Flavour Permutation Symmetry, Mixing and Jarlskog Invariance

Paul Harrison*

University of Warwick

Rencontres de Moriond,

4th March 2008

* With Dan Roythorne and Bill Scott, PLB 657 (2007) 210, arXiv:0709.1439

Paul Harrison

University of Warwick

4th March 2008

Outline of Talk

- The Flavour Problem
- Jarlskog Covariance
- Plaquette Invariance and Flavour Permutation Symmetry
- Flavour Symmetric Mixing Observables
- Applications
- Conclusions

The Flavour Problem

- SM has 20 (22) low energy flavour parameters (out of 25(27))
- They show tantalising structure, eg.

$$|V_{CKM}| \sim c \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(\lambda) & \mathcal{O}(\lambda^3) \\ \mathcal{O}(\lambda) & \mathcal{O}(1) & \mathcal{O}(\lambda^2) \\ t & \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(\lambda^2) \\ \mathcal{O}(\lambda^3) & \mathcal{O}(\lambda^2) & \mathcal{O}(1) \end{pmatrix} \end{pmatrix} \xrightarrow{\mathbf{q}_{i\alpha}} \begin{pmatrix} \mathbf{q}_{i\alpha} \\ \mathbf{v}_{i\alpha} \\ \mathbf{v}_{i\alpha} \\ \mathbf{v}_{i\alpha} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{i\alpha} \\ \mathbf{v}_{i\alpha} \\ \mathbf{v}_{i\alpha} \\ \mathbf{v}_{i\alpha} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{i\alpha} \\ \mathbf{v}_{i\alpha} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{i\alpha} \\ \mathbf{v}_{i\alpha} \\ \mathbf{v}_{i\alpha} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{i\alpha} \\ \mathbf{v}_{i\alpha} \end{pmatrix} \begin{pmatrix} \mathbf{q}_{i$$

• Are not predictable in the SM - profoundly unsatisfactory.

Paul Harrison

University of Warwick

Masses and Mixings have Common Origin

- in Quark and Lepton mass matrices: $M_{\frac{2}{3}}, M_{-\frac{1}{3}}, M_{\ell}, M_{\nu}$
- Each is product of Higgs vev and Yukawa coupling matrix
- Work with Hermitian Squares.
- eg. for neutrinos: $N=M_{
 u}M_{
 u}^{\dagger}$
- for charged leptons: $L = M_{\ell} M_{\ell}^{\dagger}$ etc.
- Diagonalise $U_{\nu}NU_{\nu}^{\dagger} = D_{\nu} \rightarrow \text{eigenvalues}$ (ie. masses-squared)
- Diagonalisation different for L and $N \Rightarrow \text{mixing}$, ie. $U_{MNS} \equiv U_{\ell} U_{\nu}^{\dagger}$. NB. Analogous for quarks.

Jarlskog (ie. Weak Basis) Covariance

• However L and N are not observable:

$$L' = U_J L U_J^{\dagger}$$
 and $N' = U_J N U_J^{\dagger}$

have same eigenvalues and same mixing matrix:

$$U'_{MNS} = U_{\ell} (U_J^{\dagger} U_J) U_{\nu}^{\dagger} = U_{MNS}$$

- ie. Masses and mixing angles are "Jarlskog-invariant", even though mass matrices transform.
- New basis is just as good a starting point...

Application of Jarlskog Covariance

• Jarlskog urges (1985): "important results can't be frame dependent"

Application of Jarlskog Covariance

- Jarlskog urges (1985): "important results can't be frame dependent"
- Before and since, many models enforce "texture" ze
 - roes, hierarchical mass matrices, other textures.
 But usually assume "special" basis, in which texture
 - But usually assume "special" basis, in which texture applies
 - "Specialness" of this basis is not explained.

$$M^{\frac{2}{3}} = \begin{pmatrix} 0 & a & 0 \\ a^* & 0 & b \\ 0 & b^* & c \end{pmatrix}$$

Application of Jarlskog Covariance

- Jarlskog urges (1985): "important results can't be frame dependent"
- Before and since, many models enforce "texture" ze-
- But usually assume "special" basis, in which texture $M^{\frac{2}{3}} = \begin{pmatrix} 0 & a & 0 \\ a^* & 0 & b \\ 0 & b^* & c \end{pmatrix}$
- "Specialness" of this basis is not explained.
- Since Einstein, have been alert to excessive reliance on a given basis.
- Jarlskog reiterates (hep-ph/0606050): "you should be able to formulate it in an invariant form"
- We adopt Jarlskog's prescription as a principle!

