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摘 要

晶格中波的局域化是指离散介质中不存在输运现象，人们在过去的几十年里面，对
它进行了深入的研究。最值得注意的是，这种现象是由晶格中的杂质或者无序势场的存
在所引起，从而导致了著名的 Anderson 局域化。然而，波的局域化也可能出现在平移
不变的晶格中，其中相消干涉致使（至少一个）布洛赫能带群速度消失，导致宏观简并
的本征态局域在晶格有限的格点上，此类局域态被称为紧凑的局域态（CLS）。这些具
有无色散能带（平带）的单粒子能谱被称为平带晶格。
在本文中，我们研究了二维和三维平带晶格中的格点势能无序与平带的相互作用效

应。由于 Lieb 模型是最简单的平带晶格，也是实验上最容易实现的晶格模型，所以我
们主要研究 Lieb 模型及其扩展模型。首先，我们研究了二维 Lieb 模型及其扩展模型中
的非关联无序效应。基于有限大小标度理论，我们发现平带处与色散带处的态确实具有
完全不同的局域化性质，平带处的态似乎表现出一种类似一维情况的局域性质。然而，
对于无序小至与跃迁能相当时，所有的无序仍然导致局域化。
然后，我们研究了三维 Lieb 模型及其扩展模型中的非关联格点无序效应，我们在

能量—无序的相图中得到了金属—绝缘体转变曲线。我们发现三维 Lieb 模型及其扩展
模型具有比简单立方晶格更低的临界无序，即 Lieb 模型更局域。此外，我们发现临界
指数与标准的三维 Anderson 模型的临界指数是一致的。
最后，我们考虑有序势与无序势共存的情况，使得紧凑的局域态（CLS）被保留。

有两个令人惊讶的结果，首先有一半的色散带上的非 CLS 态在能量上越发靠近平带能
量，其行为也越发像 CLS，即更加局域在 Lieb格点。其也导致了在 CLS能量附近 DOS
的累积，最终导致在非常强无序下依旧存在扩展态，即出现了一个发散的迁移率边。其
次，是靠近平带能量的小无序区域，出现“逆”Anderson 转变。我们也发现在较大无序
区域的临界指数与标准的三维 Anderson 模型的临界指数是一致的。
我们的研究结果对平带晶格中无序与平带的相互作用研究具有重要的意义，可能为

未来的信息存储器件提供新的思路，有利于推动量子存储器件设计相关领域的发展。
关键词：Anderson 局域化；平带；转移矩阵方法；能谱统计；有限大小标度理论
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Abstract

Wave localization in lattices refers to the absence of transport in discrete media, and
it has been intensively studied in the past decades. Most notably, this phenomenon is
induced by the presence of impurities and disorder potential in the lattice —i.e. giving
rise to the celebrated Anderson localization. However, wave localization may also emerge
in translationally invariant lattices, where destructive interference yields the vanish of
the group velocity in (at least) one of the Bloch bands，resulting in macroscopically
degenerate eigenstates localized within a finite number of lattice sites. These lattices
supporting dispersionless (or, flat) energy bands in the single-particle spectrum are called
flat bands lattices.

In this thesis, we study the impact of onsite disorder potential in 2D and 3D flat band
lattices. In particular, we mainly focus on the Lieb model and its extended versions, as
the Lieb lattice is simultaneously one of the simplest and one of the most experimentally
achievable flat band lattices.

First, we focus on the impact of uncorrelated disorder in 2D Lieb model and its
extension. Based on the Finite size scaling method, we find that states at the flat band and
dispersion band indeed have completely different localization properties, with the states
at the flat band exhibiting a 1D-like localization behavior. However, for disorder small
enough to be comparable to the hopping energy, all disorder still leads to localization.

Then, we focus on 3D Lieb model and its extensions with uncorrelated onsite disor-
der, where we outline the metal-insulator transition curve in the energy disorder phase
diagram. We found that the 3D Lieb model and its extended models have a lower critical
disorder strength compared to the simple cubic lattice, meaning that the Lieb model is
more localized. Moreover, we found that the critical exponent value is in agreement with
the exponent for the standard 3D Anderson transition.

Lastly, we consider a mix of order and disorder in the Lieb models such that the
compact localized states (CLS) are preserved. There are two surprising results. First,
about half of the non-CLS states on the dispersion band get pushed in energy close to
the energy of the CLS and become concentrated on the Lieb sites. This also leads to the
accumulation of density of states (DOS) near the CLS energy, eventually resulting in the
existence of extended states even under strong disorder, i.e., the emergence of a diverging
mobility edge. Second, near the flat band energy and under small disorder, an“inverse”
Anderson transition occurs. We also found that the critical exponent in the large disorder
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regime is consistent with that of the standard 3D Anderson model.
Our research results have significant implications for the study of the interaction

between disorder and flat bands in a lattice, and may provide new insights for future
information storage devices, which would be beneficial in advancing the field of quantum
storage device design
Key Words: Anderson localization; flat band; transfer matrix method; energy spectrum
statistic; finite size scaling method
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Chapter1 Introduction

1.1 Introduction to disorder system
1.1.1 Anderson localization

Since Anderson proposed the concept of disorder in 1958 [1], the disordered system
has attracted much attention of scientists. It is well known that the wave vector k can be
used to label the states in a perfect periodic solid system as the band theory, developed
by F.Blochm R.Peierls, and A.H. Wilson in 1930s. This outstanding theory is success-
fully in recognizing metals, insulators, and semiconductors, based on the Bragg reflection
in crystalline lattice. While, there are no perfect materials in real world, all of them
are appeared with imperfections, such as impurities and vacancies, which destroyed the
translation invariance of these system, and these systems are collectively called disorder
systems. After including disorder, the system lost periodicity, and the wave vector k is
not a good quantum number anymore. So we need new technical skills to explore the
properties of disorder system.

Assuming considering a model without electron-electron interactions, and the elec-
trons are only scattered by the random potential played by the disorder, this is known as
Anderson model. In the case of weak disorder, the wave-function is a plane wave in short
distance, while scattered in long distance by the disorder random potential. The distance
over which the plane wave moves freely before being scattered is called as the mean free
path. These multi-scattered waves, which extended to the whole system as the form

Ψk(r⃗) = uk(r⃗) exp(i⃗kr⃗) , (1.1)

where λ is localization length and the corresponding states Ψ(r⃗) are called localized states
as showed in Fig. 1.1. The transition from extended states to localized states driven by
disorder, where induced a metal-insulator transition(MIT) as localized the whole states, is
called Anderson transition. Let us consider a process that, the mean free path l is larger
than the electronic wavelength λF (inverse of kF ) as the disorder is weak initially, i.e.
l ≫ λF . In this stage, the electrons can be assumed scattered by individual potential, and
cause the diffusive propagation. The electrical conductivity can be expressed as the form
σ = e2D(E)ρ(E), where D(E) and ρ(E) are diffusive coefficient and density of states,
respectively. With increasing disorder, the mean free length becomes more and more
short, once it approach l ∼ λF for appropriate strong disorder, the properties changed
dramatically. Physically, there is a Lifshitz criterion, which claims that localization is
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CHAPTER1 INTRODUCTION

图 1.1: Extended(up) and localized(down) states.

expected when mean free path l is comparable to the wavelength λF for the strong
disorder.

At our real life, things look more complicate as we need to deal with finite size system
due to the maturity of technology, which enabling us to produce smaller structures, such
as submicron devices, i.e. mesoscopic system. It makes us have to consider relation of
system size L, and characteristic lengths, including mean free path l and localization
length λ, to research the localization properties of disorder system. For weak disorder
and a approximate large system, if inequalities l ≪ L ≪ λ satisfied, the electron can
diffuses through the whole system, where is called as diffusive regime. With increasing
system size, once L is larger than λ, then electron becomes localized and can not spread
out. On the contrary, if making the system shorter and shorter, and L ≪ l, then the
electrons can propagate through the whole system and scattered by only several random
potentials, where is known as ballistic regime.

In the diffusive regime, the conductivity equation σ = e2D(E)ρ(E) is fulfilled but
with a small correction caused by quantum interference effects, as the quantum inter-
ference effects play an important role in the diffusive regime. The conductance shows
an logarithmic decrease with increase of system size L, which is called weak localization
correction.

1.1.2 Density of states (DOS) and mobility edge

In order to make our arguments more vivid, let us take a simple example of Anderson
model. Considering a cubic lattice with constant hopping t for nearest neighbor, while
other hopping terms remain zeros. For the onsite potential energy ϵxyz, it follows uniform

2



博士学位论文
random distributed, .i.e in interval [−W/2,W/2], where W is called disorder strength.
In the absence of disorder W , it recovers to clean system with periodicity and we can
give the dispersion relation as

E = 2tcos(kx) + 2tcos(ky) + 2tcos(kz) , (1.2)

where wave vector k⃗ = kx⃗i + ky j⃗ + kzk⃗. The density of states(DOS) can be obtained
analytically by ρ(E) ∼ ∂k/∂E[39]. The energy spectrum ranges from −6t to 6t, with
symmetric distribution ρ(E) = ρ(−E).

In the presence of disorder, density of states becomes a good measure of energy
spectrum instead of dispersion relations, which is impossible to obtain because of the
lack of spatial translation symmetry, leading us having no idea to get the analytical
density of states anymore. Luckily, the numerical methods saved us and help us to get
density of states by counting the number of states in a unit energy interval over different
disorder configurations.

For appropriate disorder, extended and localized states coexist. Plenty of experience
tells us that the localized states dwell on tails of energy band while extended on band
center. There is a critical energy, Ec, separating extended states from localized states,
is called mobility edge [Mott 1967] as showed in Fig. 1.2. If the Fermi energy EF are
located at regimes EF < Ec, i.e. tails of band, where wavelength λF ∼ l, the localization
happens. Since the states around the Fermi energy are all localized, the system becomes
an insulator, which is called Anderson insulator, where density of states are non-zero but
with zero conductance. At the contrary, if EF > Ec, states around the Fermi energy are
extended, system can be regarded as a metal. By changing the Fermi energy from tails
to center of band, i.e. across the mobility edge, the system takes a phase transition from
insulator to metal.

图 1.2: The concept of mobility edge.

Actually, there are two mobility edges in a band, EcU and EcL, and they tell extended
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CHAPTER1 INTRODUCTION
states in center apart from localized states in upper and lower band tails, respectively.
Disorder can shift the mobility edge, as there are more extended states for weak disorder
and more localized states for strong disorder. The increase of disorder is accompanied by
the shift of mobility edge towards to center of band. When EcU = EcL appeared, the two
mobility edges coincide in the center of band. This corresponding special disorder Wc

is known as critical disorder, since there are no more extended states in spectrum once
any disorder W > Wc. Mobility edge, Ec, as a function of disorder W , .i.e. Ec(W ) gives
the critical line, as in Fig. 4.2 dividing extended and localized states in E −W phase
diagram.

Need to mention, many techniques and theory results for electron are also suitable
for phonons and spin waves with disorder.

1.1.3 Critical exponent and scaling relation

As the critical line separates the extended and localized states, .i.e metal and insu-
lator, we can use two different quantities to represent the properties of different regions
on both sides. The conductivity σ and localization length λ become the candidatures,
where conductivity σ characterizes the transport properties in the metallic regime, while
localization length λ characterizes the localization properties in the localized regime. As
the metal-insulator transition is expected to be second order phase transition [2–4], the
critical exponents emerge as the disorder and energy dependence of metallic conductivity
and localization length on both sides of MIT. In the metallic regime, the conductivity
σ > 0, while it is zero at the critical point Wc or Ec(at least for orthogonal system), which
can be formed as

σ ∼ (Wc −W )s (1.3)

or
σ ∼ (Ec − E)s (1.4)

around the transition region. On the contrary, the localization length around the transi-
tion region can be expressed as

λ ∼ (W −Wc)
−ν (1.5)

or
λ ∼ (E − Ec)

−ν , (1.6)

which is divergent at the exact critical point [2]. The relationship between s and ν is
determined by the Wegner scaling relation s = (d − 2)ν [5]. At our simulations, we can
extract this exponent ν via finite-size scaling(FSS) [2, 6].
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博士学位论文
1.1.4 Scaling theory of localization

Scaling theory of localization [7], which is an one-parameter scaling theory based
on the ideals of Thouless [8], assumes that for sufficiently large system, when increasing
system size, the conductance with rescaled size doesn’t depend on energy, disorder or
system size, but only on the conductance itself,

β(g) =
∂ln g
∂lnL . (1.7)

The large system size represents the size of system L is larger than the whole characteristic
lengths in system, and all the microscopic details can be regarded as irrelevant.

However, the form of the function β(g) can be only described qualitatively from two
limits. First, consider the conductance is infinity, then Ohm’s law is expected to apply,
.i.e

g ∼ σLd−2 , (1.8)

later we obtain β(g) = d− 2. Second, we consider the conductance as small as possible,
namely g ≪ 1, the expected exponential localization behavior gives the form as

g ∼ exp(−L/λ) , (1.9)

and thus β(g) ∼ ln g. Without loss of generality, if assuming β(g) is always a continuous
and monotonically increasing function. Then we can make a plot by interpolating between
two limits as showed in Fig. 1.3.

For d < 2, function β < 0 indicates g decreases with increasing L; for the system
with infinite size, it reaches to a localized regime and all states are localized, thus there
are no metal-insulator transition appeared. For d = 2, as it is a critical regime, it is
difficult to determine whether there is a phase transition. But it is generally believed
that no metal-insulator transition occurs, and that all states are localized. For the case
of d > 2, a fixed point β = 0 exist, which implying the conductance g is independent of
system size and remains a constant, gc; for initial conductance g = gc+δg, where β > 0, g
increases with L and reaches the metal regime; while for initial conductance g = gc − δg,
where β < 0, g decreases with L, and approaches the insulator regime. Thus, there is a
metal-insulator transition separated by critical point gc.

In conclusion, the scaling theory is a semiquantitative success based on the trade-off
that focus on some important feature on macroscopic scales, but discard the microscopic
details. This theory predicts that there are no metal-insulator transition in 1D and time-
reversal invariant 2D system, but appeared in higher dimension, such as 3D.
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图 1.3: The schematic diagram of one-parameter scaling hypothesis. The arrow is the direction
of flow with increasing system size.

1.1.5 Universality

In the topic of critical phenomena, the university is an inescapable concept. Under
plenty of experiments, we have the belief that the critical exponents remain constant
regardless the change of microscopic details of the Hamiltonian. Instead, what determine
the university class are dimension and symmetries of the system. Of course, some quanti-
ties, such as the precise value of critical disorder Wc or critical energy Ec, are dependent
on the microscopic details and thus are no-universal.

Within the early classification scheme corresponding to Wigner-Dyson classification
of random matrix theory(RMT) ensembles, three universality classes for Anderson tran-
sition, .i.e , orthogonal, unitary and symplectic are be defined. The scheme are mainly
considered two symmetries, namely the invariance of the Hamiltonian under time rever-
sal and spin rotations, details are showed in Table 1.1. Although it has been understood
that a complete set of random matrix theories includes, in addition to the three Wigner-
Dyson classes, three chiral ensembles and four Bogoliubov-de Gennes ensembles, and the
additional ensembles are characterized by one of the additional symmetries–chiral or the
particle-hole [3], other symmetries don’t play a big role in disorder system. We can simply
use these three categories as detailed in Table 1.1.

The verification of the universality of critical exponents, and the dependence of
symmetry and dimension is the main problem in disorder system referred to Anderson
localization.

6
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universality class TRS SRS H
orthogonal yes - real, symmetric

unitary no yes complex, self adjoint
symplectic yes no real, symplectic

表 1.1: Universality classes

1.1.6 The observation of Anderson localization in experiment

It is rather difficult to find a clean experimental system to observe the Anderson
transition unambiguously. Cold atomic matter waves are very attractive because they an
be directly observed, and most experimental imperfections as well as atom-atom interac-
tions can be precisely controlled within limits. The observation of Anderson localization
for matter waves. [9] has been realized by Juliette Billy et al in 2008 with cold atom
system. As shown in Fig. 1.4(a), the BEC is obtained by magnetic-optical traps, where
the details are in the caption. The wave packet begins to evolve after longitudinal trap
is switched off and then localizes, which is exhibited in Fig. 1.4(b). Fig. 1.4(c) shows the
density profiles in semi-log coordinates, the light red line represents that the initial wave
packet locates at origin, the dark red line is the data one second after release, where the
system has approached stationary regime, and the blue line is the exponential fits, which
shows localization properties.

All the results in experimental for Anderson localization are qualitative at present,
the quantitative results of quantum simulations are always a difficult problem.

1.2 Introduction to flat band and its applications

1.2.1 Flat band, CLS and generation of flat band

Flat band is the k-independent dispersion relation, and is a flat straight line in k−E
energy spectrum graph. The flat band is different from the normal parabolic and Dirac
linear dispersion relations as showed in Fig. 1.5.

The eigenstates corresponding to flatbands are typically spatially compact – i.e. they
span over a finite subsection of the lattice. Hence, they are called “Compact localized
state” (CLS). Examples of one-dimensional flat band networks and their correspondent
CLS can be seen in Fig. 1.6, where the CLS are highlighted with the black dots

Based on the tight-binding method, basically, there are two methods to generate a
lattice with flat band. One is through symmetry, and the other is through fine-tuning the
coupling. The original flat band models, dice lattice [11], followed by Lieb lattice [12], both

7
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图 1.4: Direct experimental observation of one-dimensional Anderson localization of an atomic
matter wave in a disorder potential. Observation of exponential localization. (a), A small
BEC(1.7× 104 atoms, we call it wave packet for convenience) is formed in a hybrid trap that is
the combination of a horizontal optical waveguide, offering a strong transverses confinement(in x-
y plane) that ensures an effectively one-dimensional dynamics, and a loose magnetic longitudinal
trap that makes the wave packet initially at the center. The disorder potential with amplitude
VR is created by a speckle pattern as shown in blue. (b), Once the longitudinal trap is switched
off, the wave packet evolves freely, diffuses and eventually freezes at long times in a characteristic
exponential shape. (c), The atomic density profiles, the light red line shows the initial result,
the dark red line shows the result one second after release, and the blue line is the fit result. In
the inset, it is the root-mean-square(rms) width of the profile versus time t, which shows the
stationary regime is reached after 0.5s. The figures are taken from paper [9].

