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e SM has 20 (22) low energy flavour parameters (out of 25(27))

e They show tantalising structure, eg.

\Veram| ~ ¢

e
\Unins| ~ 1

T

e Are not predictable in the SM - profoundly unsatisfactory.
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‘ Masses and Mixings have Common Originl

e in Quark and Lepton mass matrices: Mg, M_%, M,, M,
e Each is product of Higgs vev and Yukawa coupling matrix

e Work with Hermitian Squares.

— eg. for neutrinos: N = M, M

— for charged leptons: L = MM, etc.

e Diagonalise U,NU}! = D, — eigenvalues (ie. masses-squared)

e Diagonalisation different for L and N = mixing, ie. Upns = U,UJ.

NB. Analogous for quarks.
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‘ Jarlskog (ie. Weak Basis) Covariancel

e However L and NN are not observable:
L' =U,;LU} and N' = U;NU?
have same eigenvalues and same mixing matrix:

U]/WNS — UE(U}UJ)UVT = Unmns

e ie. Masses and mixing angles are “Jarlskog-invariant”, even though mass matrices

transform.

e New basis is just as good a starting point...
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‘ Application of Jarlskog Covariancel

e Jarlskog urges (1985): “important results can't be frame dependent”
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‘ Application of Jarlskog Covariancel

e Jarlskog urges (1985): “important results can't be frame dependent”

_ ) ; eg. H. Fritzsch:
e Before and since, many models enforce “texture” ze-

roes, hierarchical mass matrices, other textures. ( 0 a 0 \
e But usually assume “special” basis, in which texture ,
. Ms=1a 0 b
applies
y : ., . . _ \ 0 b* c )
e “Specialness” of this basis is not explained.
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‘ Application of Jarlskog Covariancel

e Jarlskog urges (1985): “important results can't be frame dependent”

_ ) ; eg. H. Fritzsch:
e Before and since, many models enforce “texture” ze-

roes, hierarchical mass matrices, other textures. ( 0 a 0 \
e But usually assume “special” basis, in which texture ,
. Ms = 0 b
applies
. , . . _ \ 0 b* c )
e "“Specialness” of this basis is not explained.

e Since Einstein, have been alert to excessive reliance on a given basis.

e Jarlskog reiterates (hep-ph/0606050): “you should be able to formulate it in an

invariant form”

e We adopt Jarlskog's prescription as a principle!
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‘ The Jarlskogian and Plaquette Invariancel

Jarlskog's C' P-violating invariant:
J =Im(U,:U;,;U5Us;)

Fascinating properties:

e Parameterises C' P violation

: . (Uel 6*2 1]63\
e Does not depend on which plaquette is
;1 Uu2 Uu3
used
| I I I
\UTl UTrZ2 4 7'3)

e May be simply related to the lepton

mass matrices:

Det|L. N

j — —; DetlL. ]
2LANA

LA, Na are simple polynomials in m, and m,,.
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‘ Are there Other Plaquette Invariants?l
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‘ Are there Other Plaquette Invariants?l

Yes!

e J samples information uniformly across U

- it is flavour — symmetric (FS).

e Clearly, any function of the U,;, symmetrised over all flavour labels,
and reduced to a function of only elements of a single plaquette

is plaquette-invariant.

e Working with observables, find that, like J, FS functions of the mixing matrix can

always be expressed as simple functions of the mass matrices.

e Will introduce an elemental set

— can be used for the flavour-symmetric description of any mixing scheme.
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‘ The S3, X S3, Flavour Permutation GroupI

e 6 perms. of ¢ flavour indices and 6 of v “flavour” labels (ie. v mass eigenstate

indices) constitute the S3, x 53, Flavour Permutation Group (FPG).
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‘ The S3, X S3, Flavour Permutation GroupI

e 6 perms. of ¢ flavour indices and 6 of v “flavour” labels (ie. v mass eigenstate

indices) constitute the S3, x 53, Flavour Permutation Group (FPG).

e Introduce the observable P matrix:

(
\

— Parameterises mixing (up to the sign of J).
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indices) constitute the S3, x 53, Flavour Permutation Group (FPG).

‘ The S3, X S3, Flavour Permutation GroupI

e 6 perms. of ¢ flavour indices and 6 of v “flavour” labels (ie. v mass eigenstate

e Introduce the observable P matrix:

— Parameterises mixing (up to the sign of J).
— Transforms as a (reducible) 3 x 3 (natural representation) of FPG.

— Rows and columns each sum to unity (a magic square)

= completely specified by elements of any P-plaquette.

— Each P-plaquette transforms as (irreducible) 2 x 2 of FPG.

Paul Harrison
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‘ Singlets Under FPG?I

e J is prototype FS observable - invariant under even members of the FPG;

flips sign under odd members; ie. 1 x 1.
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‘ Singlets Under FPG?I
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e Search for other singlets: 1 x 1, 1 x 1 etc.
— Find simple polynomials of elements of P

— (anti-)symmetrise over flavour labels
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‘ Singlets Under FPG?I

e J is prototype FS observable - invariant under even members of the FPG;
flips sign under odd members; ie. 1 x 1.

e Search for other singlets: 1 x 1, 1 x 1 etc.

