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T. Blake

An introduction to Flavour Physics

• What’s covered in these lectures: 

1. An introduction to flavour in the SM.  

2. CP violation (part 1). 

3. CP violation (part 2).!

➡ Angles and sides of the Unitary triangle, constraints 
from kaon physics, CPT invariance.!

4. Flavour changing neutral current processes.
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T. Blake

Recap: CP violation
• Three ways to observe CP 

violating effects: 

1. Direct CP violation  

!

2. Mixing induced CP violation 

!

3. CP violation in the interference 
between mixing and decay
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Recap: CP violation
• Three ways to observe CP 

violating effects: 

1. Direct CP violation  

!

2. Mixing induced CP violation 

!

3. CP violation in the interference 
between mixing and decay
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Recap: CKM matrix
• The CKM matrix is a complex 3x3 unitary matrix  

➡ 9 magnitudes and 9 phases 
➡ V†V = 1 

• Unitary condition gives 9 constraints, e.g.   

!

!

• Can absorb phases into external quark fields. 
➡ 4 parameters, 3 Euler angles and a single complex phase. 

NB If there were only two generations, V would be a real rotation 
matrix with no complex phase.
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|Vud|2 + |Vus|2 + |Vub|2 = 1

VudV
⇤
ub + VcdV

⇤
cb + VtdV
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tb = 0
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CKM elements
• Magnitude of most CKM elements is measurable using 

semileptonic decays 

!

!

!

!

!

• Exceptions are the elements Vtd and Vts. These come from mixing 
measurements in the Bd and Bs system (from ∆md and ∆ms).  
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An aside: lifetimes
• Smallness of |Vub| and |Vcb|: 

➡ B mesons are “long lived”.  
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⌧(B0) = 1.520± 0.004 ps

⌧(B+) = 1.638± 0.004 ps

⌧(B0
s ) = 1.509± 0.004 ps

see http://www.slac.stanford.edu/xorg/hfag/ for details

http://www.slac.stanford.edu/xorg/hfag/
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Recap: CKM matrix
• Standard form is to express the CKM matrix in terms of three 

rotation matrices and one CP violating phase,  

!

!

!

where  
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Wolfenstein parameterisation
• Can also exploit the hierarchy of the CKM matrix to write  

!

!

!

!

where
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Unitarity triangles
• Unitarity conditions can be represented by 

triangles in the complex plane. 
➡ Six triangles with the same area. 
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Unitarity triangles
• There are 6 different unitarity triangles, all with equal area.
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Sides of the triangle
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Vtd and Vts

15

Rt extracted from 
mixing
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Neutral meson mixing

Bq Bq

Vtb

V ⇤
tq

t

W W
t̄

q̄

q = s, db

b̄V ⇤
tq

Vtb

• In SM generate meson anti-
meson mixing via box diagrams 
involving charged current 
interaction. 

!

!

• With:
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M12 =
1

2M
A(B0 ! B0) = hB0|H(�B = 2)|B0i
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Vtd and Vts from mixing
• Can be extracted from ∆m.  

• Amplitude for mixing is given by:
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Vub

18

Vub and Vcb set the 
length of one side 
of the triangle
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Determining Vub

• Three ways to determine Vub 

1.Inclusive decays of  

➡ No bare quarks, really looking at a sum of exclusive decays.  

2.Exclusive decays, e.g.  

3.Leptonic decays of                         e.g. 
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b ! u`�⌫̄`

B0 ! ⇡+`�⌫̄`

B+ ! `+⌫` B+ ! ⌧+⌫⌧
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Inclusive Vub

• Experimentally challenging due 
to backgrounds from b→c 
semileptonic decays. 
➡ Reduce backgrounds by 

cutting on the mass of the Xu 
system or the lepton energy 
(cutting at the end point to 
reject Xc).  

➡ Need a hermetic detector → 
BaBar and Belle. 

• Cuts to reject b→c introduce 
larger theoretical uncertainties. 
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Exclusive Vub

• Much simpler 
experimentally, but more 
challenging for theory.  
➡ Dependence on form-

factors for the  
transition. 
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B0 ! ⇡+`�⌫̄`

B ! ⇡

Simultaneous fit of BaBar, 
Belle data & lattice data, 
using Boyd-Grinstein-Lebed 
parameterisation. 
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Exclusive Vub
• Can determine Vub by fitting the differential decay rate seen by the 

BaBar and Belle experiments, e.g. for 
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• Hadronic form-factors needed as 
an external input.  