图 1.5: Types of dispersive bands. (a) the normal parabolic dispersion relation, (b) the Dirac
type dispersion relation and (c) the flat band dispersion relation.

are with chiral symmetry. Mielke proposed the flat band models based on line graphs [13],

8
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图 1.6: 1D flat band lattices. Circles denote lattice sites, solid lines are hopping elements
tjj′ = 1 and dashed lines are hopping with tunable value t. Filled circles show the localization
of a compact localized state with identical wave amplitudes and alternating signs as indicated,
other lattice sites have strict zero amplitudes. The irreducible band structure is shown below
each lattice. (a) Cross-stitch, (b) diamond chain, (c) 1D pyrochlore, (d) 1D Lieb, (d) stub and
(f) sawtooth chain. (Figure is taken from Ref. [10])

and Tasaki put forward the “decorated” lattices [14], which are by fine-tuning coupling.

Later, CLS were used as the “generator” of flat band. According to the size of CLS,
U– the unit cell size CLS occupied, the flat bands have different type. For U = 1, the
flat band is protected with local symmetry [10], as it can be completely decoupled from
the rest of lattice by a local change of basis; while for U > 1, the flat band is generated
by fine-tuning coupling [15], rather than a local symmetry. However, as CLS-based con-
struction methods just works for one-dimensional lattices, a complete generalization to
higher dimension remains an open problem. The new methods need to be developed, such
as origami rules [16], repetition of oligomers [17], local symmertries [18], an self-similar
constructions [19, 20].

9
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1.2.2 Why flat bands are charming

The disappearance of group velocity ∇kE of flat band, .i.e quenched kinetic energy,
makes the potential prominent. Thus, it becomes a ideal platform to achieve the strong
correlated system. The flat band is sensitive to the presence of disorder and interaction,
and results in a nonzero dispersion.

As talked in previous part, the disorder can induce Anderson localization and result in
phase transitions. Besides disorder, the presence of flat band will also exert an influence
on localization properties, such as modifying the scaling of localization length in 1D
[21–23], and mobility edge [24], inverse Anderson transition [25,26] and disorder-induced
topological phase transitions [?]. The interaction of quantum particles in flat bands, which
inducing spontaneous symmetry breaking and resulting in a various strongly correlated
quantum phases [27–33] attracted lots of attention. What’s more, the incorporation of
topology and flat band is another interesting area [34, 35].

In a word, as firstly introduced to analytically study ferromagnetic ground states in
many-body systems [11,12], flat band models have since been used to study a plethora of
physical phenomena, such as fractional quantum Hall effect [36–38], spin liquids [39, 40],
ferromagnetism [13, 41–43], disorder-free many-body localization [44, 45], superfluidity
and superconductivity [46–52]. Hence, flat bands are indeed are charming to scientists.

1.2.3 The realization of flat band in experiments

With the mature of fabrication techniques, great progress has been made in the
realization of flat band. For the electronic flat bands, Abilio et al. observed the flat band
in superconducting wire networks [53]; Drost et al. [54] and Slot et al. [55], based on STM
to control atoms, achieved independently the flat band in Lieb lattice, followed by Li et.
al. [56], who observed the flat band in kagome lattice with multilayer silicene structure.
In the optical flat band field, flat band in kagome lattice [57] was obtained by Jo et al.,
and Lieb lattices [58,59] with flat band were also achieved. As for the photonic flat band,
photonic systems [60–63] with flat band were implemented based on the femtosecond
laser-writing technique; what’s more, the kagome [64] lattice and Lieb [65] lattice were
realized via terahertz spoof plasmons as well. The observation of flat band ground on the
optical induction technique in Lieb [66] lattice and kagome [67] lattice, was reported over
the same period.

10
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1.3 The reasons for choosing this subject

The success preparation of artificial setting, implies there are many previous theo-
retical works that can be tested in experiments and new theoretical works need to be
explored and explained. On the one hand, Lieb lattice, as its simple geometry structure
and abundant physical properties, has been achieved in many settings, including photonic
systems [60–62,65], optical cold atoms systems [58,59] and electronic systems [54,55]. On
the other hand, there are more lavish properties on 3D systems than 2D systems, and it’s
easy to generalize 2D Lieb lattice to 3D Lieb lattice. Thus, Lieb lattice is a ideal lattice
model to be considered.

The compact localized states(CLS), as the eigenstates of flat band in real space,
occupy one or several unit cells, which means these states can not be spread out as
they localized on these unit cells. However, the flat band consists of high-degenerated
energy levels, which have the same eigenenergy, hence their eigenstates are not unique.
A new state of linear combination of these eigenstates is also the eigenstate of the high-
degenerated flat-band eigenenergy. This new state can even occupy specific lattice points
throughout the whole lattice, hence it is counter-intuitive that all CLS are localized.

After introducing disorder in the CLS system, on the one hand, the disorder depresses
the transportation as the Anderson localization, on the other hand, the disorder destroys
the high-degenerated flat band, .i.e CLS, which can recover to delocalization. The idea
for our work comes from that if including small disorder, the CLS are largely retained, .i.e
the state occupied specific lattice points throughout the whole lattice is retained. Then
the natural question to ask is whether delocalization occurs in the 2D disorder system or
more novel properties appears in 3D disorder system. Based on this question, we carried
out our study showed in this section.

The Lieb model and its extensions, L2(n), n = 1, 2, 3, 4, are our experimental mod-
els. The disorder W are introduced by changing the potentials on cube and hube sites,
equivalently, and the hopping potentials t are set to 1 as the energy scale.
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Chapter2 Models and Methods

2.1 Models

2.1.1 The extended Lieb lattices Ld(n)

The 2D and 3D extended Lieb models can be considered as inserting atoms uniformly
spaced between two neighbor sites in square and cube lattices, respectively. Symbol
Ld(n) represents a d-dimensional model with n inserted atoms between two neighbor
sites of original lattice, .i.e, n = 2 is two-dimensional square lattice and n = 3 is three-
dimensional cube lattice, as showed in Fig. 2.1. For convenience, we call the original
atoms of square(cube) lattice square(cube) sites, the later-inserted atoms Lieb sites.

(a) (b) (c) (d)

图 2.1: (a-d) Schematic representation of Lieb and extended Lieb lattice Ld(n). The lightly
colored spheres highlight the situation in 2D while together with the fully colored spheres they
represent 3D lattices. Blue spheres denote the cube sites while red spheres denote the Lieb sites.
The dark lines between sites are guides to the eye and indicate the hopping profiles.

2.1.2 Anderson model based on the Lieb lattice L2(1) and it’s Wannier representation

To explore the effects of disorder, we adopt the Anderson model. The Anderson
model [1] is a simple one-electron model for such a disorder-driven MIT, neglecting spin-
orbit coupling, electron-electron interactions and the presence of magnetic field. The
Hamiltonian consists two competing terms, a random onsite potential term tending to
retain the particle in the energy minima and a kinetic energy term allowing hopping from
site to site. We start from writing the Hamiltonian of Anderson model based on the L2(1)

lattice, it gives as below,
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H =
∑
r⃗

εr⃗|r⃗⟩⟨r⃗| −
∑
r⃗ ̸=r⃗′

tr⃗r⃗′|r⃗⟩⟨r⃗′| , (2.1)

here, the set of |r⃗⟩ indicates the orthonormal Wannier states corresponding to electrons
located at sites r⃗ = (x, y) of the Lieb lattice L2(1) and εr⃗ is the onsite potential [68].
Normally, the Anderson disorder is achieved by introducing the εr⃗ with uniformly dis-
tributed potential in the interval [−W/2,W/2]. As usual, we set the hopping integrals
tr⃗,r⃗′ ≡ 1 for nearest-neighbor sites r⃗ and r⃗′ and tr⃗,r⃗′ ≡ 0 otherwise.

In the real space representation, we can write the Hamiltonian in the matrix form.
In the concrete, let’s take the L2(1) with M = 2 with the hard boundary condition to
elaborate. There are 3 atoms in a unit cell for L2(1), hence the system for M = 2 has
12(3× 22) atoms such that the hamiltonian is a 12× 12 matrix, and it can be expressed
as bellow,



ε1 1 1 0 0 0 0 0 0 0 0 0

1 ε2 0 1 0 0 0 0 0 0 0 0

1 0 ε3 0 0 0 1 0 0 0 0 0

0 1 0 ε4 1 1 0 0 0 0 0 0

0 0 0 1 ε5 0 0 0 0 0 0 0

0 0 0 1 0 ε6 0 0 0 1 0 0

0 0 1 0 0 0 ε7 1 1 0 0 0

0 0 0 0 0 0 1 ε8 0 1 0 0

0 0 0 0 0 0 1 0 ε9 0 0 0

0 0 0 0 0 1 0 1 0 ε10 1 1

0 0 0 0 0 0 0 0 0 1 ε11 0

0 0 0 0 0 0 0 0 0 1 0 ε12



, (2.2)

where onsite potentials εr⃗ ∈
[
−W

2
, W

2

]
uniformly. Via exact diagonalization, we obtain

12 eigenvalues and 12 corresponding eigenstates.

Basically, the methods invented to explore the characteristic of disorder system are
mainly based on analyzing eigenvalues and eigenstates, such as the statistic of spectrum
including P (s) and improved versions, .i.e, the statistics of spectral gap ratio P (r), P (|z|),
and the inverse participation numbers(IPN) and so on, which we will introduce in detail
later.
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2.2 The CLS of Ld(n)

In order to have a deeper insight into CLS for L2(n). Firstly, we consider L2(1) and
L2(2) with small size, and calculate the eigenvalues and eigenstates via exact diagonal-
ization method. As the CLS is a concept in block material, we infer the condition in the
thermodynamic limits. Next, from L2(1) and L2(2), we get the generalization of L2(n).
Last, we provide a new scheme to construct the CLS for L2(n).

2.2.1 The CLS of L2(1)

We start from L2(1) with finite Lieb plaquettes, and focus on the distributions of
their E = 0 eigenvalues and eigenstates. Later, we can deduce that with infinite Lieb
plaquettes, .i.e, in the thermodynamic limit, which includes the CLS.

The eigenenergies and eigenstates for L2(1) with finite size plaquettes

First, we start from L2(1) with 1 Lieb plaquette as shown in Fig. 2.2, based on the
tight-binding method, the Hamiltonian gives as,

H =
∑
r⃗

εr⃗|r⃗⟩⟨r⃗| −
∑
r⃗ ̸=r⃗′

tr⃗r⃗′|r⃗⟩⟨r⃗′| . (2.3)

Here, the set of |r⃗⟩ indicates the orthonormal Wannier states corresponding to electrons
located at sites r⃗ = (x, y) of the Lieb lattice L2(1), εr⃗ is the onsite potential and tr⃗,r⃗′ is the
hopping integrals. Here for convenience we set the onsite potential to zero and hopping
term to 1 for nearest-neighbor sites while zero otherwise.

图 2.2: The lattice diagram of L2(1) with 1 Lieb plaquette and the distribution of amplitudes
of eigenstates for E = 0.
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The matrix form of Hamiltonian in the Wannier representation is given by

0 1 1 (1) 0 (1) 0 0

1 0 0 1 0 0 0 0

1 0 0 0 0 1 0 0

(1) 1 0 0 1 0 0 (1)

0 0 0 1 0 0 0 1

(1) 0 1 0 0 0 1 (1)

0 0 0 0 0 1 0 1

0 0 0 (1) 1 (1) 1 0


, (2.4)

the numbers 1 in parentheses () present the periodic condition, and they are zero for
hard boundary condition. Here, we mainly consider with hard boundary condition. After
exact diagonalization 8 eigenenergies and eigenstates are obtained. We find there is
one eigenenergy of E = 0 with eigenstate (0, 1,−1, 0,−1, 0, 1, 0)⊤ and we plot these
amplitudes in Fig. 2.2. Apparently, the amplitudes on square sites are all zero, originating
from the destructive interference of neighbor Lieb sites. By the way, there is an accidental
eigenenergy of E = 0 with eigenstate (1, 0, 0,−1, 0,−1, 0, 1)⊤, whose amplitudes are all
located at square sites. However the value of this accidental eigenenergy will shift while
holding the eigenstate constant if changing the hard boundary condition to periodic
condition.

图 2.3: The lattice diagram of L2(1) with 4 Lieb plaquettes. (a-c) are three distributions of
amplitudes of eigenstates for E = 0. For intuition, we just show the non-zero amplitudes.

Further, we go to the L2(1) with 4 Lieb plaquettes as shown in Fig. 2.3. Via the
same method, we can obtain 21 eigenenergies and eigenstates. There are 4 degenerated
eigenenergies E = 0, and three distributions of amplitudes of their eigenstates are plotted
in Fig. 2.3(a-c).
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Actually, as the eigenenergy E = 0 is degenerate, hence its eigenstate is not unique.

For instance, if a eigenvalue λ1 with eigenstate ψ1 satisfying Hψ1 = λ1ψ1, and another
eigenvalue λ2 with eigenstate ψ2 satisfying Hψ2 = λ2ψ2. When λ1 = λ2 = λ, we call
eigenvalue λ degenerate. The new vector ψ = aψ1 + bψ2 is also the eigenstate of H with
the same eigenvalue λ, as

Hψ = H(aψ1+bψ2) = aHψ1+bHψ2 = aλ1ψ1+bλ2ψ2 = aλψ1+bλψ2 = λ(aψ1+bψ2) = λψ.

(2.5)
Apparently, the third eigenstate as shown in Fig. 2.3(c) can be seen as the super-

position as the first and the second eigenstates showed in Fig. 2.3(a) and Fig. 2.3(b),
respectively. Nevertheless, we can extract the irreducible eigenstate, which just occupy-
ing one 2D Lieb plaquette of the lattice as shown in Fig. 2.3(a) and 2.3(b). There are
four small Lieb plaquettes in Fig. 2.3, namely top left, top right, bottom left and bottom
right, and there are exactly four degenerate eigenvalues E = 0.

Interesting, similar to L2(1) with 1 plaquette, there is also an accidental eigenenergy
of E = 0 , whose eigenstate occupies only the square sites contrary to previous 4 degen-
erate eigenstates, but this accidental eigenenergy of E = 0 is destroyed by changing from
hard boundary condition to periodic boundary condition.

图 2.4: The lattice diagram of L2(1) with 9 Lieb plaquettes. (a-b) are three distributions of
amplitudes of eigenstates for E = 0. For intuition, we just show the non-zero amplitudes.

In order to get more information, we calculate the L2(1) with 9 Lieb plaquettes.
Indeed, we obtain 9 degenerate eigenvalues E = 0 whose amplitudes of eigenstates are
only located on Lieb sites as shown in Fig. 2.4. Similarly, there is also an accidental
eigenvalue E = 0 with amplitude only occupying cube sites. But it will be ruined after
changing from hard boundary condition to periodic condition as well.
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The deduction for L2(1) with infinite size plaquettes and its CLS

From the above results, we can infer that there are infinite number of eigenenergies
E = 0 for L2(1) in the thermodynamic limit. Based on the band theory, these highly-
degenerated eigenenergies forms an special energy band which is called flat band as it’s a
horizontal line in the E − k space. Their corresponding eigenstates are not fixed as they
are degenerate, but we can easily extract their irreducible eigenstates which occupying
only the Lieb sites within one Lieb plaquette. These eigenstates corresponding highly-
degenerated energy in the real space representation are known as compact localized states,
namely CLS.

2.2.2 The CLS of L2(2)

Similar with L2(1), we repeat previous steps and take the eigenvalues and eigen-
states for L2(2) with finite size plaquettes. Later, we can deduce that with infinite Lieb
plaquettes, .i.e, in the thermodynamic limit, which includes the CLS.

The eigenenergies and eigenstates for L2(2) with finite size plaquettes

Firstly, we turn into L2(2) lattice with 1 plaquette, we obtain one eigenenergy E =

−1 and another E = +1, and their amplitudes of eigenstates are plotted in Fig. 2.5(a)
and Fig. 2.5(b), respectively. We find the amplitudes of eigenstates are all located at the
Lieb sites while are zero at cube sites. What’s more, there is an accidental eigenvalue
E = 1 and E = −1 but will ruined after changing from hard boundary condition to
periodic boundary condition as well.

图 2.5: The lattice diagram of L2(2) with 1 Lieb plaquettes. (a) and (b) are two distributions
of amplitudes of eigenstates for E = −1 and E = 1, respectively. For intuition, we just show
the non-zero amplitudes.
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Further, we increase the plaquettes up to 4 for L2(2). As expected, we get 4 of the

identical eigenenergy both for E = −1 and E = 1, and the amplitudes distributions of
one of 4 eigenstates for both are exhibited in Fig. 2.6 (a) and Fig. 2.6 (b), respectively.
However, there is no accidental eigenvalues E = −1 or E = 1 as L2(2) with one plaquette.

图 2.6: The lattice diagram of L2(2) with 4 Lieb plaquettes. (a) and (b) are two distributions
of amplitudes of eigenstates for E = −1 and E = 1, respectively. For intuition, we just show
the non-zero amplitudes.

The deduction for L2(2) with infinite number of plaquettes and its CLS

We guess there are an infinite number of E = 1, as well as E = −1 for L2(2) in
the thermodynamic limit, and they form two flat bands at E = 1 and E = −1 in the
E − k space. Their irreducible eigenstates are just located at the Lieb sites within one
plaquette. These eigenstates corresponding to the highly degenerated energy E = 1 and
E = −1 in the representation of real space are called compact localized states(CLS).

2.2.3 The CLS of L2(n)

Apparently, for L2(n), there are n degenerate flat bands. Thus, for any n, there
exist n-families of macroscopically compactly localized states (CLS), all of which have
strictly non-zero amplitude in the Lieb sites enclosed within each 2D square plaquette of
the lattice – as shown in Fig. 2.7. As we just consider the n up to 4 in our paper, we just
show the four cases.