— Find simple polynomials of elements of P

— (anti-)symmetrise over flavour labels

e Simple representation theory—

— 1st order in P: 4 no non-trivial singlets

— 2nd order: oneeachof 1 x 1 and 1 x 1
— 3rd order: one each of all four singlets
— > 4th order: multiple instances of each

e Will stay at < 3rd order. Clearly four are sufficient.
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| Elemental Set of FS Observablesl

Define themselves, up to normalisation (and “offset” in 1 x 1 case):

925[%:(3%‘)2—1] F = DetP
C = % [Z(PQZ)S Z(Pm')2] +1 A= 1_18 Z(ka)S

where Lfyk = (Pai+P6j _Pﬂi_Paj)-
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| Elemental Set of FS Observablesl

Define themselves, up to normalisation (and “offset” in 1 x 1 case):

g:%[%:<Pozi>2_l] F = DetP
C = % [Z(Pm)3 Z(Pai)ﬂ +1 A= 1_18 Z(ka)3

where Lfyk = (Pai+Pﬁj _Pﬁi_Paj)-

e F and A need no offset (they are anti-symmetric).

P=1010
— Reach extremum for no mixing /

— 0 for trimaximal mixing

e All normalised to maximum value =1 (no mixirﬁA

~
-
-
—

S—

——
———

Wl Wl

e G and C offset to zero for maximal mixing P =

Wl Wl Wl
Wl Wi~ W+~

~
Wl
N—
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‘ Properties and VaIuesI

12

Observable | Order | Symmetry: | Theor. Exptl. Range Exptl. Range
Name in P | S3, xS53, Range for Leptons for Quarks

F 2 1x1 (—1,1) (—0.14,0.12) | (0.893,0.896)

g 2 1x1 (0,1) (0.15,0.23) (0.898,0.901)

A 3 1x1 (—1,1) | (—0.065,0.052) | (0.848,0.852)

C 3 1x1 (—35,1) | (—0.005,0.057) | (0.848,0.852)

Properties and values of FS observables. Experimentally allowed ranges estimated

(90% CL) from compilations of current experimental results (neglect any correlations

between the input quantities).
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| FSOs in Terms of Mass Matricesl

Define reduced (ie. traceless) powers of mass matrices: L= L™ — sTr(L™)
(similarly for N™).
Now define Jarlskog-invariant:

~

Trn = Tr(ﬁ”b]/\f\%), m,n =1,2.

T Completely equivalent to P (for known lepton masses).

Find:
Dethv.
LANA’

.Det|L, N|

F e 3 cf i T
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| FSOs in Terms of Mass Matricesl

Define reduced (ie. traceless) powers of mass matrices: L= L™ — sTr(L™)
(similarly for N™).
Now define Jarlskog-invariant:

~

Trn = Tr(l/l\;”b]/\f\?b), m,n =1,2.

T Completely equivalent to P (for known lepton masses).

Find:
Det T Det[L, N]
= Det P =3 : CJ = — 7
F=De LANA cf "TOLANA
g = Tmn qu £mp qu . C A — Tmn qu TTS £((ZT£T) NC(ZZS)
(LANA)2 7 7 (LANA>KC~4

The £ (N) are simple functions of traces of Lm (W) Ke (K4) =2(3).
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Application: Flavour-symmetric Descriptions of Mixing
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=F =0, C=0, A=0, G=z(1—3€)% Whereis flavour-symmetry?
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‘ A Further Applicationl

e What feature do quark and lepton

mixing matrices have in common? Veru| ~
e Each has at least one “small” ele-

ment.
e What is the flavour-symmetric ex-

\Unins| ~
pression of this?
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‘ A Further Applicationl

e What feature do quark and lepton ( ~ 1 ~ A ~ >\3\
mixing matrices have in common? Vol ~ ~ A ~ 1 ~ N\

e Each has at least one “small” ele- \ ~ N AN~ )
ment.

[ 2/v6  1/v3 e )
Unns|~ | 1/v/6  1/V/3  1//2
\ 1/V6  1/V3 o 1/V2 )

e What is the flavour-symmetric ex-

pression of this?

> 1 zero = CP-conservation — J = 0.

But need two constraints - find:

2A+F(F*—-2C—1)=0and J=0 = at least one zero
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‘ A Further Application (Cont.)I

e NB. Consider K-matrix: K., = Re(UyU3;U3,Us;)  (cf. J).
e Noticed that 24 + F(F? —2C — 1) = DetK
e Both MNS and CKM mixing matrices satisfy Det K’ = 0 (within errors)

e Conjecture: MNS and CKM constrained according to the same FS JI condition:

DetK =0; J small.

e — FS prediction: if Det K = 0, then as J — 0, at least one UT angle — 90°.
For quarks: DetK =0 = (90° —a) =7A\? =1° £+ 0.2°
cf. (90° — a) = 0°F2. experimentally.

For leptons: DetK =0 = (90° —§) = %21 $8° (good for CPV).
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‘ Summaryl

e Models of masses and mixings should be weak-basis invariant

e Have defined flavour-symmetric mass and/or mixing observables.
e “Simplest” set defines itself up to normalisation

e Remarkably, leptonic mixing is consistent with 3 of these = 0!

e Can use them to implement FS and JI constraints on flavour observables, and

make testable conjectures
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