eg. H. Fritzsch:

The Jarlskogian and Plaquette Invariance

Jarlskog's *CP*-violating invariant:

$$J = \operatorname{Im}(U_{\alpha i} U_{\alpha j}^* U_{\beta i}^* U_{\beta j})$$

Fascinating properties:

- Parameterises *CP* violation
- Does not depend on which plaquette is used
- May be simply related to the lepton mass matrices:

$$J = -i \, \frac{\text{Det}[L, N]}{2L_{\Delta} N_{\Delta}}$$

 L_{Δ} , N_{Δ} are simple polynomials in m_{ℓ} and m_{ν} .

7

Yes!

Yes!

- J samples information uniformly across U
 - it is *flavour symmetric* (FS).

Yes!

• J samples information uniformly across U

- it is *flavour* - *symmetric* (FS).

 Clearly, any function of the U_{αi}, symmetrised over all flavour labels, and reduced to a function of only elements of a single plaquette is plaquette-invariant.

Yes!

- J samples information uniformly across U
 - it is *flavour symmetric* (FS).
- Clearly, any function of the U_{αi}, symmetrised over all flavour labels, and reduced to a function of only elements of a single plaquette is plaquette-invariant.
- Working with observables, find that, like J, FS functions of the mixing matrix can always be expressed as simple functions of the mass matrices.
- Will introduce an elemental set
- can be used for the flavour-symmetric description of *any* mixing scheme.

The $S3_\ell imes S3_ u$ Flavour Permutation Group

• 6 perms. of ℓ flavour indices and 6 of ν "flavour" labels (ie. ν mass eigenstate indices) constitute the $S3_{\ell} \times S3_{\nu}$ Flavour Permutation Group (FPG).

The $S3_\ell imes S3_ u$ Flavour Permutation Group

- 6 perms. of *l* flavour indices and 6 of *ν* "flavour" labels (ie. *ν* mass eigenstate indices) constitute the S3_l × S3_ν Flavour Permutation Group (FPG).
- Introduce the observable *P* matrix:

$$P = \begin{pmatrix} |U_{e1}|^2 & |U_{e2}|^2 & |U_{e3}|^2 \\ |U_{\mu 1}|^2 & |U_{\mu 2}|^2 & |U_{\mu 3}|^2 \\ |U_{\tau 1}|^2 & |U_{\tau 2}|^2 & |U_{\tau 3}|^2 \end{pmatrix}$$

- Parameterises mixing (up to the sign of J).

The $S3_\ell imes S3_ u$ Flavour Permutation Group

- 6 perms. of *l* flavour indices and 6 of *ν* "flavour" labels (ie. *ν* mass eigenstate indices) constitute the S3_l × S3_ν Flavour Permutation Group (FPG).
- Introduce the observable *P* matrix:

$$P = \begin{pmatrix} |U_{e1}|^2 & |U_{e2}|^2 & |U_{e3}|^2 \\ |U_{\mu 1}|^2 & |U_{\mu 2}|^2 & |U_{\mu 3}|^2 \\ |U_{\tau 1}|^2 & |U_{\tau 2}|^2 & |U_{\tau 3}|^2 \end{pmatrix}$$

- Parameterises mixing (up to the sign of J).
- Transforms as a (reducible) $\mathbf{3} \times \mathbf{3}$ (natural representation) of FPG.
- Rows and columns each sum to unity (a magic square)
 - \Rightarrow completely specified by elements of *any P*-plaquette.
- Each P-plaquette transforms as (irreducible) $\mathbf{2} \times \mathbf{2}$ of FPG. Paul Harrison University of Warwick

Singlets Under FPG?

J is prototype FS observable - invariant under even members of the FPG;
 flips sign under odd members; ie. 1 × 1.

Singlets Under FPG?

- J is prototype FS observable invariant under even members of the FPG;
 flips sign under odd members; ie. 1 × 1.
- Search for other singlets: $1\times 1, \ 1\times \overline{1}$ etc.
- Find simple polynomials of elements of ${\cal P}$
- (anti-)symmetrise over flavour labels

Singlets Under FPG?