Since the above method is introduced by direct diagonalization, which is hard to go
ahead for large scale systems. Based on the previous results, now we introduce a new
scheme to construct the CLS for L2(n) with any n.
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(a) E = 0 (b) E = ±1

(c) E = 0,±
√
2 (d) E = ± 1

2

(
1±

√
5
)

图 2.7: (a-d) Plaquettes with their CLS indicated by their (unnormalized) wave function am-
plitudes |r⃗⟩. In (a-d) the flat bands are (a) E = 0 for n = 1 and (b) E = ±1 for n = 2. In (c),
for n = 3 the three flat bands are E = β = 0,±

√
2, with ξ = +1 for β = ±

√
2 and ξ = −1 for

β = 0. In (d), for n = 4 the four flat bands are E = ±δ, with δ = 1
2

(
1±

√
5
)
.

As the irreducible CLS for L2(n) have strictly non-zero amplitude in the Lieb sites
only within a 2D plaquette of the lattice. Thus, it is instructive to focus on a 2D plaquette
enclosed within four neighbouring cube sites – highlighted in green color in Fig. 2.8(a),
left side. We consider the 1D chain formed by the n Lieb sites in one of the four edges
of the plaquette. We then denote by vj = (vj1, . . . , v

j
n) one of the n eigenstates of this 1D

chain with eigenenergy λj – as sketched in Fig. 2.8(a).
A CLS of L2(n) is then constructed by looping vj around the plaquette as shown in

Fig. 2.8(b). Proceeding clockwise from top-left, the construction works as follows:
– in Step 1 we consider vj along the upper edge. Hence, the amplitudes on the Lieb sites
next to the top-left and top-right cube sites are vj1 and vjn, respectively;
– in Step 2 we ensure destructive interference in the top-right cube site of the plaquette

20



博士学位论文
(colored in yellow and indicated with a thunder symbol) by setting −vjn in the top Lieb
site of the right edge of the plaquette. The remaining n− 1 Lieb sites are then filled by
−vji with the index i running in a downward direction. The amplitude of the bottom
Lieb site of this chain thus is −vj1;
– in Step 3 we ensure destructive interference in the bottom-right cube site of the pla-
quette (highlighted alike Step 2) by setting vj1 in the right Lieb site of the bottom edge
of the plaquette. The remaining n − 1 Lieb sites are then filled by vji with the index i

running in a leftward direction. The amplitude of the most-left Lieb site of this chain
thus is vjn;
– in Step 4 we ensure destructive interference in the highlighted bottom-left cube site of
the plaquette by setting −vjn in the bottom Lieb site of the left edge of the plaquette. The
remaining n − 1 Lieb sites are then filled by −vji with the index i running in a upward
direction. The amplitude of the top Lieb site of this chain thus is −vj1, which ensures
destructive interference in the highlighted top-left cube site.

This iterative procedure yields a compact eigenstate of energy λj. Since there exist
n eigenstate {vi}ni=1 with energies λi ̸= λj for i ̸= j for the 1D chain of n Lieb sites, this
construction can be done n times – generating n families of CLS for the lattice L2(n),
and therefore n flat bands {λi}ni=1.

(a) (b)

图 2.8: (a) Section of the lattice L2(n) around a 2D plaquette (green color). We consider the
1D chain formed by the n Lieb sites sandwiched between two cube sites along one edge of the
plaquette, and highlight one of the eigenstate vj of eigenenergy λj . (b) Four steps construction
of a CLS of L2(n) with energy λj by looping vj around the 2D plaquette. In each step, we
highlight in yellow and with the thunder symbol the cube site where the destructive interference
is enforced.
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2.2.4 The CLS of L3(n)

In order to figure out the CLS of L3(n), firstly we take L3(1) with finite cells following
the same steps as for L2(n). After computing the eigenenergies and eigenstates with exact
diagonalization, we can analyse these eigenstates and eigenstates of L3(1). Later, we can
extrapolate to L3(1) in the thermodynamic limits and further to L3(n).

The eigenenergies and eigenstates for L3(1) and L3(2) with finite size cells

We start from L3(1) with 1 cell as shown in Fig. 2.9(a).

图 2.9: (a) Schematic of Lieb model L3(1) with 1 cell, the upper layer with light red/blue atoms
represents one 2D plaquette. (b) One plaquette from (a), is shown with the distribution of
amplitudes for one eigenstate E = 0, and the amplitudes for all the rest atoms in (a) are zeros.

We obtain 5 eigenenergies E = 0 with hard boundary condition. We plot the dis-
tributions of amplitudes of one of these 5 eigenvectors in Fig. 2.9(b). We just show the
upper layer cut from Fig. 2.10(a) in Fig. 2.9(b), since the amplitudes for all the rest atoms
in Fig. 2.10(a) are zeros. Surprisingly, we find this distribution in Fig. 2.10(b) is exactly
the same as L2(1). Of course, the upper layer is not special, six sides are equivalent, .i.e,
we find these 5 eigenstates are located at any one 2D plaquette of Fig. 2.9(a) or their
superpositions.

Later, we go to L3(1) with 8 cubes as displayed in Fig. 2.10(a), we get 28 eigenenergies
E = 0 with hard boundary condition. The Fig. 2.10(b) and (c) are obtained from Fig.
2.10(a) as the same scheme as obtaining Fig. 2.9(b) from Fig. 2.9(a). Two of these
eigenvectors are plot in Fig. 2.10(b) and (c), which is exactly the same as L2(1) as well.
Similarly, there are 9 sides in Fig. 2.10(a) that are the same as Fig. 2.10(b). we can
easily generalize that these 28 eigenenergies E = 0 occupy any one 2D plaquette or their
superpositions of these 9 sides of Fig. 2.10(a).
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图 2.10: (a) Schematic of Lieb model L3(1) with 8 cells. (b) and (c) are cuts from the upper layer
of (a), which consisting 4 2D plaquettes. The distributions of amplitudes for two eigenstates
E = 0 are shown in (b) and (c), and the amplitudes for all rest atoms with no numbers are
zeros.

Then, we calculate the L3(2) with 1 cube. We show two eigenstates for E = −1

and E = 1 at (b) and (c) respectively, since the amplitudes of these two eigenstates just
occupy on one plaquette, leaving all the rest atoms with zero amplitudes. Similarly, the
six sides equivalent. We found Fig. 2.11(b) and (c) are exactly the same as Fig. 2.5(a)
and (b).

The deduction for L3(n) and its CLS

Hence, up to here, we include that it’s easily to extract the CLS for L3(n) based
on the L2(n) – just pick one plaquette from L3(n), which transfer L3(n) to L2(n), and
repeat the steps as detailed in Fig. 2.8. By the way, there is a difference between L3(n)

and L2(n). For any n, there are n double-degenerate flat bands for L3(n) but only n one-
degenerate flat bands for L2(n). Thus, for any n, there exist 2n-families of macroscopically
degenerate compactly localized states (CLS), all of which have strictly non-zero amplitude
in the Lieb sites enclosed within each 2D square plaquette of the lattice.

Since there are 3n+1 atoms in a unit cell for L3(n), it posses a total of 3n+1 Bloch
bands. In a cube cut-off of the lattice with N unit-cells per side each band posses a total
of N3 states. Such cube version of L3(n) hence support 3N3 CLS – i.e. as many as the
number of 2D plaquettes in the cube. However, it easily follows that N3 of these CLS
are linear combination of the remaining compact states, yielding an irreducible number
of 2N3 CLS at energy λj. These states consequently form two flat bands for the L3(n)

at E = λj – or, equivalently, a double-counted flat band at E = λj.
Since there exist n eigenstate {vi}ni=1 with energies λi ̸= λj for i ̸= j for the 1D chain
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图 2.11: (a) Schematic of Lieb model L3(2) with 1 cell. (b) and (c) are cuts from the upper
layer of (a), shown with the distribution of amplitudes for eigenstates E = −1 and E = 1, and
the amplitudes for all the rest atoms with no numbers are zeros.

of n Lieb sites, this construction can be done n times – generating n families of CLS for the
lattice L3(n), and therefore 2n flat bands {λi}ni=1 – or, equivalently, n double-degenerate
flat bands. Hence, Fig. 2.7 shows the CLS for L3(n) as well.

2.3 Transfer matrix method (TMM)
Transfer matrix method (TMM), as a numerical iterative technique to calculate lo-

calization length of disorder system, has been employed widely. This method have two
benefits, first, it is not necessary to calculate wave functions, which could evade large size
calculations; second, the accuracy is controlled and chosen before starting a calculation.
The method considers electrons transferring, according to the single-particle, stationary
Schrödinger equation of the system, along the quasi-1D bar(strip) with fixed transver-
sal square(line) cross sections of M2(M) unit-cells via highly optimized matrix-vector
calculations. One iteratively obtains estimates of the self-averaged localization length
λM(E,W ), with the ΛM = λM(E,W )/M being the dimensionless, reduced localization
length, where we can regard as the localization length in the unit of width M . The result
is converging, if the error is within our tolerance after enough matrix-vector calculations,
where enough means the number of electron transfers M̃ , .i.e, the number of matrix-vector
calculations in the longitudinal direction, is typically M̃ > 107–109 such that M̃ ≫ M

along the bar(strip) [69, 70]. To make the explanation more concrete, we take the model
L2(1) as a example [68]. Starting point is the stationary Schröding equation HΨ = EΨ

in the wannier representation, where the Hamiltonian H is expressed as Equation 2.3. If
we label the atom A, B and C in the dotted square (x, y), (x − 1, y) and (x, y − 1) as
showed in Fig. 2.12, respectively. The wave function amplitude in the atoms A, B and
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图 2.12: Schematic of Lieb model L2(1). The atoms A, B and C labeled with coordinates in
dotted square is a unit cell, the black lines are the hopping between neighbor atoms.

C follows the equations as below,

EψA
x,y = εx,yψ

A
x,y − tψB

x−1,y − ψB
x+1,y − tψC

x,y−1 − tψC
x,y+1 , (2.6)

EψB
x,y = εx,yψ

B
x,y − tψA

x−1,y − tψA
x+1,y , (2.7)

EψC
x,y = εx,yψ

C
x,y − tψA

x,y−1 − tψA
x,y+1 , (2.8)

where the onsite potential energy εx,y follows random and uniform distribution
[
−W

2
, W

2

]
,

t is the hopping strength, and E is the energy.
By replacing ψC with ψA, the equation 2.8 can be written as ψC

x,y = (−tψA
x,y−1 −

tψA
x,y+1)/(E − εx,y), and insetting this ψC

x,y into equation 2.6, we obtain

ψB
x+1,y =(

εx,y − E

t
− t

εx,y−1 − E
− t

εx,y+1 − E
)ψA

x,y −
t

εx,y−1 − E
ψA
x,y−2 −

t

εx,y+1 − E
ψA
x,y+2

− ψB
x−1,y .

(2.9)
Via writing it in the form of a matrix,

ΨB
x+1,y

ΨA
x,y

 =


εx,y−E

t
− ( t

εx,y−1−E
+ t

εx,y+1−E
)− Π2(

t
εx,y−1−E

+ t
εx,y+1−E

) − 1

1 0




ΨA
x,y

ΨB
x−1,y

 ,

(2.10)
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where the Π2 the hopping connection to neighboring A sites in the y-direction.

Then, by summing over y, .i.e for a special slice(a fix x), putting all amplitudes of A
atoms in the matrix form, marked as ψA

x , we obtain the generalization of matrix equation
2.10, with TA→B labeling the transfer of wave vector amplitudes from sites A to sites B
in the x-direction as below

ψB
x+1

ψA
x

 =TA→B


ψA
x

ψB
x−1



=


(

εx,y−E

t
− t

εx,y−1−E
− t

εx,y+1−E

)
1M − ( ty

εx,y−1−E
+

t†y
εx,y+1−E

) − 1M

1M 0M




ψA
x

ψB
x−1

 ,

(2.11)
where 1M and 0M are the M ×M identity and zero matrices, and ty is a M ×M matrix
as the form

ty = t



0 1 0 · · · 0 0

0 0 1 · · · 0 0
... . . . ...
0 0 0 · · · 1 0

0 0 0 · · · 0 1

(1) 0 0 · · · 0 0


, (2.12)

and t†y is the complex conjugate form of ty. Hence the ty and t†y are the generalization
of Π2 and denote the connections to neighbouring A sites in y-direction as well. The
(1) in the bottom left of matrix ty represents the periodic boundary condition, and hard
boundary condition if it’s zero. In our derivation, to make sure that the transfter matrix
has the form of 2M × 2M size, the C sites have been effectively renormalized away
into effective onsite energies and changed vertical hopping terms. The term εx,y−E

t
1M ≡

diag
(

εx,1−E

t
, εx,2−E

t
, . . . ,

εx,M−E

t

)
in the upper left of equation 2.11.

Following the same steps, the equation 2.7 can be written as follow,
ΨA

x+1

ΨB
x

 = TB→A


ΨB

x

ΨA
x−1

 =


(

εx,y−E

t

)
1M −1M

1M 0M




ΨB
x

ΨA
x−1

 . (2.13)

In short, The TMM for L2(1) can be expressed as follow. First, considering a quasi-
1D strip of length M̃ ≫M as shown in Fig. 2.12, the propagation direction is along the x
direction, where M and M̃ are the numbers of unit cell in y and x direction. Second, the
transfer matrix process contains two different transfer matrices, TAB and TBA along the
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x direction, .i.e, multiply these matrices TABTBATAB . . . TBATAB with an initial complete
state ΨA

x (1) = (1, 0, . . . , 0), ΨA
x (2) = (0, 1, . . . , 0), …, ΨA

x (M) = (0, 0, . . . , 1). Third, due
to the numerical instabilities of transfer matrix method, which will lost the information
of γmin, we need reorthogonalize the M states at least after every 10th multiplication
via Gram-Schmidt method [71], obtain the Lyapunov exponents γi, i = 1, . . .M and
study their accumulated changes in variance until we reach a desired accuracy for the
smallest γmin, and then the localization length λ is obtained based on the λ(M,E,W ) =

1/γmin [2, 72–74] for a given energy E and disorder strength W . Last, since the reduced
localization length ΛM ≡ λ/M will be scaled in our finite size scaling, we need talk about
the standard error of ΛM , mark as ∆(ΛM),

∆(ΛM) = ∆(
λ

M
) =

1

M
∆λ =

1

M
∆

1

γmin

=
1

M

1

γ2min

∆γmin . (2.14)

For other extended L2(n) and all L3(n), as the basic idea is the same as L2(1), we
will not discuss in detail to avoid repeating. Please refer the paper of Mao [68, 69] for
details.

2.4 Spectral statistic methods
2.4.1 Exact diagonalization and sparse matrix diagonalization methods

We firstly get the eigenenergy spectrum of disorder system via exact diagonalization
method. However, the limit of computing source constrains us only to deal with small
system size with exact diagonalization method. Normally for a system with N particles,
the Harmiltonian matrix is a N ×N matrix, and the exact diagonalization method gives
us a spectrum with N eigenvalues and eigenstates. There is a routine called Jadamilu,
who trades off the number of eigenvalues available and the calculable system size. This
routine just focus on a given target value and obtain the closed eigenvalues of a given
quantity in order to reach higher system size at the same machine condition. For instance,
if we set the target energy and the number of eigenvalues to be calculated as Et and n,
where n≪ N , then the routine will return n eigenvalues closest to Et and the calculable
system size N ′ is much larger than N in the same machine condition. More detials can
refere this article [75].

2.4.2 Spectral gap ratio statistic

Based on the random matrix theory (RMT), the energy level statistics(ELS) has
been confirmed as a powerful tool to characterize the metal-insulator transition[3,31,50].
However, the unfolding procedure [76, 77] has to be considered in the ELS.
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In 2007, a new statistic method, with the advantage of getting rid of unfolding as

the independence of the local density of states, has been proposed by Oganesyan and
Huse [78]. Considering a ascending energy spectrum {Ei}, the adjacent gap ratio is
defined as

ri = min(si, si+1)/max(si, si+1) (2.15)

with si = Ei − Ei−1. The r-values follow distribution P (r) of the Gaussian orthogonal
matrix ensemble(GOE) in the extended regime, while obey Poisson distribution in the
localized regime as showed in Fig. 2.13. For the GOE distribution, the numerical mean
value ⟨r⟩ =

∫ 1

0
rP (r)dr = 0.5295 [78]; the analytical surmise gives ⟨r⟩Sur = 4 − 2

√
3 ≈

0.53590 [79]. For the Poisson distribution, the mean value ⟨r⟩Poi = 2 ln 2−1 ≈ 0.386. The
metal-insulator transition mapping to r-statistic becomes the rapid change of the mean
value ⟨r⟩ from 0.5295 to 0.386. However, the shift is smooth in the actual calculation due
to the finite size effect, and it trends to a vertical line as system size increase. As for the
standard error of < r >, it’s given by ∆(< r >) =

√
([⟨r⟩2]− [⟨r⟩]2)/(R− 1), where [ ]

denotes the average over R disorder potential realization, and ⟨⟩ represents the average
within a given potential realization [78].

A more recent measure introduced in Refs. [80,81] by defining a extended gap ratio

|zi| = |Ei − ENN |/|Ei − ENNN | , (2.16)

with ENN and ENNN the nearest and the second-nearest eigenenergies to Ei, respectively.
The distributions of |z| and mean values ⟨|z|⟩ for extended and localized states are also
shown in Fig. 2.13. The change of mean value ⟨|z|⟩ from ⟨|z|⟩ext = 0.5687(1) to ⟨|z|⟩loc =

0.5000(1) corresponds to the metal-insulator transition, where these values have been
computed from 1000 independent random realization of 20000× 20000 matrices for GOE
and 1000 realization of random diagonals with 20000 entries in our paper [82], respectively.
The calculations also yield ⟨r⟩GOE = 0.5307(1) which is in excellent agreement with the
best fit value obtained by Atas et al. [79] for ⟨r⟩Sur.