➡ Taken from Lattice QCD/LCSR 
calculations. 
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http://www.slac.stanford.edu/xorg/hfag
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Leptonic Vub 
• Branching fraction of leptonic decays 

!

!

!

!

• Experimentally challenging, only                       has a large 
branching fraction.   
➡ To reduce backgrounds in e+e- collisions can fully reconstruct 

the other B meson in the event.
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Inclusive vs exclusive Vub

• Can also determine Vub 
using inclusive            
decays and Heavy Quark 
Effective Theory.  

➡ See large tension 
between the inclusive and 
exclusive rates (>3𝜎).
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B ! Xu`⌫

From talk by Ruth Van der Water at FPCP 16. 
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Vub interpretation
• Can attempt to explain the Vub 

tension by introducing a RH 
current 

!

!

• Unfortunately it’s difficult to 
reconcile with measurement of Vub 
from Λb decays. 

• Is there an experimental issue with 
one or measurement or a failure 
with the theoretical framework? 
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[Phys. Rev. D 90, 094003 (2014)]

Le↵ / V L
ub(u�µPLb+

"Ru�µPRb)(⌫̄�
µPL`) + h.c
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D(*)𝜏ν
• There is also an interesting 

“tension” between experiment 
and theory in D(*)𝜏ν decays.  

!

!

• Difficult experimentally due to 
presence of neutrinos/missing 
energy in the final-state. 
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• Combining 
measurements from 
the B-factory 
experiments and 
LHCb.  

• SM expectations:

R(D)
0.2 0.3 0.4 0.5 0.6

R(
D

*)
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LHCb, PRL115,111803(2015)
Belle, PRD94,072007(2016)
Belle, PRL118,211801(2017)
LHCb, FPCP2017
Average

SM Predictions

 = 1.0 contours2χ∆

R(D)=0.300(8) HPQCD (2015)
R(D)=0.299(11) FNAL/MILC (2015)
R(D*)=0.252(3) S. Fajfer et al. (2012)

HFLAV

FPCP 2017

) = 71.6%2χP(

σ4

σ2

HFLAV
FPCP 2017

arXiv:1711.02505 (2017)

R(D) and R(D*)
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SM predictions from: 

R(D⇤) = 0.252± 0.003

R(D) = 0.297± 0.017

[Kamenik et al. Phys. Rev. D78 014003 (2008)], [S. Jajfer et al.  Phys. Rev. D85 094025 (2012)]

[http://www.slac.stanford.edu/xorg/hflav]

http://www.slac.stanford.edu/xorg/hflav
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R(D) and R(D*) interpretation
• Can expect enhancement of 

R(D) and R(D*) in models with 
charged scalars (e.g. 2HDM). 
However generically expect 
larger enhancement of R(D) 
than R(D*).  
See e.g. !
[Fajfer et al. PRL 109 (2012) 161801]  

!

• Can also get enhancements 
in models with leptoquarks. 
See e.g. !
[Bauer et al. PRL 116 (2016) 141802]
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BaBar 
Type II 2HDM  

tan�/mH+[BaBar, PRL 109 (2012) 101802]



Angles of the triangle
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CKM angle 𝛾
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CKM angle 𝛾

• Relative weak between the diagrams is -𝛾.  

• To determine 𝛾, need to decay to a common final state. 

Can be determined in tree and loop order processes! 
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How do we measure 𝛾?
• Need decay of       and       meson to a common final state. 

• Two options: 
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D ! fCP D0 ! K+⇡� D0 ! K+⇡�or
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Doubly Cabibbo  
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!
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Angle 𝛾

• Also need to account for relative suppression of the colour suppressed 
diagram and the relative strong phase difference, rB and 𝛿B.  

• To maximise sensitivity to 𝛾 need large interference  

➡ Interference is large for ADS, because we compare (favoured x 
suppressed) with (suppressed x favoured), i.e. similar magnitude. 
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CP violation in the GLW mode

35

CP violation shows � 6= 0
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GGSZ mode
• Need to perform an amplitude (Dalitz) analysis or bin in regions of 

the Dalitz plot to extract 𝛾 when using 

36

Resonant structure provides important phase information 
that can be used to remove ambiguities in determination of 𝛾

K0
S⇡

+⇡�

e.g [PRL 105 (2010) 121801]
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CKM angle 𝛾
• Combining measurements 

for GLW+ADS and GGSZ 
(for many modes) 

• Least well known of the 
angles.
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CKM angle 𝛼
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How do we measure 𝛼?
• Can measure alpha from time 

dependent CP violation in tree 
level                decays.  