- J is prototype FS observable invariant under even members of the FPG;
 flips sign under odd members; ie. 1 × 1.
- Search for other singlets: $1\times 1,\, 1\times \overline{1}$ etc.
- Find simple polynomials of elements of ${\cal P}$
- (anti-)symmetrise over flavour labels
- Simple representation theory \rightarrow
- 1st order in P: $\exists no \text{ non-trivial singlets}$
- 2nd order: one each of $\overline{1}\times\overline{1}$ and 1×1
- 3rd order: one each of all four singlets
- \geq 4th order: multiple instances of each
- Will stay at \leq 3rd order. Clearly four are sufficient.

Elemental Set of FS Observables

Define themselves, up to normalisation (and "offset" in $\mathbf{1} \times \mathbf{1}$ case):

$$\mathcal{G} = \frac{1}{2} \left[\sum_{\alpha i} (P_{\alpha i})^2 - 1 \right] \qquad \mathcal{F} = \text{Det}P$$
$$\mathcal{C} = \frac{3}{2} \left[\sum_{\alpha i} (P_{\alpha i})^3 - \sum_{\alpha i} (P_{\alpha i})^2 \right] + 1 \qquad \mathcal{A} = \frac{1}{18} \sum_{\gamma k} (L_{\gamma k})^3$$

where $L_{\gamma k} = (P_{\alpha i} + P_{\beta j} - P_{\beta i} - P_{\alpha j}).$

Elemental Set of FS Observables

Define themselves, up to normalisation (and "offset" in 1×1 case):

$$\mathcal{G} = \frac{1}{2} \left[\sum_{\alpha i} (P_{\alpha i})^2 - 1 \right] \qquad \mathcal{F} = \text{Det}P$$
$$\mathcal{C} = \frac{3}{2} \left[\sum_{\alpha i} (P_{\alpha i})^3 - \sum_{\alpha i} (P_{\alpha i})^2 \right] + 1 \qquad \mathcal{A} = \frac{1}{18} \sum_{\gamma k} (L_{\gamma k})^3$$

where $L_{\gamma k} = (P_{\alpha i} + P_{\beta j} - P_{\beta i} - P_{\alpha j}).$

- \mathcal{F} and \mathcal{A} need no offset (they are anti-symmetric).
- Reach extremum for no mixing
- 0 for trimaximal mixing
- All normalised to maximum value = 1 (no mixing).
- \mathcal{G} and \mathcal{C} offset to zero for maximal mixing

$$P = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}$$

 $P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$

 $\frac{1}{3}$

Paul Harrison

Properties and Values

Observable	Order	Symmetry:	Theor.	Exptl. Range	Exptl. Range
Name	in P	$S3_\ell \times S3_\nu$	Range	for Leptons	for Quarks
\mathcal{F}	2	$\overline{1}{ imes}\overline{1}$	(-1, 1)	(-0.14, 0.12)	(0.893, 0.896)
\mathcal{G}	2	$1{ imes}1$	(0,1)	(0.15, 0.23)	(0.898, 0.901)
\mathcal{A}	3	$\overline{1}{ imes}\overline{1}$	(-1, 1)	(-0.065, 0.052)	(0.848, 0.852)
С	3	$1{ imes}1$	$(-\frac{1}{27},1)$	(-0.005, 0.057)	(0.848, 0.852)

Properties and values of FS observables. Experimentally allowed ranges estimated (90% CL) from compilations of current experimental results (neglect any correlations between the input quantities).

Paul Harrison

University of Warwick

FSOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^m} := L^m - \frac{1}{3} \operatorname{Tr}(L^m)$ (similarly for $\widetilde{N^m}$).

Now define Jarlskog-invariant:

$$\widetilde{T}_{mn} := \operatorname{Tr}(\widetilde{L^m}\widetilde{N^n}), \quad m, n = 1, 2.$$

 \widetilde{T} Completely equivalent to P (for known lepton masses). Find:

$$\mathcal{F} \equiv \text{Det } P = 3 \frac{\text{Det } \widetilde{T}}{L_{\Delta} N_{\Delta}}; \qquad \left[cf. \ J = -i \frac{\text{Det}[L, N]}{2L_{\Delta} N_{\Delta}} \right]$$

FSOs in Terms of Mass Matrices

Define reduced (ie. traceless) powers of mass matrices: $\widetilde{L^m} := L^m - \frac{1}{3} \operatorname{Tr}(L^m)$ (similarly for $\widetilde{N^m}$).