2.4.3 The participation number P and inverse participation Ratio(IPR)

The r-statistic and z-statistic introduced above are the spectral statistic methods.
Next, we present a measurement method based on the eigenstates. Starting from the
Schröding equation

HΨi = EiΨi , (2.17)

where Ei and Ψi are the eigenvalue and eigenstate. Expanding the eigenstate Ψi based
on Wannier basis |j⟩ as below,

Ψi =
∑
j

ψ
(i)
j |j⟩ , (2.18)

28



博士学位论文

图 2.13: Distributions of the energy level ratios r (dark and light blue) and |z| (dark and light
red) for a d = 3 Lieb model with 443 sites (Liu et al., 2020) and averaged over ∼ 8× 106 ratios
for each curve. Darker colors denote slightly larger disorders. The black dashed and solid lines
denote the exact PPoisson(r) and a surmise for PGOE(r). No such predictions are yet known for
P (|z|) (Luo et al., 2021). The vertical dashed/solid lines are the corresponding mean values,
< r > for exact PPoisson(r) (black dashed), < r > for a surmise of PGOE(r) (black solid), < r >

for numerical results (dark/light blue) and < |z| > for numerical results (dark/light red). The
figure is quoted from the literature [83].

where the ψ(i)
j is the amplitude of eigenstate Ψi projected on site j. By introducing a

quantity, namely participation number P , the inverse participation ratio(IPR) [84] is be
defined as

IPR = 1/P (Ei) =
∑
j

|ψ(i)
j |4 , (2.19)

and we can distinguish the extended states from localized states in term of the value IPR
or P . First, let us consider the P as the measurement. For the extended states, as the
states spread through the whole system(assuming system size is N), the probability to
find state Ψi in lattice position j is |ψ(i)

j |2 ∼ 1
N

, the value P gives

1/P (Ei) =
∑
j

|ψ(i)
j |4 =

∑
j

(
1

N
)2 =

N

N2
=

1

N
, (2.20)

.i.e P (Ei) ∼ N for the extended state. For localized states, the |ψj|2 is a finite number
(between(0,1]) in the localized regime (assuming the size of localized regime is M , with
0 < M ≪ N), while is zero outside the localized regime. Thus, we can get P (Ei) ∼ M

for the localized state. Intuitively, the participation number P is the number of positions

29



CHAPTER2 MODELS AND METHODS
the state can occupied; it is N for extended state as it can occupy the whole system while
finite number M for localized state as it localized in a small regime. Specially for M = 1,
the state is localized at an isolated point.

In practice, the IPR is a good measurement to distinguish localized states from
extended states for a large enough system, as IPR ∼ 0 for extended states while 0 <

IPR ≤ 1 for localized states.

2.5 Numerical scaling analysis
2.5.1 The scaling before 1999

According to the one-parameter scaling theory detailed in Sec. 1.1.4, the critical
behavior can be described by a divergent correlation length of infinite system

ξ∞(W ) ∼ |W −Wc|−ν , (2.21)

where Wc and ν are the critical disorder and critical exponent, respectively. The presence
of universality of critical exponent is a solid foundation for single parameter scaling. In
order to test the validity of one-parameter scaling theory, the numerical verification of
critical exponent is the main work of the theory of Anderson localization.

Phase transitions occur only in the thermodynamic limits, while only finite system
size can be obtained in our actual simulation. In order to resolve this contradiction, we
have to employ the scaling laws

X(W ′, bL) = F (X(W ′, L), b) , (2.22)

where X denotes the finite-size data and is a dimensionless vector, b is the scale factor and
W ′ is the composite parameter, which containing disorder W and energy E. Via making
a approximation, namely assuming the behavior of X under the changes of length scale
L′ → bL depends on X alone, and not on L or W ′. Then the equation (2.22) can be
written as the form below,

d lnX
d lnL = χ(X) , (2.23)

after integrating equation 2.23 we get

X(L,W ′) = f(L/ξ∞(W ′)) , (2.24)

where the ξ∞(W ′) is the correlated length of infinite system, and dependent only on the
W ′ but not on L. All data with different size L can be scaled on the scaling function f

through being scaled by ξ∞(W ′).
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In the numerical simulation of transfer matrix method, we take the strip/bar width

M as the system size L, W instead of W ′ for convenience, and the reduced localization
length Λ(M,W ) as X(L,W ′), .i.e

X(L,W ′) = Λ(M,W ) = ΛM(W ) = λM(W )/M , (2.25)

where λM is the localization length. Hence, the scaling function of reduced localization
length ΛM can be written as below,

ΛM(W ) = f(M/ξ∞(W )) . (2.26)

As we calculated the ΛM with TMM, what we need is to perform the procedure based
on a least squares method introduced in ref. [70] to fit parameter ξ∞(W ) in equation
2.26. In principle, we can fit the data with obtained ξ∞(W ) to extract critical exponent ν
according to equation 2.21. However, the presence of the round error of the singularity in
ξ∞(W ) at critical point seemingly results in systematic errors, which implies it can only
give a low precision result of ν.

Of course, we can also avoid to fit the correlation function, and turn to fit the data Λ

directly. If we expand the function f(x) and keep the first two terms, f(x) = f(0)+Cxα,
then replace x by M/ξ∞ ∼ M |W −Wc|ν in terms of Eq. 2.21. We obtain f(M/ξ∞) =

f(Wc)+CMα|W −Wc|αν = f(Wc)+CM 1/ν |W −Wc|, with α = 1/ν. Similar, expanding
Eq. 2.26 in the critical point Wc and keep linear terms,

Λ(M,W ) = Λc + A(W −Wc)M
1/ν , (2.27)

where Λc = Λ(W = Wc) doesn’t depend on the system size M . The critical disorder
Wc and critical exponent ν can be estimated by fitting data according to this equation.
However, as only the linear terms are considered, it restricts the data to a small range of
critical disorder Wc.

With the improvement of computing performance, the data with larger system size
can be obtained, and showed a systematic shift of the crossing point [85], which hadn’t
been presented before as the low precision. The problem made the one-parameter scaling
in trouble. In actual, the exponent ν in Eq. 2.21 contains two groups, namely relevant
and irrelevant in terms of the v < 0 or v > 0 [2], which corresponding to the direction
of flow is away from the fixed point or towards it in renormalization group space. The
variables in irrelevant part are dependent on system size M , and play a import role in
finite system; they determine how Λ depends on various microscopic details of models,
such as correlation length, the distribution of disorder, etc. The one-parameter scaling
assumption requires the irrelevant variables η to manifest as the form

η(M) ∼M−y , (2.28)
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which can be ignored in the thermodynamic limit of M → ∞, and y is the irrelevant
exponent.

In 1999, Slevin and Ohtsuki proposed a method [6] based on the ideal to solve this
problem, and this method so far has been widely adopted. In the next section, we will
focus on this approach.

2.5.2 Finite size scaling method

In their work, the main improvements are the inclusion of two kinds of corrections to
scaling, namely irrelevant scaling variable and nonlinearities of the disorder dependence
of the scaling variables. Based on the renormalization group equation, they consider a
dimensionless quantity Λ = λ/M as a function of scaling variables,

Λ = f(M/b, χrb
1/ν , χib

y) , (2.29)

where b and M are the sale factor and strip/bar width as before, χr and χi are relevant
and irrelevant scaling variables, and ν and y are the corresponding critical exponents,
respectively. The irrelevant variable χi requires y < 0. By setting the length scale
b =M , it gives

Λ = F (χrM
1/ν , χiM

y) , (2.30)

where function F is dependent on f . It is reasonable to assume that F can be Taylor
expanded according the irrelevant scaling variable as F is smooth function in finite M ,

Λ =

nI∑
n=0

χn
iM

nyFn(χrM
1/ν) , (2.31)

where function Fn is dependent on relevant variable χr but not on irrelevant variable
χi. For the term of n = 0, F0 recovers to the traditional scaling behavior, which doesn’t
consider the irrelevant scaling variable and nonlinearities. For the terms of n > 0, as the
existence of factor χn

iM
ny, it represents that the effects of irrelevant scaling variable is

considered. If we expand the function Fn in terms of the relevant scaling variable χr even
further, we have

Fn(χrM
1/ν) =

nR∑
m=0

χm
r M

m/νFnm . (2.32)

The nonlinearities are accounted by expanding the scaling variables χr and χi according
to dimensionless disorder w = (Wc −W )/Wc like below,

χr(w) =

mR∑
n=1

bnw
n , χi(w) =

mI∑
n=0

cnw
n , (2.33)
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where Wc is the critical disorder, and |w| is a measure of near the critical disorder. The
smaller the value |w| is, the closer to critical disorder Wc it is. In order to fix the absolute
scale, we set b1 = c0 = 1.

Once setting nR = 1, mR = 1, nI = 0, and mI = 0, we recover to the case of Eq. 2.27,
which getting rid of the consideration of nonliearities and irrelevant terms that depend
on system size. To fit the data in a larger W ranges, we can consider the nonlinearities
and set the nR ≥ 2 and mR ≥ 2 to appropriate fit functions. In the fitting procedure, the
number of fitting parameters is given by Np = (nI + 1)(mR + 1) +mR +mI + 2.

We can clearly see the nature of the correction terms caused by irrelevant parameter(χi >

0) by rewriting equation 2.31 as the form below,

Λ = F0(χrM
1/ν) +

nI∑
n=1

χn
iM

nyF1(χrM
1/ν) , (2.34)

there is a systematic shift caused by finite system size, which will disappear when M is
large enough as irrelevant exponent y < 0. The scaling behavior requires to subtract the
correction terms coming from irrelevant variable,

Λcorrected = Λ−
nI∑
n=1

χn
iM

nyF1(χrM
1/ν) . (2.35)

The corrected term has the form

Λcorrected = F±(M/ξ∞) , (2.36)

with correlation length behaving as

ξ∞ = ξ±|χr|−ν , (2.37)

where functions F±(x) = F0[±(ξ±x)
1/ν ], and ξ± is constant. In the real simulation, we

don’t have to determine the constant ξ± in order to extract the critical parameter Wc and
ν and we can simply set ξ± = 1. By the way, in the case of getting rid of irrelevant variable
χi, we don’t need to take system size dependent correction term under consideration, and
we have Λ = F±(M/ξ).

Once replacing parameter χr in equation 2.37 with nonlinear expansion equation
2.33, we obtain a complicated form of correlation length, which is totally different with
equation 2.21. However, if we ignore the nonlinearity, .i.e, setting mR = 1 and mI = 0,
the relevant parameter χr has the form χr ∼ w; after inserting it into equation 2.37, the
correlation length is in a simple power law form ξ∞ ∼ |w|−ν , which is exactly the same
as the form of equation 2.21.

The function Fn, critical exponent ν and irrelevant exponent y are expected to be
universal, but the expansion coefficients {bn} and {cn} are not.
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2.5.3 The non-linear fitting procedure

The nonlinear fitting procedure is used to fit the data based on equation 2.30, 2.31
and 2.32 via Mathematica. According to minimizing the χ2 statistics, which measuring
the deviation between model Λfit and data Λi,

χ2 =

Nd∑
i=1

(Λi − Λfit(a00, . . . , aninr , b2, . . . , bmr , c1, . . . , cmi
,Wc, ν, y))

2

σ2
i

, (2.38)

where σi is the error of the corresponding data Λi, we can obtain the parameters with
their confidence intervals in model Λfit, such as Wc, ν, and y. We use goodness-of-fit
Q [86] to judge the quality of fit, it is defined as

Q = ΓQ(
Nd −Np

2
,
χ2

2
) , (2.39)

where ΓQ is the incomplete gamma function, Nd and Np are the numbers of data and
parameters, respectively. The real number Q is in the interval [0, 1], where Q > 0.01

indicates a acceptable fit [86], and Q = 1 shows a perfect fit to data, which may result
in over-fitting. The goodness-of-fit Q = 0.5, corresponding to Nd − Np = χ2, means a
good fit [86]. In our simulations, we regard the fits of 0.05 < Q < 0.95 as the candidates,
which is neither over-fitting nor under-fitting.
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Chapter3 Disorder effects in the two-dimensional Lieb lattice and its
extensions

3.1 Introduction

Flat energy bands have recently received renewed attention due to much experimental
progress in the last decade [87]. Systems that exhibit flat-band physics correspond usually
to specially ”engineered” lattice structures such as quasi-1D lattices [22,88,89], diamond-
type lattices [25], and so-called Lieb lattices, [27, 47, 90–93]. Indeed, the Lieb lattice,
a two-dimensional (2D) extension of a simple cubic lattice, was the first where the flat
band structure was recognized and used to enhance magnetic effects in model studies
[12, 41, 42]. What’s more, the dirac cone is also a bright spot. Actually, the CuO2 plane
of cuprate superconductors is also a Lieb lattice, and its flat band is conjectured that it
would be relevant with the origin of high-temperature superconductivity [47–49]. Many
theoretical and experimental works based on the Lieb model are exported as detailed in
the introduction part.

In this work, we employ the Anderson model based on two-dimensional Lieb lattice
and its extensions, and investigate how the localization properties in the neighboring
dispersive bands are changed by the disorder [68]. We find that the whole states in the
Lieb lattice and its extensions are localized for W ≤ 1. Our results indicate that the
finite-size scaled localization lengths ξ for the energies corresponding to flat bands in the
clean system (W = 0) show a behaviour reminiscent of perturbative result for 1D. This
could potentially provide spatial information about the nature of these localized states.
For energies corresponding to dispersive bands in the clean system there is a tendency
towards much larger localization lengths as is expected from the 2D Anderson model of
localization [94].

3.2 Models

We consider a parametric family of two-dimensional Lieb lattices L2(n), n = 1, 2, 3, 4

and the schemes are shown in Fig. 2.1. The Hamiltonian gives as

H =
∑
r⃗

εr⃗|r⃗⟩⟨r⃗| −
∑
r⃗ ̸=r⃗′

tr⃗r⃗′|r⃗⟩⟨r⃗′| , (3.1)
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where the set of |r⃗⟩ indicates the orthonormal Wannier states corresponding to electrons
located at sites r⃗ = (x, y) of the Lieb lattice L2(n) and εr⃗ is the onsite potential [68],
which follows uniformly distribution with disorder strength W , .i.e, [−W/2,W/2]. As
usual, we set the hopping integrals tr⃗,r⃗′ ≡ 1 for nearest-neighbor sites r⃗ and r⃗′ as energy
scale and tr⃗,r⃗′ ≡ 0 otherwise.

3.3 Results
3.3.1 Dispersion relations and DOS

图 3.1: The band structure (top row) and the smoothed and normalized density of states (DOS,
bottom row) for L2(1) with width M = 13, L2(2) with M = 10, L2(3) with M = 9 and L2(4)

with M = 8. Colours in the top row vary from purple at low energies to red at high energies. In
the bottom row, the colour indicates the numerical values of the DOS and the thin black lines
are equal-DOS contours.

Before including disorder, we calculate the dispersion relations based on tight-binding
method for L2(n) ( n = 1, 2, 3, 4), which are summarized in Tab. 3.1. Just to make it
more intuitive, we plot the dispersion relations in Fig. 3.1, apparently there are n flat
bands separated by n + 1 dispersive bands [95] for L2(n). What’s more, there are Dirac
cones touching with flat band in special points in the (kx, ky) plane for L2(1) and L2(3)

but no for L2(2) and L2(4).
After turning on disorder, we take a new quantity – disorder-dependent density of

states(DOS) to measure the energy spectrum in stead of dispersion relations because of
the lack of spatial translation symmetry. For the flat bands, the kinetic energy is zero
and the potential energy becomes prominent, which is dominant by random disorder W .
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The number
of atoms

in a unit cell

The number
of flat bands

dispersion relations

L2(1) 3 1
E1 = 0

E2,3 = ±
√
4 + 2q

q = cos kx + cos ky

L2(2) 5 2

E1,2 = ±1

E3 = ρ+ + ρ−

E4 = ωρ+ + ω2ρ−

E5 = ωρ− + ω2ρ+

ω = −1+
√
3i

2

ρ± =
3

√
q ±

√
q2 −

(
5
3

)3

L2(3) 7 3
E1 = 0

E2,3 = ±
√
2

E4,5,6,7 = ±
√

3±
√
5 + 2q

L2(4) 9 4
E1,2,3,4 = 1

2

(
±1±

√
5
)

E5,6,7,8,9 → E5 − 7E3 + 9E − 2q = 0

表 3.1: Dispersion relations for L2(n), n = 1, 2, 3, 4. Need to mention, we have chosen the unit
length in real space to be 1, and kx, ky are the wave vectors in the reciprocal space. Even though
the E4,5 of L2(2) looks like it has an imaginary part, the E4,5 actually are real roots as ρ+ and
ρ− are complex conjugates of each other and the same as ω and ω2.

Hence, small disorder can lift the high-degenerated flat bands and make the states in
flat bands merge in neighbor dispersive bands. To search the interplay of flat bands and
dispersive bands in disorder systems, we have calculated disorder-dependent DOS via
exact diagonalization over 300 samples, where the system size M2 are from 132, 102, 92 to
82 for L2(1), L2(2), L2(3) and L2(4), respectively. After applying a Gaussian broadening
to obtain a smoother a DOS, results are showed in the bottom line of Fig. 3.1. In a word,
when the disorder W increased to the order of 2− 3, the DOS loses it’s peak features.

3.3.2 Localization and finite size scaling

As there are flat bands in E = 0 for L2(1) and L2(3) but no for L2(2) and L2(4).
We focus on energy E = 0 for all models L2(n), which allow us to distinguish directly
the localization properties between original flat bands( L2(1) and L2(3)) and original
dispersive bands( L2(2) and L2(4)) under the effects of disorder. We have calculated
the reduced localization length ΛM(E,W ) at E = 0 via transfer matrix method, .i.e
ΛM(0,W ), for L2(n), n = 1, 2, 3, 4 and shown them in Fig. 3.2. The transverse widths
of slice are M = 10, 12, . . . , 20 with error 0.1% for L2(1), and M = 10, 12, . . . , 22 with
error 0.2% for L2(2), L2(3) and L2(4). In Fig. 3.2, the ΛM(0,W ) as a function of 1/M
have been shown in the insets, we find all the ΛM(0,W ) decrease with increasing M for
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L2(1) L2(2)

L2(3) L2(4)

图 3.2: Double logarithmic plot of scaled reduced localization length, ΛM , as a function of ξ/M
for L2(1), L2(2), L2(3) and L2(4) as indicated. The chosen values for W are 1.0 (⋄), 1.01, …,
1.05 (□), …, 2.0, 2.1, 2.2, 2.4, 2.6 …, 10.0 (⃝) and vary in color. Some data points are not shown
with symbols for clarity. Error bars are within symbol size. Insets: ΛM as a function of 1/M for
each L2(n), respectively. Symbols and colors are as in the main panels, dashed lines are guides
to the eye only.

orginal flat band and dispersive band, which imply these are localized states where for
sufficiently large W and M , the values of λM saturate such that ΛM , which is defined as
λM/M , decreases when M increases.