!

• Unfortunately can also receive 
contributions from  
penguin decays to the same 
final state  
!
!
i.e. direct CP violation is 
possible.
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How do we measure 𝛼?
• Solution is to exploit isospin and 

combine several decay channels,  
e.g.             ,              and             . 

• Combine branching fractions and 
CP asymmetries from several 
channels.  
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B ! ⇡⇡ B ! ⇢⇡ B ! ⇢⇢



Constraints from kaon 
decays
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Kaon physics constraints

42
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CP in the kaon sector
• CP violation first observed in 2π decays of KL mesons.  

➡ Is it just mixing induced or do we also see direct CP violation? 

• If CP violation is mixing induced expect                  

!

!

• Also see evidence for CP violation in semileptonic decays 

!

!

• Relationship to ϵ/ϵ’
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NA 48 experiment
• Long running saga to establish Re(ϵ/ϵ’) ≠ 0 

➡ Confirmed by NA48 at CERN and KTEV experiment in Japan. 
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NA48 beams

Simultaneous 
beams of KS and 
KL from separate 

targets



T. Blake

NA 48 experiment
• Fixed target experiment in the CERN north area
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R =
|⌘00|2

|⌘+�|2
⇡ 1� 6Re

✓
✏0

✏

◆

= (13.7± 2.5± 1.8)⇥ 10�4

Double  ratio of π0π0 
and π+π- decays from 
KL and KS mesons
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Tension in ϵ’/ϵ?
• Experimental value for ϵ’/ϵ: 

!

• Recent improvement from Lattice QCD, give 

!

i.e. only in agreement with the experimental measurements at 2.6𝜎.
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✏0/✏ = (1.9± 4.5)⇥ 10�4

✏0/✏ = (16.6± 2.3)⇥ 10�4

[JHEP 11 (2015) 202]

Something to keep an eye 
on, this is a powerful test 
of many BSM models
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Resources
• CKMFitter 

➡ http://ckmfitter.in2p3.fr/ 

• UTFit 
➡ http://www.utfit.org/UTfit/ 

• Heavy Flavour Averaging Group (HFLAV) 
➡ https://hflav.web.cern.ch/ 

• Particle Data Group (PDG)  
➡ http://pdg.lbl.gov/
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http://ckmfitter.in2p3.fr/
http://www.utfit.org/UTfit/
https://hflav.web.cern.ch/
http://pdg.lbl.gov/
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CKM fit

49

1995

• Improvement in CKM picture driven by new 
experimental results and impressive 
improvements from Lattice QCD.
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CKM fit
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1995 2005
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CKM fit
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1995

2005

2010
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CKM fit
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1995

2010

2018



CPT
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CPT theorem
• Cannot write a quantum field theory that is Lorentz invariant, with 

a Hermitian Hamiltonian               , that violates the product of CPT. 

ie one where measurements are invariant of the position or 
Lorentz boost of the system. 

• Several important consequences, CPT implies:  

1. Mass and lifetime of particles and antiparticles are identical.  

2. Quantum numbers of antiparticles are opposite those of 
particles. 

3. Integer spin particles obey Bose-Einstein statistics and half- 
integer spin particles obey Fermi-Dirac statistics.
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Time reversal
• Time reversal symmetry maps  

!

• Obviously can’t test this experimentally, because we can’t run our 
experiments backwards in time.  

• We observe C violation and P violation, but the product CPT is 
known to be conserved, therefore CP violation = T violation.
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T violation in B system
• Generalisation of the sin 2β analysis.  

• Identify the flavour of the B by tagging the other B in the event. 
Also separate the decays by CP-odd (             ) or CP-even final 
state (             )
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B0 ! B�

B0 ! B+

J/ K0
S

J/ K0
L

B0(t1) ! B�(t2)

B�(t1) ! B0(t2)

• Time reversal violation would 
appear as a difference in 
rates between                              

and B� ! B0

B+ ! B0

BaBar Phys. Rev. Lett. 109, 211801 (2012)



Low energy flavour 
conserving observables
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Magnetic dipole moments
• “Spinning” charge acts as a magnetic dipole with moment µ 

giving an energy shift in external magnetic field, 

!