Now define Jarlskog-invariant:

$$\widetilde{T}_{mn} := \operatorname{Tr}(\widetilde{L^m}\widetilde{N^n}), \quad m, n = 1, 2.$$

 \widetilde{T} Completely equivalent to P (for known lepton masses). Find:

$$\mathcal{F} \equiv \text{Det } P = 3 \frac{\text{Det } \tilde{T}}{L_{\Delta} N_{\Delta}}; \qquad \left[cf. \ J = -i \frac{\text{Det}[L, N]}{2L_{\Delta} N_{\Delta}} \right]$$

$$\mathcal{G} = \frac{\widetilde{T}_{mn} \, \widetilde{T}_{pq} \, \mathcal{L}^{mp} \, \mathcal{N}^{nq}}{(L_\Delta N_\Delta)^2}; \qquad \mathcal{C}, \mathcal{A} = \frac{\widetilde{T}_{mn} \, \widetilde{T}_{pq} \, \widetilde{T}_{rs} \, \mathcal{L}_{\mathcal{C},\mathcal{A}}^{(mpr)} \, \mathcal{N}_{\mathcal{C},\mathcal{A}}^{(nqs)}}{(L_\Delta N_\Delta)^{K_{\mathcal{C},\mathcal{A}}}}$$

The $\mathcal{L}(\mathcal{N})$ are simple functions of traces of $\widetilde{L^m}(\widetilde{N^m})$. $K_{\mathcal{C}}(K_{\mathcal{A}}) = 2(3)$. Paul Harrison University of Warwick 4th March 2008

Application: Flavour-symmetric Descriptions of Mixing

A Further Application

• What feature do quark and lepton mixing matrices have in common? $|V_{CKM}| \sim \begin{pmatrix} \sim 1 & \sim \lambda & \sim \lambda^3 \\ \sim \lambda & \sim 1 & \sim \lambda^2 \\ \sim \lambda^3 & \sim \lambda^2 & \sim 1 \end{pmatrix}$ • Each has at least one "small" element. • What is the flavour-symmetric expression of this? $|U_{MNS}| \sim \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & \epsilon \\ 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$

A Further Application

• What feature do quark and lepton mixing matrices have in common? $|V_{CKM}| \sim \begin{pmatrix} \sim 1 & \sim \lambda & \sim \lambda^3 \\ \sim \lambda & \sim 1 & \sim \lambda^2 \\ \sim \lambda^3 & \sim \lambda^2 & \sim 1 \end{pmatrix}$ • Each has at least one "small" element. • What is the flavour-symmetric expression of this? $|U_{MNS}| \sim \begin{pmatrix} 2/\sqrt{6} & 1/\sqrt{3} & \epsilon \\ 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ 1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \end{pmatrix}$

 $\geq 1 \text{ zero} \Rightarrow \mathsf{CP}\text{-conservation} \implies J = 0.$

But need two constraints - find:

$$2\mathcal{A} + \mathcal{F}(\mathcal{F}^2 - 2\mathcal{C} - 1) = 0 \text{ and } J = 0 \implies \text{ at least one zero}$$

Paul Harrison

University of Warwick

A Further Application (Cont.)

- NB. Consider K-matrix: $K_{\gamma k} = \operatorname{Re}(U_{\alpha i}U_{\alpha j}^{*}U_{\beta i}^{*}U_{\beta j})$ (cf. J).
- Noticed that $2\mathcal{A} + \mathcal{F}(\mathcal{F}^2 2\mathcal{C} 1) \equiv \text{Det}K$
- Both MNS and CKM mixing matrices satisfy Det K = 0 (within errors)
- Conjecture: MNS and CKM constrained according to the same FS JI condition:

$$Det K = 0;$$
 J small.

• \implies FS prediction: if $\operatorname{Det} K = 0$, then as $J \to 0$, at least one UT angle $\to 90^{\circ}$. For quarks: $\operatorname{Det} K = 0 \implies (90^{\circ} - \alpha) = \overline{\eta}\lambda^2 = 1^{\circ} \pm 0.2^{\circ}$ cf. $(90^{\circ} - \alpha) = 0^{\circ + 3^{\circ}}_{-7^{\circ}}$ experimentally. For leptons: $\operatorname{Det} K = 0 \implies (90^{\circ} - \delta) = \frac{|U_{e3}|}{\sqrt{2}} \lesssim 8^{\circ}$ (good for CPV).

Summary

- Models of masses and mixings should be weak-basis invariant
- Have defined flavour-symmetric mass and/or mixing observables.
- "Simplest" set defines itself up to normalisation
- Remarkably, leptonic mixing is consistent with 3 of these = 0!
- Can use them to implement FS and JI constraints on flavour observables, and make testable conjectures