Furthermore, we have also plotted the ΛM(0,W ) as a function of ξ/M in the form
of double logarithmic in main panels. The data ΛM can be scaled on single scaling curve,
which also decrease with increasing M , hence is consistent with previous results. What’s
more, for λM ≪ M , .i.e ΛM ≪ 1, we note the linear behavior ΛM ∼ 1/M , where strong
localization with λM ∼ λ∞ is expected. Besides, we observe the localization lengths of
states rooting in original flat bands are about one order of magnitude smaller than that
rooting in original dispersive bands. This is indeed an acceptable outcome as the states
in flat bands are absence of kinetic energy, and hence they become strong localization
after introducing disorder.

Next, we give the plots of scaling parameters ξ(0,W ) as a function of disorder W in
Fig. 3.3. Thouless [70, 96] claims that ξ(W ) ∼ W−2 are expected for small disorder in a
strictly 1D disordered chain, while a non-universal behaviour ξ(W ) = a/W α exp(βW−γ)
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are expected for the weakly disordered 2D systems, where a, β are positive and α, γ are
of order unity [2]. These fits are given in Fig. 3.3 as well, the details of fitting parameters
are listed in Tab. 3.2. The fits of flat bands(L2(1), L2(3)) and dispersive bands(L2(2),
L2(4)) are obviously different. The simple power-law fit ξ(W ) ∼ W−2 seems to work well
at 1 < W < 2 for flat bands, while not for dispersive bands. For more details, we can
see that our fitting results are not perfect. The efficient a is neither 105 at E = 0 [97]
for fitting with α = 2 in 1D, nor 12M [98] in quasi-1D stripes of width M . Further
more, it’s obvious that the magnitude of the ξ for L2(2) and L2(4) are near three order
of magnitude above that for L2(1) and L2(3) for weak disorder. The lack of a simple fit
to ξ in small disorder is reasonable as the disorder Lieb models L2(n) are indeed different
in localization behaviour from the standard 2D Anderson model.

3.4 Conclusions
We have studied the localization properties of the disordered 2D Lieb lattice and its

extensions with exact diagonalization method and transfer matrix method in this paper.
We found the significance of DOS peaks originating from flat bands are quickly destroyed
by disorder. Via finit-size scaling, we find there are indeed different localization properties
for energies corresponding to flat bands from that to dispersive bands. Nevertheless, all
states are localized for disorder as low as 1.
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fit function parameter estimates p-value
L2(1)

aW−α a 619.1(2) < 10−10

α 2.0816(7) < 10−10

aW−2eβW
−1

a 553(1) < 10−10

β 0.117(2) < 10−10

L2(2)
aW−α a 310000(6000) < 10−10

α 9.20(4) < 10−10

aW−αeβW
−γ

a 118(2000) 0.94
α 5(5) 0.26
β 8(14) 0.56
γ 0.7(7) 0.27

aW−2eβW
−1

a 14.2(5) < 10−10

β 10.39(5) < 10−10

L2(3)
aW−α a 444.1(3) < 10−10

α 2.206(2) < 10−10

aW−2eβW
−1

a 334.9(6) < 10−10

β 0.292(3) < 10−10

L2(4)
aW−α a 21600(800) < 10−10

α 7.33(7) < 10−10

aW αeβW
−γ

a 9(101) 0.92
α 3(5) 0.42
β 8(11) 0.45
γ 0.8(6) 0.16

aW−2eβW
−1

a 11.5(2) < 10−10

β 7.96(3) < 10−10

表 3.2: Fit functions for ξ(W ) and lattices L2(1), L2(2), L2(3) and L2(4) with a, α, β, γ are fit
coefficients estimated from a Levenberg-Marquardt non-linear fitting procedure.
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L2(1) L2(2)

L2(3) L2(4)

图 3.3: The scaling parameter ξ(0,W ) (•) and fitted functional forms (lines) for L2(1), L2(2),
L2(3) and L2(4), respectively. The blue solid line corresponds to aW−α, the purple dashed line
is the fit function aW−2eβW

−1 , while the green dotted line is the fit function aW−αeβW
−γ . The

values for a, α, β and γ are chosen from Tab. 3.2.
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Chapter4 Localization, phases, and transitions in the three-dimensional
extended Lieb lattices

4.1 Introduction

The phenomenon of wave localization in disordered lattices has attracted a lot of
attention in the condensed-matter community since it was first predicated in 1958 [1].
Later, Abrahams et al. predicts there are no metal-insulator transition in the one and two
dimensional single particle systems without magnetic field, and spin-orbit coupling [7].
Indeed, our work detailed in previous chapter shows that in two-dimensional Lieb model
and its extensions all states are localized for W > 1. Nevertheless, there are more abun-
dant phases in three dimensions, what role does the flat band play in it, and what kind of
novel phenomena it causes is a very significant topic. Less attention has been given to 3D
flat-band systems [25] or extended Lieb lattices [68, 93]. Furthermore, while disorder in
quasi-1D [10,21,24,99] and 2D [100] has previously received some attention, comparatively
little work has investigated the influence of disorder on 3D flat-band systems [26,88,101].
Our work introduced in this chapter will fill the gap.

In the work, we extend our previous studies of Lieb lattices to the class of 3D
Lieb lattices and its extensions. As is well known [2] the Anderson transition in a sim-
ple cubic lattice with uniform potential disorder ϵx⃗ ∈ [−W/2,W/2] at each site x⃗ is
characterized by a critical disorder Wc = 16.0(5)t [102], with t denoting the nearest
neighbor hopping strength. The full energy-disorder phase diagram is characterized by
a simple-connected region of extended states ranging from ±6t at W = 0 and ending at
Wc = 16.530(16.524, 16.536) for E = 0 [103]. The critical exponent of the transition has
been determined with ever greater precision as close to, e.g., ν = 1.590(1.579, 1.602) [103]
and 1.57(2) [6].

4.2 Models

We consider a parametric family of three-dimensional Lieb lattices L3(n), n =

1, 2, 3, 4 and the schemes are shown in Fig. 2.1. The Hamiltonian gives as

H =
∑
r⃗

εr⃗|r⃗⟩⟨r⃗| −
∑
r⃗ ̸=r⃗′

tr⃗r⃗′|r⃗⟩⟨r⃗′| , (4.1)
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where the set of |r⃗⟩ indicates the orthonormal Wannier states corresponding to electrons
located at sites r⃗ = (x, y, z) of the Lieb lattice L3(n) and εr⃗ is the onsite potential [68],
which follows uniformly distribution with disorder strength W , .i.e, [−W/2,W/2]. As
usual, we set the hopping integrals tr⃗,r⃗′ ≡ 1 for nearest-neighbor sites r⃗ and r⃗′ as energy
scale and tr⃗,r⃗′ ≡ 0 otherwise.

4.3 Results

4.3.1 Dispersion relations and DOS

We calculate the dispersion relations before including disorder for L3(n), the results
are summarized in Tab. 4.1. After picking some points of high symmetry forming a closed
loop, they are drawn visually in the top line of Fig. 4.1. Compared to the two-dimensional
dispersion relations, we found the energy of flat bands for L3(n) and L2(n) are exactly the
same, but it’s doubly degenerate for three dimensional cases. Just like in two dimensions,
each L3(n) has n flat bands separating n+1 dispersive bands, and there are linear Dirac
cones touching flat bands at special points in the (kx, ky, kz) plane for L3(1) and L3(3)

but only parabolic-type dispersions for L3(2) and L3(4).
We now turn on the disorder, .i.e, W > 0, the disorder-dependent density of states(DOS)

are calculated by direct diagonalization for small system sizesM3 = 53, 53, 43, 43 for L3(n),
n = 1, 2, 3, 4, respectively. To obtain a good resolution, the DOS is generated from W = 0

to W = 5.2 in steps of 0.05 over 300 disorder configurations for L3(n), n = 1, 2, 3, and 100

disorder configurations for L3(4). A Gaussian broadening procedure, using Silverman’s
rule to determine the bandwidth broadening [104] of the energy levels, is applied to obtain
a smoother DOS, and the results are displayed in the bottom line of Fig. 4.1. For weak
disorder, the large peaks corresponding to original flat bands are prominent for all L3(n)

models. While from W ∼ 3 onward, these peaks have merged into one broad DOS.

4.3.2 Phase diagrams

• For L3(1) model

Based on transfer matrix method(TMM), we calculated the energy-disorder phase
diagram first for L3(1) and show it in Fig. 4.2. The phase diagram was determined
in terms of the scaling behavior of Λ(E,W ) for small system size M = 6, 8 and 10

with TMM error ≤ 0.1% [105]. For W < 1, the data fluctuates too much and are
hard to converge in finite number of iterations, hence results below W < 1 have
been omitted from figure.
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图 4.1: (a)–(d) Dispersion relations for clean systems and (e)–(h) dependence of the normalized
DOS on W for L3(1) to L3(4). In all cases, the flat bands are doubly degenerate. In (a)–(d), we
start in (kx, ky, kz) space from the Γ point (0, 0, 0), increase k as (k, k, 0) until we reach the M
point (π, π, 0), decrease as (k, π, 0) to the X point (0, π, 0), increase via (k, π, k) to the R point
(π, π, π), and last, decrease as (k, k, k) back to the Γ point at (0, 0, 0). Different colors in the
dispersion relations denote different bands while the colors in the DOS indicate different DOS
values as also emphasized by the contour lines.

States are all extended inside the phase diagram, while are localized outside. There
a special disorder at E = 0 described in the introduction, namely Wc as the disorder
value at the transition point from extended to localized behaviour. Extended states
coexist with localized states for any one disorder below Wc while extended states are
absent once the disorder is greater that Wc, which means system is localized. Back
to phase diagram itself, apparently, the phase diagram of L3(1) is qualitatively
similar to the phase diagram of the standard 3D cubic Anderson model, albeit
the bandwidth and the critical disorder at E = 0 are different. In more details,
compared with Wc = 16.0(5) [102] of standard Anderson localization at E = 0, the
critical disorder Wc ∼ 8 of L3(1) is reduced by about 50%. It is not particularly
obvious that there is a small reentrant region in the band edges for W ≤ 4, which
is also appeared in the 3D Anderson models [106–109]. Nevertheless, the shoulders
that develop at E ∼ 2.75 and W ∼ 6 seems a novel feature, which is absent in
normal 3D Anderson model [106, 107] and other Anderson lattices [105, 110].

The inset of Fig. 4.2 shows that extended phase survives [111, 112], for flatband
energy E = 0 even the disorder is as low as W = 0.01, as the values of ΛM increase
with increasing M .

• For L3(2) and L3(3) models

Following the same steps as L3(1), the phase diagrams for L3(2) and L3(3) have
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The number
of atoms

in a unit cell

The number
of flat bands

dispersion relations

L3(1) 4 2
E1,2 = 0

E3,4 = ±
√
6 + 2q

q = cos kx + cos ky + cos kz

L3(2) 7 4

E1,2 = 1

E3,4 = −1

E5 = ρ+ + ρ−

E6 = ωρ+ + ω2ρ−

E7 = ωρ− + ω2ρ+

ω = −1+
√
3i

2

ρ± =
3

√
q ±

√
q2 −

(
7
3

)3

L3(3) 10 6

E1,2 =
√
2

E3,4 = −
√
2

E5,6 = 0

E7,8,9,10 = ±
√

4±
√
10 + 2q

L3(4) 13 8
E1,2,3,4,5,6,7,8 = 1

2

(
±1±

√
5
)

E9,10,11,12,13 → E5 − 9E3 + 13E − 2q = 0

表 4.1: Dispersion relations for L3(n), n = 1, 2, 3, 4. Need to mention, we have chosen the unit
length in real space to be 1, and kx, ky are the wave vectors in the reciprocal space. Similar to
L2(2), even though the E6,7 of L3(2) looks like it has an imaginary part, actually they are real
roots as ρ+ and ρ− are complex conjugates of each other and the same as ω and ω2.

been calculated and displayed in Fig. 4.3. The data are determined with TMM er-
ror of ≤ 0.2% and with the same system sizes as for L3(1). For the same reason as
before, we just consider the disorder W ≤ 1. Our simulation support, as for L3(1),
a mirror symmetry at E = 0 and hence the data are shown in Fig. 4.3 after explic-
itly symmetrization. To be specific, we picked the points that are symmetrically
distributed with respect to E = 0, usually the ΛM of these two symmetric points is
different due the presence of random disorder, hence we take the average of these
two ΛM values and return it back to these two points. Next, we found there are
also reentrant behaviours for the phase boundaries of the central dispersive band
for both L3(2) and L3(3), although this is not obvious for L3(3). Similarly, the
extended behavior at low disorder for the flat band energy at E = 1 is indicated in
the inset of Fig. 4.3 (a).

The obvious difference between the phase diagrams of L3(1), L3(2) and L3(3) is
that the extended region for L3(1) lattice is simply connected, while for L3(2) and
L3(3) it is disjoint. This difference can be attributed to the presence of the energy
gaps in L3(2) and L3(3) as in Fig. 4.1. Recall the critical disorder Wc mentioned
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图 4.2: Phase diagram for L3(1). The three solid and colored lines represent the approximate
location of the phase boundary estimated from small M , i.e. the blue line is constructed by
widths M = 6 and M = 8 with blue circle (⃝), and red line by widths M = 6 and M = 10 with
red cross (×), and green line by width M = 8 and M = 10 with green plus (+). The solid squares
(□) filled with dashed lines denote high-precision estimates from FSS for large M . The shaded
area in the center contains extended states while states outside the phase boundary are localized.
The dashed lines on both sides are guides-to-the-eye for the expected continuation of the phase
boundary for W < 1. The red short vertical line at E = 0 represents the position of the two-
degenerate flat bands. The diamonds (♦) denote the band edges for W = 0, i.e. Emin = −2

√
3

and Emax = 2
√
3. The dotted lines are the theoretical band edges ± (|Emin|+W/2) and the

forbidden areas below those band edges have been shaded. Inset: Weak disorder behavior at the
flat band energy E = 0 down to W = 0.01. The strip widths vary from M = 4 (sparse dotted
line), 6 (condensed dotted), 8 (short dashed), M = 10 (long dashed), M = 12 (dashed-dotted)
to M = 14 (solid). Error bars are shown but very small.

above, we see that the critical disorders are Wc ∼ 16.530 for the cubic lattice [103],
where n can be regard as 0, ∼ 8.6 for L3(1), ∼ 5.9 for L3(2) and ∼ 4.8 for L3(3),
hence manifests a downward trend as n increase. Hence as expected, in the Lieb
lattices the last extended states vanish already at much weaker disorders and the
trend becomes stronger with increasing n in each successive L3(n).

4.3.3 High-precision determination of Critical properties for the Lieb models

• Model of L3(1)

In order to determine the critical properties at the phase boundaries for the Lieb
models, it’s necessary to calculate larger system size for a reliable FSS. In all cases,
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(a) (b)

图 4.3: Phase diagrams for (a) L3(2) and (b) L3(3) lattices. The symbols, lines and colors are
as in Fig. 4.2, i.e. representing small M estimates with M = 6, 8 and 10. The solid squares (□)
denote high-precision FSS results from ΛM with an TMM error ≤ 0.1% for width M ≤ 16 and
≤ 0.2% for width M = 18. The diamonds (♦) denote the maximal band edges from W = 0 at
±3 for L3(2) and ±2

√
2 for L3(3). Inset for (a): Weak disorder behavior at the flat band energy

E = 1 down to W = 0.01 with error bars and lines indicated as in Fig. 4.2, i.e., the strip widths
vary from M = 4 (sparse dotted line) to M = 14 (solid).

the results are collected up to M = 20 and with TMM convergence errors ≤ 0.1%.
Based on the phase diagram as in Fig. 4.2 as a rough guide, four points of special
interest are picked out, namely, two transitions as a function of W at the band
centre at constant E = 0 and outside the band centre at E = 1; the other two
transitions are studied as function of E corresponding to the point marking the
reentrant behaviour [106] at constant W = 3 and the kink in the phase boundary
at constant W = 6. In Fig. 4.4, we collect the ΛM(E,W ) data, the resulting scaling
curves and the variation of the scaling parameter ξ for typical examples of FSS
results in a plot. The upper and lower scaling curves represent the extended and
localized states, respectively.

In Table ?? we list fits for all 4 cases shown in Fig. 4.4 with higher expansion
coefficients nr and mr. The consistent results with respect to an increase in an
expansion parameter show that our results are stable. We have also checked that
they are stable with respect to slight changes in the choice of parameter intervals
δW and δE for fixed energy and fixed disorder transitions, respectively. By the
way, in the averages part, we considered the error propagation. For instance, 3

quantities a, b, and c with uncertainties δa, δb, and δc, then the uncertainty of
quantity d, defined as the average of these 3 quantities, .i.e d = (a + b + c)/3, is
given by δd =

√
((δa)2 + (δb)2 + (δc)2)/32.

