$

## Predictions

- $\operatorname{Det} K=0 ; J$ small $\Longrightarrow$ as $J \rightarrow 0$, at least one UT angle $\rightarrow 90^{\circ}$.
- Get precise prediction for one unitarity angle in terms of other mixing elements.
- Doesn't tell us which angle, but the data do.
- For quarks, predict:

$$
\left.\begin{array}{rl}
-\cos \alpha & \simeq\left(90^{\circ}-\alpha\right)
\end{array}\right)=\bar{\eta} \lambda^{2}=1^{\circ} \pm 0.2^{\circ} .
$$

- "A sub- $1^{\circ}$ measurement is possible in $B \rightarrow \rho \rho$ and $B \rightarrow \pi \pi$ individually" (A. Bevan 5th SuperB workshop, Paris, 2007).


## Predictions

- $\operatorname{Det} K=0 ; J$ small $\Longrightarrow$ as $J \rightarrow 0$, at least one UT angle $\rightarrow 90^{\circ}$.
- Get precise prediction for one unitarity angle in terms of other mixing elements.
- Doesn't tell us which angle, but the data do.
- For quarks, predict:

$$
\begin{aligned}
& -\cos \alpha \simeq\left(90^{\circ}-\alpha\right)=\bar{\eta} \lambda^{2}=1^{\circ} \pm 0.2^{\circ} \\
& \text { cf. }\left(90^{\circ}-\alpha\right)=0^{\circ}{ }_{-7^{\circ}}{ }^{\circ} \text { experimentally. }
\end{aligned}
$$

- "A sub- $1^{\circ}$ measurement is possible in $B \rightarrow \rho \rho$ and $B \rightarrow \pi \pi$ individually" (A. Bevan 5th SuperB workshop, Paris, 2007).
- For leptons, predict:

$$
|\cos \delta| \simeq\left|90^{\circ}-\delta\right|=2 \sqrt{2} \sin \theta_{13} \sin \left(\theta_{23}-\frac{\pi}{4}\right) \lesssim 4^{\circ}
$$

## Summary

- Have defined flavour-symmetric mass and/or mixing observables.


## Summary

- Have defined flavour-symmetric mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation


## Summary

- Have defined flavour-symmetric mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these $=0$ !


## Summary

- Have defined flavour-symmetric mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these $=0$ !
- Used them to implement FS constraints on flavour observables, and make testable conjectures


## Summary

- Have defined flavour-symmetric mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these $=0$ !
- Used them to implement FS constraints on flavour observables, and make testable conjectures
- $\alpha_{C K M}$ should be $(89 \pm 0.2)^{\circ}$ - UT is almost right!


## Summary

- Have defined flavour-symmetric mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these $=0$ !
- Used them to implement FS constraints on flavour observables, and make testable conjectures
- $\alpha_{C K M}$ should be $(89 \pm 0.2)^{\circ}$ - UT is almost right!
- $\delta_{\text {leptons }}$ should be within $4^{\circ}$ of $90^{\circ}$.