However, the careful readers must have noticed from the absence of irrelevant pa-
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(a) (b)

(c) (d)

图 4.4: (a) FSS of the localization lengths for L3(1) with E = 0, (b) E = 1, (c) W = 3, and (d)
W = 6. System sizes M are 14 (grey +), 16 (dark yellow ×), 18 (blue +), 20 (purple ⊙). The
left half in each panel denotes a plot of ΛM versus disorder W or energy E, the solid lines are
fits to the data acquired by Eqs. (2.31)–(2.33) with (a+b) nr = 3, mr = 1, (c) nr = 2, mr = 1

and (d) nr = 1, mr = 1. The right half in each panel shows the scaling function F (solid line)
and the scaled data points with the same nr and mr as in the corresponding left half while
each inset gives the scaling parameter ξ as a function of disorder strength W , in (a) and (b), or
energy E in (c) and (d). The parameters of the fits are shown in detail in Table ??.

rameters ni and mi, this is caused by the poor data quality. We found the accuracy
and size of the data are not good enough to reliably fit irrelevant scaling contribu-
tions and hence the results in Table ?? are all for ni = mi = 0 although we have
indeed performed our FSS allowing for these additional parameters. Furthermore,
we can find out in Fig. 4.4 that the accuracy of the TMM data becomes worse
for the fixed disorder transitions at W = 3 and especially W = 6. The reason
for this behaviour is in principle well understood since at the points, the DOS has
an appreciable variation which leads to extra corrections not well captured in the
FSS [113]. Usually, larger system sizes M can reduce these variations but this is
not possible here due to computational limitations.

• Models L3(2) and L3(3)
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We follow a similar strategy as in the previous section in order to finite-size scale
the localization lengths for L3(2) and L3(3). The TMM convergence errors were
chosen as ≤ 0.1% up to M = 16 and, due to the increased complexity of these
models, as ≤ 0.2% for the largest system size with M = 18. For model L3(2) at
energy E = 0, we give a plot combining scaling data ΛM(E = 0,W ) and scaling
curves with nr = 3,mr = 3 as shown in Fig. 4.5(a). It is very hard to observe a
clear crossing at Wc from the panel with the ΛM(E = 0,W ) data. The situation
improves for ΛM(E,W = 4) in Fig. 4.5(b) which exhibits a clear crossing of ΛM

around Ec ∼ 1.70. For model L3(3), as the increased complexity, we just focus on
E = 0. Similarly with L3(2), the crossing for ΛM(E = 0,W ) is again somewhat
less clear as shown in Fig. 4.5(c).

Nevertheless, in all three cases, the FSS results produce stable and robust fits with
estimates for Wc, Ec and ν as shown in Table ??.

(a)

(b) (c)

图 4.5: FSS of the localization lengths for (a) L3(1) at E = 0 and (b) W = 4 as well as for (c)
L3(3) at E = 0. System sizes M are 10 (orange ◁), 12 (blue ▷), 14 (grey +), 16 (dark yellow
×), 18 (blue +). The arrangement in each panel is as in Fig. 4.4, i.e. scaling curves (solid lines)
and scaled ΛM data (symbols) in the left half of each panel, scaling curve F (lines) with scaled
dat a (symbols) in the right half and ξ in the inset. The chosen expansion coefficients are (a)
nr = 2, mr = 2, (b) nr = 2, mr = 1 and (c) nr = 2, mr = 1 as highlighted in Table ??.
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4.4 Conclusion

We studied the localization properties and the Anderson transition in the 3D Lieb
lattice L3(1) and its extensions L3(n) in the presence of disorder. We computed the
disorder-broadened density of states and the energy-disorder phase diagrams for up n = 4.
Via finite-size scaling, we obtained the critical properties such as critical disorders and
energies as well as the universal localization lengths exponent ν, and we summarized all
the averaged critical exponents ν in Fig. 4.6. We found that the critical disorder Wc

decreases from ∼ 16.5 for the cubic lattice, to ∼ 8.6 for L3(1), ∼ 5.9 for L3(2) and ∼ 4.8

for L3(3). Nevertheless, the value of the critical exponent ν for all Lieb lattices studied
here and across various disorder and energy transitions agrees within error bars with the
generally accepted universal value ν = 1.590 (1.579, 1.602).

图 4.6: Variation of the averaged critical exponent ν corresponding to L3(1) (red), L3(2) (blue)
and L3(3) (green) for the seven averages from Table ??. The green horizontal dash lines indicate
ν = 1.590(1.579, 1.602) via FSS of wave functions in the 3D Anderson model [103] and the green
shadow area denotes its error range. The ν = 1.57(2) value, indicated by grey dotted lines with
grey shadow area denoting its error bar, is from TMM results [6].
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Chapter5 Localization properties in Lieb lattices and their extensions

5.1 Introduction
Flat band systems, in which the absence of a dispersion in the band structure leads

to a highly dramatic macroscopic degeneracy, have at the flat band energy an effectively
reduced kinetic energy. Hence other terms in the Hamiltonian can become prominent,
such as many-body interactions. As is well known, states in a flat band are localized [61]
because of the high degeneracy. Hence disorder, which one should expect to destroy this
degeneracy, might also, at least initially, destroy the localization. So what will happen
after disorder is being included in the Hamiltonians describing these localized flat bands
is an interesting problem.

In this paper, we are mainly supplementing the previous results [68,69] as introduced
in first two chapter.

5.2 Models
The models we consider in this work are L2(n) and L3(n) with n = 1, 2, 3, 4 as shown

in Fig. 2.1. The Hamiltonian gives as Equ. 3.1 or Equ. 4.1.

5.3 Results
5.3.1 The two-dimensional Lieb lattice and its extensions

• Previous results for disordered L2(n) lattices

In our previous paper [68], we study the localization properties of L2(n) in detail.

Using direct diagonalization for small system sizes, we compute the density of states
(DOS). We can see that in the presence of disorder, the interplay between flat bands
and dispersive bands is prominent for all L2(n), n = 1, 2, 3 and 4. The disorder
can quickly lift the degeneracy of flat bands and make the states merge with the
neighboring dispersive bands. When W ≳ 2, the flat band DOS loses its peaks
distinguishing and becomes part of a large bulk DOS.

Next, we use a renormalized transfer-matrix method (TMM) and compute the
reduced localization lengths ΛM(E,W ) = λ(E,W )/M , where M corresponds to
the width of the quasi-1D transfer-matrix strip. For all L2(n), we find that for
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W ≳ t all states are localized. The localization lengths for states at flat band
energies are about one order of magnitude smaller than for states from dispersive
bands. We employ traditional one-parameter finite-size scaling methods to esti-
mate a scaling parameter ξ(E,W ) [102]. The Λ(E,W )/M can be described after
scaling by a single scaling branch, corresponding to a fully localized behaviour.
After fitting the ξ with disorder W , we use three fitting forms, power low form as
ξ(W ) ∝ W−2 [70], a non-universal form ξ(W ) = aW−α exp(βW−γ) and a constraint
form ξ(W ) = aW−2 exp(βW−1). For L2(1) and L2(3) at the flat band energy E = 0,
we find that the usual power low form ξ(W ) ∝ W−2 for 1D localization fits well
for disorder around 1 < W < 2. However, for L2(2) and L2(4) at E = 0, which is
an energy in a dispersive band for these lattices, none of the fits gives a convincing
result.

• Scaling function ΛM vs reduced correlation length ξM for L2(n)

(a) (b)

图 5.1: (a) Scaled localization length ΛM (0,W ) versus ξ/M at energy E = 0 for L2(1) (red ⃝),
L2(2) (blue □), L2(3) (green ▽) and L2(4) (purple ♢). For clarity, lines show all data points
while symbols denote only about 15% of all data. Inset: the detail of small reduced correlation
length. (b) Scaling parameters ξ(0,W ) for the same Lieb lattices as in (a). The dashed lines
represent the power law fit functions axb. Error bars are within symbol size in both panels.

The scaled localization lengths ΛM(0,W ) as a function of scaled correlation length
ξ/M for L2(n), n = 1, 2, 3 and 4 are shown in Fig. 5.1(a) at energy E = 0. This
corresponds to flat bands for L2(1) and L2(3) and dispersive band for L2(2) and
L2(4). The ΛM(0,W ) data all show the behaviour for localized states, scaling as
ΛM(0,W ) ∝ ξ(0,W )/M for large system sizes and large disorders. In this regime,
the behaviour of states in the flat bands and in the dispersive bands is similar as
shown also in the inset graph of said figure.

• Scaling parameter ξ vs disorder W for L2(n)
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L2(n)

L3(n)

图 5.2: Normalized bar chart histograms of the (E,W )-dependence of the density of states
(DOS) for L2(n) and L3(n). Upper line are for L2(1) to L2(4), and bottom line are for L3(1)

to L3(4). The colors denote different DOS values ranging from zero (deep purple) to maximal
(white). Bin widths in (E,W ) directions have been chosen for representational clarity.

The disorder dependence of the scaling parameter ξ for small disorders t ≤ W ≤ 2t

is shown in Fig. 5.1(b), computed from the ΛM(E = 0,W ) data of Fig. 5.1(a). We
see that the behaviour of ξ for L2(1) is comparable to L2(3); both are well-described
by a power law axb with exponent approximately b ∼ −2, similar to localization
properties of a standard 1D Anderson model [70]. This might suggest that the
localization behaviour of these disordered flat band states at least for weak disorder
is similar to the 1D behaviour. On the other hand, for the dispersive states of L2(2)

and L2(4) at E = 0, we find that the values of ξ are orders of magnitude larger
than for L2(1) and L2(3). The simple power-law also does not fit anymore and
we rather see the more standard behaviour of a 2D Anderson model [70] with a
quickly diverging ξ when W → 0. Nevertheless, for both flat band and dispersive
band energies, the fits are not very robust and have rather small p values of < 10−10.
This shows that the true form of the behaviour of ξ(W → 0) is yet to be determined.

• Density of states without Gaussian broadening for L2(n)

The results of the disorder-averaged density of states (DOS), calculated with direct
diagonalization, are shown in Fig. 5.2. The system sizes are M2 = 132, 102, 92,
82 for L2(n), n = 1, 2, 3 and 4, respectively. The disorder ranges from W = 0 to
W = 5.2 in steps of 0.05 using 300 independent random samples. We can see the
prominent peaks of flat bands close to W = 0 have been largely vanished when the
disorder reaches up to W = 2 for all L2(n), n = 1, 2, 3 and 4.
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5.3.2 Three-dimensional Lieb lattice and its extensions

• Previous results for disordered L3(n) lattices

In Ref. [69], we investigated the DOS, the localization properties and the phase
diagrams for the 3D Lieb lattices L3(n), n = 1, 2, 3 and 4. Obviously, the main
difference to the 2D case is the existence of an Anderson metal insulator transition
(MIT) in 3D Lieb lattices [69]. Details of the TMM construction for L3(n) can
also be found in Ref. [69] along with finite-size scaling results for the universal
critical exponent ν of the localization lengths. We found ν to be in good agreement
with the currently accepted value of ν = 1.590(1.579, 1.602) [6,103] for the Anderson
transition. In the following, we shall elaborate on the stability of the phase diagrams
to a change in boundary conditions, highlight the various positions of the transitions
in the phase diagrams, comment on the possibility of FSS with irrelevant scaling
parameters and also provide the DOS without Gaussian-broadening.

• Phase diagram with periodic boundary condition for L3(1)

The phase diagrams given in Ref. [69] have been computed for the L3(n) lattices
with hard wall boundaries. In Fig. 5.3(a) we now show a phase diagram for L3(1)

with periodic boundary condition. The phases have been determined by the scaling
behaviour of the ΛM(E,W ) for system sizes M = 4, M = 6 and M = 8 with
error ≤ 0.1% [105]. Comparing this to the results obtained with hard boundary
conditions, we find that it looks very similar as expected although the extended
region is a little wider in the E axis. As for the hard wall case, we can identify a re-
entrant region around disorder W = 4 and a shoulder at E ∼ 3 and W ∼ 6. Hence
as expected, the change in boundary conditions does not change the phase diagrams
appreciably already with the small system sizes and modest disorder averages as
used here and in Ref. [69].

• Localization and extended transition with 0.01 ≤ W ≤ 2.0

For W < 1, it is well known that the convergence of the TMM is very slow. Hence
results for appropriately small errors are hard to compute. Usually, this is not a
problem since, e.g., in the 3D Anderson model, the limit as W → 0 belongs trivially
to the extended phase. However, for the L3(n) lattice, we know that at the flat
band energies even at W = 0, we except compactly localized states [15,114]. Hence
it is interesting to see if the localization properties at W < 1 for flat band energies
indicate any possible “inverse” Anderson transition from extended states at W ∼ 1

to localized states at small, but finite W > 0.
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(a) (b)

图 5.3: (a) Phase diagram for L3(1) in case of periodic boundaries. The three solid and colored
lines represent the approximate location of the phase boundary estimated from small M , i.e.
the blue line/⃝ comes from widths M = 4 and M = 6, the red line/× from M = 4 and M = 8,
and the green line/+ from M = 6 and M = 8. The shaded area in the center contains extended
states while states outside the phase boundary are localized. The dashed lines on both sides are
guides-to-the-eye for the expected continuation of the phase boundary for W < 2. The red short
vertical line at E = 0 represents the position of the doubly-degenerate flat band. The diamonds
(♦) denote the band edges for W = 0, i.e. Emin = −2

√
3 and Emax = 2

√
3. The dotted lines are

the theoretical band edges ± (|Emin|+W/2) and the forbidden areas below those band edges
have been shaded. (b) Scaling parameters ξ versus disorder W for L3(1)(red ⃝), L3(2) (blue
□) and L3(3) (green ▽) at energy E = 0. The expansion parameters nr, ni, mr and mi are the
same as the highlighted line in Table 5.1.

In Ref. [69], we had shown that at the flat band energy E = 0 for L3(1) and at E = 1

for L3(2), the ΛM increases with increasing M , indicating extended behaviour, down
to disorders as small as W = 0.01. In Fig. 5.4(a-c), we now augment that result
by studying energies close by. For L3(1) and E = 0.05 we initially find localized
behaviour, e.g., ΛM decreasing with increasing M up to M = 10, but then reversing
to extended behaviour for larger M . For E = 0.1 the reversal to the extended
behaviour already starts at M = 8 while for E = 0.15, only the extended behaviour
remains. In Fig. 5.4(d), we see that for L3(2) at E = 1.05, the ΛM decreases with
increasing M . This localized behaviour at small W values results from the energy
gap for E > 1 in the clean system.

We conclude that the presence of the compactly localized states at the flat band
energies certainly has an effect at small disorder in terms of the M dependence of
ΛM . For large enough M , we find that the character of the states remains extended
down to disorders W = 0.01.

• Divergence of the scaling parameter ξ(W )
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图 5.4: (a) Small W behaviour of ΛM for L3(1) with (a) energy E = 0.05, (b) E = 0.1, (c)
E = 0.15, and (d) for L3(2) at E = 1.05 with disorder down to 0.01 in steps of 0.01 and with
error less than 1.0%. System sizes M are 4 (black ⊕), 6 (red ⋄), 8 (green □), 10 (dark-blue ×),
12 (brown ◁), 14 (purple ▷). Error bars are denoted with a solid line. Insets: increased disorder
range up to W = 2 for the corresponding cases in the 4 main panels.

The behaviour of ξ(W ) for L3(1), L3(2) and L3(3) is given in Fig. 5.3. We can
clearly see how the critical disorder Wc decreases from 8.59 for L3(1) to 5.96 for
L3(2) and finally to 4.79 for L3(3). This suggests that a larger n in L3(n), i.e. a
larger number of additional (red, cp. Fig. 2.1) atoms, leads to stronger localization
and hence an MIT already for smaller values of Wc. It could be an interesting study
to estimate Wc(n), particularly the limiting behaviour when n→ ∞.

• Scaling with irrelevant variables ni, mi

For high-precision estimates of critical properties, including ν, it is by now state of
the art to include irrelevant scaling contributions, i.e. scaling as M−y with y > 0,
in the FSS analysis. However, such FSS methods also require large M values to
reliably model the irrelevant scaling. Due to the complexity of the L3(n) systems,
only values of M ≤ 20 have been computed in Ref. [69]. For such sizes, adding
irrelevant scaling variables is usually not a net benefit. In Table 5.1, we show the
results for FSS with and without scaling. We note that although acceptable p values
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can be obtained for the fits with irrelevant scaling exponent y included, in nearly
all cases, this results either in increased error estimates for the relevant exponent
ν. Alternatively, one finds estimates for y with very large errors or very large
values for y. Except for one case, the final estimate for the physical quantity ν has
hardly changed. Hence we conclude that for the available ΛM data, the inclusion
of irrelevant scaling parameter y does not necessarily add towards the accuracy of
the estimates for ν. This confirms having made this choice in Ref. [69].

• Density of states without Gaussian broadening for L3(n)

The results of for the DOS, calculated with exact diagonalization and without
applied Gaussian smoothing, are in Fig. 5.2. The system sizes are M3 = 53, 53,
43, 43 for L3(n), n = 1, 2, 3 and 4, respectively. The disorder ranges are all from
W = 0 to W = 5.2 in step of 0.05 and with 300 samples for n = 1, 2, 3 but only
100 samples for L3(4) because of computing time limits. Again, the results are very
similar to the Gaussian-broadened DOS shown in Ref. [69].

5.4 Conclusion
We have studied the localization properties of the 2D and 3D extended Lieb lattices

in this paper. Clearly, the Lieb lattices exhibit stronger localization than their more
standard square and cubic Anderson lattices. This can be understood by noting that the
transport along the ”extra” sites as shown (by red spheres) in Fig. 2.1 is essentially one-
dimensional and hence subject to stronger localization. Consequently, in 2D rather small
W values can still be studied (most earlier TMM studies for the 2D Anderson model stop
already around W ∼ 2, cp. Fig. (3) of Ref. [94]). Details of the resulting FSS curves for
small W are given in Fig. 5.1. In 3D, we similarly see that Wc(n) decreases as a function
of n. Results for states near flat bands with particularly small W are shown in Fig. 5.4.
Due to the numerical complexity of the Ld(n) systems, scaling is more challenging than
in the Anderson models and only relatively small M values can be reached. Table 5.1
shows that for the available data, there is no need to include irrelevant scaling variables
— within the accuracy of the calculation, all estimates of the critical exponent agree with
the value found for the Anderson universality class [6, 103].
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L3(1)

∆M E δW nr ni mr mi Wc CI(Wc) ν CI(ν) y CI(y) p

16-20 0 8.25-8.9 3 0 1 0 8.59 (58, 61) 1.6 (4, 7) 0 0 0.15

16-20 0 8.25-8.9 2 1 1 1 8.71 (57, 84) 1.3 (0.8, 1.8) 4 (−2, 10) 0.86

14-20 1 8.0-8.8 3 0 1 0 8.44 (42, 45) 1.6 (5, 7) 0 0 0.18

14-20 1 8.0-8.8 3 2 1 1 8.48 (45, 50) 1.8 (6, 9) 6.9 (6.6, 7.1) 0.77

∆M W δE nr ni mr mi Ec CI(Ec) ν CI(ν) y CI(y) p

16-20 3 3.725-3.785 2 0 1 0 3.75 (74, 75) 1.7 (6, 9) 0 0 0.88

16-20 3 3.725-3.785 3 2 1 2 3.75 (74, 75) 1.5 (0.6, 2.5) 2 (−3, 8) 0.7

16-20 6 3.04-3.11 1 0 1 0 3.08 (07, 09) 1.5 (1.0, 2.1) 0 0 0.14

16-20 6 3.04-3.11 1 1 2 1 3.08 (06, 09) 1.5 (0.7, 2.4) 47 (44, 50) 0.13

L3(2)

∆M E δW nr ni mr mi Wc CI(Wc) ν CI(ν) y CI(y) p

12,14,18 0 5.85-6.05 2 0 2 0 5.96 (95, 97) 1.8 (1.5, 2.0) 0 0 0.08

12,14,18 0 5.85-6.05 2 1 1 4 5.97 (96, 98) 1.7 (1.3, 2.1) 9 (2, 16) 0.89

∆M W δE nr ni mr mi Ec CI(Ec) ν CI(ν) y CI(y) p

10-14 4 1.6-1.8 2 0 1 0 1.70 (70, 71) 1.6 (4, 7) 0 0 0.18

10-14 4 1.6-1.8 1 1 2 1 1.72 (67, 78) 1.6 (1.1, 2.1) 6 (−18, 31) 0.38

L3(3)

∆M E δW nr ni mr mi Wc CI(Wc) ν CI(ν) y CI(y) p

12-18 0 4.7–4.875 2 0 1 0 4.79 (78, 80) 1.6 (4, 8) 0 0 0.43

12-18 0 4.7–4.875 2 1 1 2 4.79 (78, 80) 1.6 (4, 8) 8284 (0, 1) 0.11

表 5.1: Critical parameters at the MIT for L3(n), n = 1, 2 and 3. The columns are denoting
the system width M , fixed E (or W ), the range of W (or E). The expansion orders nr, ni, mr,
mi are listed as well as the obtained critical disorders Wc (or energies Ec), their 95% confidence
intervals (CI), the critical exponent ν, its CI, the irrelevant parameter y, its CI, and the goodness
of fit probability p. The confidence interval are given with one significant decimal. For instance,
1.6(4, 8) marks that the CI is (1.4, 1.8).
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Chapter6 Unconventional delocalization in a family of
three-dimensional Lieb lattices

6.1 Introduction

The correlation effect in disorder systems has always been a hot topic. As the
results [7] predicted by Abrahams et al. that the localization properties are strongly
depend on the lattice dimensionality, the type of lattice geometry considered, as well as
the nature of the potential considered [2,3,115], and it claims that all states are localized
for uncorrelated low dimensional disorder systems. While, a transition from delocalized
to localized phase may also occur in 1D chains when correlated disordered potentials are
considered [116, 117].

Spatial disorder, however, is not the only ingredient that can lead to wave localization
phenomena in lattices. In translationally invariant networks, one of the most intensely
studied frameworks for eigenstates localization is the case of flat band lattices – i.e.
networks where destructive interference results in families of macroscopically degenerate
single-particle eigenstates localized within a finite number of lattice sites [118–120]. These
states, called compact localized states (CLS), form a non-dispersive (hence, flat) Bloch
band Ej(k) = const. in the energy spectrum which is independent on the momentum k.
The CLS have been discussed as potential candidates for information storage applications
[121]. However, they are typically sensitive to perturbations. Uncorrelated onsite disorder
in most cases lifts the existence of CLS irrespective of the disorder strength and induces
wave localization in flat band lattices [10, 21, 22, 26, 68, 100, 122, 123]. In certain cases,
however, local symmetries within flat band lattices suggest local correlations in the onsite
disorder which result in anomalous localization features – as shown in Refs. [24, 99] for
disorder and quasiperiodic potentials in 1D and 2D sample lattices.

In this work we study the impact of local ordering correlations in a family of 3D

extended Lieb lattices. These lattice systems, in presence of uncorrelated spatial disorder,
exhibit energy-dependent transitions between localized to delocalized phase as showed in
our previous results [69]. By exploiting local symmetry in the family of Lieb lattices, we
introduce a mix of correlated order and disorder within the lattice. This mix of local
order and disorder preserves the existence of the degenerate CLS and induces an effective
projection of the non-degenerate states onto the CLS [122]. The projection yields the
existence of delocalized states existing mostly within the locally ordered sub-lattice of the
systems spanned by the CLS, whose energies lie closer to the macroscopic degeneracy as
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the strength of the disorder increases. Ultimately, the persistence of these extended states
results in a divergent profile of the mobility edge separating delocalized and localized
phases, unlike what was found in Ref. [69] for uncorrelated disorder. Furthermore, we
observe that this correlated ordering in the regime of weak disorder induces an “inverse”
change from localized to delocalized eigenstates for energies close to the macroscopic
degeneracies.

6.2 Models
We consider a parametric family of three-dimensional Lieb lattices L3(n), n =

1, 2, 3, 4 and the schemes are shown in Fig. 2.1. Based on the tight binding method,
the Hamiltonian is

H =
∑
r⃗

εr⃗|r⃗⟩⟨r⃗| −
∑
r⃗ ̸=r⃗′

tr⃗r⃗′|r⃗⟩⟨r⃗′| , (6.1)

where the set of |r⃗⟩ indicates the orthonormal Wannier states corresponding to electrons
located at sites r⃗ = (x, y, z) of the Lieb lattice L3(n) and εr⃗ is the onsite potential [68].
Here, we consider locally correlated potentials εr⃗ which neither destroy the existence of
CLS nor renormalize their degeneracy while simultaneously offering the possibility of
localization for non-CLS states. To ensure this for any number n of Lieb sites, the
simplest choice is to set the onsite potential of Lieb sites ε(L)r⃗ constant, i.e. ε(L)r⃗ ≡ 0, while
introducing a spatially varying disorder potential on the cube sites ε(c)r⃗ via uncorrelated
uniform random numbers with disorder strength W such that ε(c)r⃗ ∈

[
−W

2
, W

2

]
. As usual,

we set the hopping integrals tr⃗,r⃗′ ≡ 1 for nearest-neighbor sites r⃗ and r⃗′ as energy scale
and tr⃗,r⃗′ ≡ 0 otherwise.

6.3 Results
In this chapter, we focus mainly on the first two representative cases of the lattice

family, L3(1) and L3(2). Note that, due to approximate mirror symmetry of the energy
spectrum around E = 0 (which is exact when ε(L)r⃗ = 0), we show results only for positive
energies E ≥ 0, although we have computed data for the full spectrum.

6.3.1 For Lieb lattice L3(1)

In this first case, namely L3(1), a single macroscopic degeneracy of CLS exists at
E = 0. We therefore begin to study the localization lengths ΛM via TMM at energy
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E ̸= 0, in order to avoid possible complications of the numerical schemes due to the
degeneracy.

1. Existence of localization transitions

These curves show a stable intersection point, indicating the existence of a critical
disorder Wc separating metallic from localized phases. Such critical transition is
extracted by FSS shown in Fig. 6.1(b,c), yielding Wc = 16.38(2) – which incidentally
is roughly the same as the standard Anderson transition Wc = 16.590(12) for a
cubic lattice at E = 0 [103]. However, the same computation repeated closer to
the macroscopic degeneracy – namely at E = 0.4, as shown in Fig. 6.1(d-f) – yields
a substantially higher critical transition value Wc ≈ 40.29(7) than the value for
E = 1 [?].

In Fig. ??(a) we show the localization length ΛM at energy E = 1 for M2 ranging
from 162 to 222 computed with high precision. These two results seem to hint
towards a divergence of Wc as the energy approaches the macroscopic degeneracy
at E = 0. Consequently, we systematically estimate the critical transition Wc(E)

within the interval 0 < E ≤ 1.5 – i.e. strictly different than E = 0 – for small
system sizes M = 6, 8 via TMM with maximal convergence error of ≤ 0.5%. The
resulting curve is shown in Fig. 6.2(a) with white circles connected by a solid line
within the yellow region – confirming the divergence of Wc(E → 0).

2. Spectral characterization of the localization transitions

To further validate the behaviour of Wc(E) and to compute the overall phase-
diagram, we look at the spectral properties of the Hamiltonian (2.3). Details on
the computations are reported in the caption of Fig. 6.2. The DOS – shown in
Fig. 6.2(a) for E > 0 and different disorder strengths W – exhibits intriguing
phenomena close to the macroscopic degeneracy level E = 0 in both the weak and
the large W regimes. Namely, we observe (i) a depletion of the DOS at E ≤ 1 for
W → 0, and (ii) a strong enhancement of the DOS at E ≤ 1 for W → ∞.

The former observation (i) is related to the fact that in the clean case W = 0 the
flatband E = 0 is touching the remaining dispersive bands via conical intersections
– with consequent decrease of the DOS as E → 0, as discussed in Ref. [69]. The
latter observation (ii) instead follows from the fact that for large W it becomes
energetically favorable for eigenstates to populate the unperturbed Lieb sites (where
the CLS live) rather than the disordered cube sites. This is confirmed in Fig. 6.3
where we show the projected norm of eigenstates at the Lieb sites (red colors) and
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the cube sites (blue colors) as function of the energy E for different disorder strength
W (shown with different symbols).

What appears is an increase of the relative norm in the Lieb sites (and complemen-
tary a decrease of the relative norm in the cube-sites) as |E| → 0 – trends which are
enhanced as the disorder W increases. In particular, for strong disorder W = 50,
the norm of the eigenstates for E ≪ 1 is almost exclusively located at the Lieb sites.
Such effective projection of the eigenstates at E ̸= 0 on the set of CLS at E = 0

results in lowering the energies of a large fraction of states close to the macroscopic
degeneracy – and, consequently, the strong enhancement of the DOS for E ≪ 1

as W → ∞. Note that in these calculations we have excluded those eigenstates
with |E| ≤ 10−4, removing the degenerate CLS. However, close to E = 0, each of
the different potential realizations yields a single eigenstate at E ∼ 10−2, which is
an accidental degeneracy following from the ⟨ε(c)r⃗ ⟩N→∞ → 0 [89]. Such eigenstates
result in the outlier points close to E = 0 in Fig.6.3.

3. Spectral gap ratio statistics

The diverging behaviour of Wc(E) shown in Fig. 6.2(a) had been estimated via
TMM. In order to find further support for this behaviour, we now use the indepen-
dent spectral gap ratio statistics for ⟨r⟩ to compute the full phase-diagram for L3(1)

via sparse-matrix diagonalization. In Fig. 6.2(b) we show the ⟨r⟩ for L = 4×203 as
function of the E and W . The results convincingly confirm the diverging trend for
the transition curve Wc(E) from extended with ⟨r⟩ ∼ ⟨r⟩Sur (∼ 0.53) to localized
with ⟨r⟩ ∼ ⟨r⟩Poi (∼ 0.38) as E → 0 for W ≳ 10. In particular, the r-value-based
transition line shows strong agreement with the transition curve obtained from the
scaling behaviour of localization lengths ΛM (shown in Fig. 6.2(b) with white solid
line). Furthermore, we observe that close to E = 0 in the small W regime, the ⟨r⟩
drops from r ∼ 0.529 – a decrease occurring in correspondence to the depletion of
the DOS.

We first have a more in-depth look at the localization-to-delocalization transition
(white solid line in Fig. 6.2(b)) when starting from high E and/or W values. Anal-
ogously with the TMM, we fix energy to E = 1 and study the behaviour of ⟨r⟩(W )

for various system sizes N . In Fig. 6.4(a-c) we show FSS results for ⟨r⟩ values for
N ranging from 18 to 24 around the expected transition value Wc ≈ 16.4.

We find that the critical disorder Wc ≈ 16.36(2) as computed with the r-statistics
is in excellent agreement with the critical value Wc = 16.38(2) obtained via TMM.
Furthermore, as detailed in Table 6.1, the FSS results are in agreement with the
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conventional critical exponents for the 3D Anderson transition [6,103]. Indeed, the
critical exponent ν = 1.51 is also in agreement with the TMM result. Last, we
see in Fig. 6.4(a) that the value ⟨r⟩(Wc) = 0.5145, which is one of the contour
lines highlighted in Fig. 6.4(b), separates localized from extended behaviour, again
emphasizing the consistency of our results.

These measurements are further confirmed by the results obtained via the spectral
statistics based on the |z| measure introduced in Refs. [80, 81]. In Fig. 6.4(d) we
plot the ⟨|z|⟩(W) data and corresponding FSS lines for N ranging from 16 to 24

at E = 1, again around the expected Wc ≈ 16.4. In Fig. 6.4(e-f) we show the
associated scaling function and scaling parameter. The results agree with those
obtained via r-statistic, albeit with larger error bars, giving a critical transition
at Wc ≈ 16.40(3). Full details about the finite-size scaling(FSS) and the scaling
parameters of ΛM , r-values and |z|-values are reported in Table. 6.1. In particular,
we note that FSS is possible even without having to take into account irrelevant
corrections to scaling. We have also performed FSS with irrelevant corrections,
and found fits with acceptable χ2 statistics. However, already the FSS without
irrelevant corrections is stable, i.e. independent of the chosen disorder range, and
robust, i.e. Wc and ν values to not violate their error boundaries when increasing
the expansion orders nr, mr. We therefore only show the results for the latter case
in Table 6.1. This is also the case for the FSS results from the TMM data.

4. The “inverse transition” at small E and W values

As briefly mentioned above when discussing Fig. 6.2, the region of E ≲ 1 and
W ≲ 10 for the DOS and phase diagram of L3(1) indicates a small DOS ∼ 102

as well as small ⟨r⟩ ∼ 0.4 values. These observations suggest that the regime
again corresponds to localized states, and, consequently, the system might in fact
exhibit an “inverse” Anderson transition whereby upon increasing W at some fixed
0 < E ≲ 1 one can observe a transition back into the extended regime.

In order to study this possibility in detail, we choose E = 0.4 and again compute
localization lengths ΛM via TMM as well as ⟨r⟩ statistics as function of W for
increasing bar width M or system size N , respectively, aiming for a maximal con-
vergence error of 0.1% for TMM. In Fig. 6.5, we show the resulting data. The error
bars are mostly within symbol size, highlighting the reliability of the data.

We find that the localization lengths ΛM shown in Fig. 6.5(a) do indeed exhibit the
expected opposite dependency on M . For W ≤ 1 increasing M leads to an decrease
of ΛM while for W ≳ 15, increasing M increases ΛM , at least for the larger sizes
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Reduced localization length ΛM

M E δW nr mr Wc CI(Wc) ν CI(ν) p

20,22,24,26 0.4 39.0-41.5 2 1 40.29 [40.16, 40.42] 1.50 [1.28, 1.73] 0.52

20,22,24,26 0.4 39.0-41.5 3 1 40.29 [40.15, 40.43] 1.51 [1.27, 1.75] 0.46

20,22,24,26 0.4 39.0-41.5 3 2 40.35 [40.14, 40.56] 1.51 [1.26, 1.76] 0.44

20,22,24,26 0.4 39.0-41.5 4 1 40.30 [40.16, 40.44] 1.51 [1.27, 1.75] 0.43

Averages: 40.31(4) 1.51(6)

M E δW nr mr Wc CI(Wc) ν CI(ν) p

16,18,20,22 1 15.9-16.8 2 1 16.38 [16.36, 16.41] 1.50 [1.37, 1.63] 0.22

16,18,20,22 1 15.9-16.8 3 1 16.39 [16.36, 16.41] 1.51 [1.38, 1.65] 0.19

16,18,20,22 1 15.9-16.8 3 2 16.41 [16.38, 16.45] 1.50 [1.37, 1.63] 0.37

16,18,20,22 1 15.9-16.8 4 1 16.39 [16.36, 16.42] 1.51 [1.37, 1.65] 0.18

Averages: 16.39(1) 1.51(4)

r-Values
N E δW nr mr Wc CI(Wc) ν CI(ν) p

18,20,22,24 1 16.0-16.7 2 1 16.36 [16.32, 16.40] 1.51 [1.21, 1.80] 0.56

18,20,22,24 1 16.0-16.7 3 1 16.36 [16.31, 16.40] 1.54 [1.22, 1.86] 0.54

18,20,22,24 1 16.0-16.7 3 2 16.37 [16.32, 16.42] 1.55 [1.22, 1.88] 0.53

18,20,22,24 1 16.0-16.7 4 1 16.36 [16.31, 16.40] 1.54 [1.22, 1.86] 0.51

Averages: 16.36(2) 1.54(9)

|z|-Values
N E δW nr mr Wc CI(Wc) ν CI(ν) p

16,18,20,22,24 1 16.0-16.7 2 1 16.40 [16.34, 16.45] 1.35 [1.01, 1.68] 0.67

16,18,20,22,24 1 16.0-16.7 3 1 16.40 [16.34, 16.45] 1.49 [1.10, 1.88] 0.75

16,18,20,22,24 1 16.0-16.7 3 2 16.40 [16.34, 16.47] 1.47 [1.08, 1.85] 0.73

16,18,20,22,24 1 16.0-16.7 4 1 16.40 [16.35, 16.46] 1.46 [1.09, 1.84] 0.75

Averages: 16.40(2) 1.44(10)

表 6.1: Critical parameters of the traditional (standard) Anderson transition for L3(1) with
reduced localization length ΛM , r- and |z|-values as indicator, respectively. The columns give
the size of the system (the width M of the cross section of a TMM bar and of the side length N
of a cube for ΛM and r- and |z|-values, respectively), fixed E, range of W , FSS expansion orders
nr, mr and the resulting critical disorders Wc, their 95% confidence intervals (CI), the critical
exponent ν, and its CI, and the goodness of fit probability p in order. The averages contain the
mean of the three preceding Wc and ν values, with standard error of the mean in parentheses.
The bold Wc and ν values highlight the fits used as examples in Fig. 6.1 and Fig. 6.4.

66



博士学位论文
studied. Hence there seems to be indeed a change from localized behaviour at small
W to extended behaviour at larger W . However, we also observe considerable non-
monotonic behaviour, e.g. for M = 14, and a complete absence of a clearly defined
crossing point to serve as estimate for Wc. The behaviour cannot be captured by
the standard FSS techniques and the required “corrections to scaling” are clearly
beyond what one can expect a systematic modelling of irrelevant corrections to
achieve [6,124]. Nevertheless, using the crossings defined by considering just system
sizes M2 = 62 and M2 = 82 from Fig. 6.5(a), we find that the resulting “phase
boundary” faithfully follows the trend for the contours of DOS and ⟨r⟩ values as
shown in Fig. 6.2(b). Similarly, the ⟨r⟩ values reach ⟨r⟩Sur when W ≳ 6. For W ≲ 2,
the truly localized ⟨r⟩Poi (∼ 0.38) is not attained, but at least we find that ⟨r⟩ drops
significantly to ∼ 0.45. Again as in the case of the TMM data, no clear, system
size-independent transition point emerges for the system sizes studied by us.

In summary, the results at E = 0.4 indicate the presence of a non-conventional
“inverse transition”al change from localized to extended regime as W increases
close to the macroscopic degeneracy of CLS. This seems similar to the proposed
“inverse” transition reported in a 3D all-band-flat network in the regime of weak
uncorrelated disorder [25, 101].

For Lieb models L3(n) with n ≥ 2

We now briefly sketch the situation for the other Lieb lattices L3(2), L3(3) and L3(4).
For L3(2), we show DOS, ⟨r⟩-based phase diagram and TMM-based approximate phase
boundaries in Fig. 6.6. The CLS at E ± 1 are not explicitly shown in the figure but
clearly visible by the behaviour of the non-CLS states around them. There is an identical
signature of depletion of states, as for L3(1), in the small W region when E → 1±. On
the other hand, for both large E and W the DOS depletes and the ⟨r⟩-values indicate
localized behavior. Two extended regions emerge, both of which tend to lie close to the
region of the CLS when W ≳ 20. These results are supported again from estimates
based on TMM for M2 = 62 and M2 = 82. We note that due to the absence of CLS
for E = 0, we can indeed observe the usual change from extended to localized behaviour
upon increasing W with Wc ∼ 16 marking the boundary between both regimes. We can
also find the “inverse” behaviour again, e.g. for L3(2) for 1 ≲ E ≲ 2, where increasing W
leads to a change from localized to delocalized behaviour.

This trend continues for L3(3) and L3(4) as shown in Fig. 6.7: the originally dis-
persive bands, when W = 0, move their states closer to the CLS upon increasing W ,
reducing the DOS for energies further from the CLS-energies and eventually localizing
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these. A sizable part of the spectrum moves closer to the CLS-energies, with states being
moved onto the Lieb sites as shown for L3(1).

1. Projected probabilities beyond E ≥ 1.5 and participation ratios

In Fig. 6.8 we show the same data as in Fig. 6.3, but now for E ≥ 0. We find that
the projected probabilities cross when E ∼ 2.45. This happens at all W s that we
have studied, i.e. up to W = 100. Closer investigation reveals that about 50% of all
4×N3 possible states are CLS, 25% get shifted towards the CLS energies when W
increases, while the remaining 25% localize and spread out into the full range of the
spectrum. The relative participation numbers, i.e. P = 1/

∑Lmax
l=1 |ψ(r⃗l)|4/(Lmax) as

shown in panel (b) of Fig. 6.8, indicate that indeed appreciable P are only observed
close to the CLS energy E = 0 for L3(1). Note that here Lmax is the number of sites
corresponding to cube and Lieb sites, i.e. N3 and 3nN3, respectively, for L3(n).

2. Phase diagrams of DOS and r-values for L3(3) and L3(4)

We plot DOS, the ⟨r⟩-based phase diagram and TMM-based approximate phase
boundaries in Fig. 6.7 for L3(3) and L3(4). The CLS at E ± 1 are not explicitly
indicated in the figures but clearly visible by the behaviour of the non-CLS states
around them. There is an identical signature of depletion of states, as for L3(1) and
L3(2), in the small W regions when E approaches the CLS energies. For larger W ,
clear areas of localization behaviour emerge except for energies close to the CLS
energies where even very strong disorder does not appear to suppress delocalized
behaviour for the system sizes studied here. We can also find the “inverse” behaviour
again in various energy regions although better energy resolution would be needed
to reproduce fine details such as given, e.g., for L3(1) in Fig. 6.2.

6.3.2 Conclusion

In this paper, we considered the disorder εcr, together with the order εLr = 0, re-
tains the distinction between CLS and the rest of the states, leaving the CLS are
unchanged for any W . The converse is manifestly not the case: about half of the
non-CLS states for, e.g., L3(1) get pushed in energy close to the energy of the CLS
and become evermore concentrated on the Lieb sites. This leads to an accumula-
tion of DOS near the CLS energies and, ultimately, to the existence of seemingly
extended states even for very strong W for all the L3(1) to L3(4) probed here.

For the transition from extended to localized behaviour upon increasing E or W in
the phase diagrams we find that the critical properties can be extracted as usual via
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FSS with critical exponent ν compatible with the usual value of the cubic Anderson
lattice [6,103]. Hence, although the changes to the phase diagrams are drastic, the
universal nature of the transition at this phase boundary does not change.

However, when instead decreasing E and W from the extended regimes, we do
not see a clear signature of a transition as function of a single critical parameter
strength. Rather, it appears that the changes of phase behaviour do no follow
traditional scaling or require much larger system sizes to reach the scaling regime.

Overall, the model presents a situation where upon increasing W , the CLS are
retained while non-CLS states are forced to become more and more CLS-like, in
terms of energy as well as in terms of spatial location. As the CLS states are among
a class of states that might become relevant for future information storage devices.
Our result hence suggest a way in which disorder is not detrimental to such an
application, but rather enhances the stability of the CLS.

6.4 Conclusion
In this paper, we considered the disorder εcr, together with the order εLr = 0, retains

the distinction between CLS and the rest of the states, leaving the CLS are unchanged
for any W . The converse is manifestly not the case: about half of the non-CLS states
for, e.g., L3(1) get pushed in energy close to the energy of the CLS and become evermore
concentrated on the Lieb sites. This leads to an accumulation of DOS near the CLS
energies and, ultimately, to the existence of seemingly extended states even for very
strong W for all the L3(1) to L3(4) probed here.

For the transition from extended to localized behaviour upon increasing E or W
in the phase diagrams we find that the critical properties can be extracted as usual via
FSS with critical exponent ν compatible with the usual value of the cubic Anderson
lattice [6, 103]. Hence, although the changes to the phase diagrams are drastic, the
universal nature of the transition at this phase boundary does not change. However,
when instead decreasing E and W from the extended regimes, we do not see a clear
signature of a transition as function of a single critical parameter strength. Rather, it
appears that the changes of phase behaviour do no follow traditional scaling or require
much larger system sizes to reach the scaling regime.

Overall, the model presents a situation where upon increasing W , the CLS are re-
tained while non-CLS states are forced to become more and more CLS-like, in terms
of energy as well as in terms of spatial location. As the CLS states are among a class
of states that might become relevant for future information storage devices. Our re-
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sult hence suggest a way in which disorder is not detrimental to such an application,
but rather enhances the stability of the CLS. While solid-state devices with the chosen
highly-correlated disorder/order distribution appear unlikely to become readily available
soon, a much simpler route could be via cold atoms in optical lattices [58, 125, 126] or
in photonic band-gap systems [59–63,127] where single-site potential modulation has be-
come routine [120]. In such experimental and hence finite set-ups, it may be that the
relevance of our finite size results is even more important than any large scale limit. Last,
it should be clear that an investigation of the influence on many-body interaction, in the
presence of the CLS-preserving disorder considered here, should be most insightful.
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图 6.1: Finite-size scaling of the reduced localization lengths ΛM for L3(1) at large W regimes
with E = 1 (a,b,c) and E = 0.4 (d,e,f), respectively. The bar area M2 ranges from 162 (blue
×), 182 (red ⃝) with maximal convergence error ≤ 0.1%, to 202 (green 2), 222 (black +) with
maximal convergence error ≤ 0.22%, and to 242 (cyan 3) and 262 (magenta △) with maximal
convergence error ≤ 0.5%. The reduced localization length ΛM versus the disorder strength W

on the cube sites, and the fits to the data showed in solid line with expansion coefficients nr = 2

and mr = 1 for both graphs are present in (a) and (d). The (b) and (e) give double logarithmic
plot of scaling function ΛM and ξ/M with scaled data points. The scaling parameter ξ as a
function of cube disorder W and the scaled data points are shown in (c) and (f), with the vertical
lines indicating the estimated Wc values and their CI intervals in (green) shade. Error bars are
within the symbol size. Details of the scaling results are given in Table 6.1.
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图 6.2: Energy E and disorder W dependant (a) DOS and (b) r-values for L3(1). The diagrams
have been obtained for system sizes L = 4× 203 and at least 100 independent potential configu-
rations for each (E,W ) pair. For each such configuration, up to 100 energy eigenvalues around
the target energy E have been computed. The minimal energy spacing is ∆E = 0.05 while the
minimal disorder spacing ∆W = 0.1; adaptively chosen 3300 individual (E,W ) pairs contribute
to the computed DOS and r-value density plots. The flat-band states at E = 0 (≤ 10−10) are
not shown in both panels for clarity. The dark lines for (a) denote contours of 103 (dashed)
and 104 (solid) states, while for (b) the lines in the red-shaded region correspond to ⟨r⟩ = 0.53

(dashed), 0.5145 (solid) and in the blue-shaded region, they denote ⟨r⟩ = 0.4 (dashed) and 0.38

(solid). The white lines in (a) and (b) denote estimates of the transitions obtained by small-M
TMM with the 2 different lines corresponding to the crossings of ΛM values between M = 6

and M = 8 from localized-to-delocalized (solid) and delocalized-to-localized (dashed) behaviour
upon decreasing W at constant E. In (a) these small-M estimates for (Ec,Wc) are given as
white circles.
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图 6.3: Projected probabilities |ψ(r)|2 for cube sites (blue colors, open symbols) and Lieb sites
(red colors, filled symbols) with disorders W = 10 (◦), 20 (3) and 50 (2) for L3(1). The line
for Lieb sites with W = 10 is given to highlight that the data points represent averages for
144 potential configurations with energy resolution ∆E = 0.05. The system size in all cases is
L = 4× 203.
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图 6.4: Finite size scaling results of the (a–c) r-values and (d–f) z-values for L3(1) in the high W
region at E = 1, respectively. The system sizes L = 4×N3 are from N = 16 (blue ×), 18 (red
⃝), 20 (geen 2), 22 (black +), and to 24 (cyan 3). For each N and W , 10000 different potential
configurations have been calculated and for each we include up to 100 energy eigenvalues around
the target energy E in the computing ⟨r⟩ and ⟨|z|⟩. Panel (a) and (d) show the ⟨r⟩-values (⟨|z|⟩-
values) versus W data and the fits to the data, as given in Table 6.1 with expansion coefficients
nr = 2 and mr = 1, are marked with solid lines. Panels (b) and (e) give double logarithmic
plots of scaling function r-values(z-values) versus ξ/M with scaled data points. The scaling
parameter ξ(W ) is shown in panels (c) and (f). The vertical lines indicate the Wc values and
the shaded region their CI. Error bars as shown in panels (a), (b), (d) and (e) are mostly within
symbol size. The horizontal lines in panels (a) and (d) denote the values ⟨r⟩ = 0.5148 (with CI
[0.5143, 0.5153]) and ⟨|z|⟩ = 0.5624 (with CI [0.5621, 0.5627]) obtained at Wc.
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图 6.5: (a) Reduced localization length ΛM versus disorder W at small disorder for L3(1) at
E = 0.4 and TMM bar area M = 62 (yellow ⃝), 82 (grey ▽), 102 (cyan +), 122 (magenta 3)
and 142 (black △), 162 (blue ×), 182 (red ⃝), 202 (green 2). The error bars are all shown, and
within symbol size. The inset focuses on the small W regime 0.01 ≤W ≤ 1. (b) r-values versus
disorder W at E = 0.4 for system size L = 4 × N3 with N = 20 (green 2), 22 (black +), 24
(cyan 3) and 26 (magenta △), 28 (grey ×), 30 (blue ⃝) with 10000 potential realizations for
each (N,W ) pair. The horizontal dashed green (red) line represents the extended (localized)
regime with ⟨r⟩Sur (⟨r⟩Poi). All other lines are guides to the eye, only.
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图 6.6: Energy E and disorder W dependant (a) DOS and (b) r-values for L3(2). Both panels
have been computed with the same parameters as in Fig. 6.2, except that the minimal energy
spacing increases to ∆E = 0.2, giving in total 1581 individual (E,W ) pairs. The flat-band states
at E = 1 are not shown in both panels for clarity. The dark lines are as in Fig. 6.2 in (a) given by
103 (dashed) and 104 (solid) states, while for (b) they correspond to ⟨r⟩ = 0.53 (dashed), 0.5145
(solid) in the red region, ⟨r⟩ = 0.4 (dashed) and 0.38 (solid) in the blue region. Also as in Fig.
6.2, the white lines in (a) and (b) denote estimates of the phase boundaries obtained by small-M
TMM with the 2 different lines corresponding to the crossings of ΛM values between M = 6

and 8 from localized-to-delocalized (solid) and delocalized-to-localized (dashed) behaviour upon
decreasing W at constant E.
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图 6.7: (a,c) DOS and (b,d) r-values for (a,b) L3(3) and (c,d) L3(4) similar to Fig. 6.6 with
a total of 1587 adaptive individual (E,W ) pairs. The flat-band states at (a,b) E = 0 and

√
2

for L3(3) and (c,d) at E = (
√
5 − 1)/2 ∼ 0.618 and (1 +

√
5)/2 ∼ 1.618 for L3(4) are again

not shown in all panels for clarity. The dark lines are also as before, i.e. 103 (dashed) and 104

(solid) in (a,c), while they correspond to ⟨r⟩ = 0.53 (dashed), 0.5145 (solid) in the red region,
⟨r⟩ = 0.4 (dashed) and 0.38 (solid) in the blue region in (b,d).
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图 6.8: (a) Projected probabilities |ψ(r⃗)|2 for cube sites (blue colors, open symbols) and Lieb
sites (red colors, filled symbols) with disorders W = 10 (◦), 20 (3) and 50 (2) for L3(1) as in
Fig. 6.3, but with a different range in E to highlight the crossing point at E ∼ 2.45 (vertical
dashed line). (b) Participation numbers expressed relative to the number of cube and Lieb
sites. In both panels, the line for Lieb sites with W = 10 is given to highlight that the data
points represent averages for 144 potential configurations with energy resolution ∆E = 0.05.
The system size in all cases is L = 4× 203.
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Chapter7 Summary and outlook

This article primarily investigates the localization properties of two-dimensional and
three-dimensional Lieb models and their extended versions. Our research findings include:

1. For the two-dimensional Lieb model and its extended version with onsite potentials
following a uniform random distribution, the density of states (DOS) peak originating
from the flat band is rapidly destroyed by disorder. States at the flat band and those at
the dispersion band exhibit distinctly different localization properties; states at the flat
band seem to manifest a localization similar to a one-dimensional scenario. However, for
disorder strengths as low as W ∼ t, all states become localized.

2. Extending the above scenario to three dimensions, the DOS peak originating
from the flat band is similarly rapidly destroyed by disorder. The three-dimensional Lieb
model and its extended versions exhibit a lower critical disorder strength Wc compared
to a simple cubic lattice, indicating a stronger localization tendency in the Lieb model.
However, the critical exponent at the transition point remains unchanged.

3. After introducing correlated disorder, i.e., considering a combination of ordered
and disordered potentials, high degeneracy energy levels and compact localized states
(CLS) continue to exist, while ensuring the presence of disorder. Interestingly, the exis-
tence of CLS seems to lead to a divergence of the mobility edge and a potential ”inverse”
Anderson transition in low-disorder regimes. The divergence of the mobility edge pri-
marily arises from the fact that with increasing disorder strength W , half of the states
from the non-dispersive band tend to approach the CLS states in terms of energy and
spatial distribution, resulting in an accumulation of states near CLS and thus causing the
divergence of the mobility edge.

4. Furthermore, building upon the aforementioned work, we discover that uniform
random disorder is not necessary for enhancing CLS; a constant potential with a smaller
disorder strength is sufficient.

As mentioned earlier, CLS may belong to a category of states relevant to future
information storage devices. While solid-state devices with selectively highly correlated
ordered/disordered distributions are unlikely to be realized in the near future, a sim-
pler approach might involve cold atoms in optical lattices [58,125,126] or photonic bandgap
systems [59–63,127], where modulation of single lattice site potentials has become a rou-
tine operation [120]. Therefore, our results may offer new insights for future information
storage devices.

We emphasize that our results are based on a uniform random distribution of diagonal
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disorder. For non-diagonal disorder cases, interesting effects such as special energy levels
like E = 0 can arise due to the chiral symmetry of pure non-diagonal disorder [128–130].
How these cases interact with the flat band of the Lieb model presents an intriguing avenue
for further investigation. Additionally, many-body and non-Hermitian problems [131,132]

represent cutting-edge areas, and exploring what new phenomena the flat band may
exhibit in such contexts is worth exploring.
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