• Prediction of g = 2 (classically g = 1) was a big success of the 
Dirac equation,  e.g. in external field Aµ 

!

!

• Receives corrections from higher order  
processes, e.g. at order 𝛼2, 
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Anomalous magnetic moment
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Anomalous magnetic moment

• (g-2)e is a powerful precision test of QED 

!

• (g-2)µ receives important Weak and QCD contributions.  The 
latest experimental value from the Brookhaven E821 experiment 

!

from [Phys. Rev. Lett. 92 (2004) 1618102]  is ~3𝜎 from the SM expectation. 

• Could this be a hint of a NP contribution to (g-2)µ?  
For a review see [Phys. Rept. 477 (2009) 1-110] (arXiv:0902.3360).
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g-2
• Experiment at Fermilab aiming for 

0.1—0.2 ppm precision. 

• Basic idea is that the anomalous 
magnetic moment causes the 
spin to process at a different rate 
to the momentum vector. 
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Electric dipole moments
• Classically, EDMs are a measure of the spatial separation of 

positive and negative charges in a particle.  
➡ A finite EDM can only exist if the charge centres do not 

coincide.  

• Can also be measured for fundamental particles (electron, muon, 
neutron etc).  
➡ Interpreted as a measure of the sphericity of particle. 

• Tested using the Zeeman effect, i.e. looking for shift in energy 
levels under an external electric field                       . 
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Electric dipole moments
• A non zero EDM would violate T and P 

symmetries.  
➡ Under time reversal, the magnetic 

moment would change direction but the 
EDM would remain unchanged.  

➡ Under parity, the EDM would changes 
direction but the magnetic dipole 
moment remains unchanged.  

• Violation of P and T implies CP violation.
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Electric dipole moments
• Electron EDM: 

[Science 343 (2014) 6168]!

• Muon EDM:  
[Phys. Rev. D 80 (2009) 052008]!

• Neutron EDM: 
[Phys. Rev. Lett. 97 (2006) 131801]!

!

• Probing amazingly small charge separation distances!
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Strong CP problem
• The complicated nature of the QCD vacuum should give rise to a 

term:  

!

• This is both P and T violating but C conserving  
(and hence CP violating).   

• This term will also contribute to the neutron dipole moment but 
experimentally we know this is small.  

!

• What mechanism forces 𝜃 to be small? 
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Strong CP problem
• The small size of the 𝜃 parameter is a (another) massive fine 

tuning problem.  

• Peccei-Quin solution is to introduce a U(1) symmetry that removes 
the strong CP problem by dynamically making 𝜃 small. 

➡ Spontaneous breaking of this symmetry is associated with a 
pseudo Nambu-Goldstone boson (c.f. Higgs mechanism), the 
axion.  

➡ The axion can be light particle that couples very weakly to 
known SM particles. 
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Axion searches
• There are a large number 

of searches for axions 
produced in particle 
collisions.  

• Could also be detected by 
converting axions to 
photons in the presence of 
a strong magnetic field, 
e.g. CAST experiment at 
CERN. 
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Recap
• In this lecture we discussed: 

➡ The sides of the unitarity triangle and the tension in Vub.  

➡ The CKM angles 𝛼 and 𝛾. 

➡ CP violation in the kaon system.  
➡ T violation and CPT.  
➡ Electric and magnetic dipole moments.
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GLW/ADS observables
• Large number of observables sensitive to 𝛾.  

!

!

!

!

!

!

• rB ~ 0.1, rD can be taken from measurements at CLEO-c and 
BES III.

RCP+ =

�[B± ! D[⇡+⇡�,K+K�
]K±

]

�[B± ! Dfav.K±
]

= 1 + r2B + 2rB cos �B cos �

RADS =

�[B± ! Dsupp.K±
]

�[B± ! Dfav.K±
]

=

r2B + r2D + 2rBrD cos(�B + �D) cos �

1 + (rBrD)

2
+ 2rBrD cos(�B � �D) cos �

ACP+ =

�[B� ! DCPK�
]� �[B+ ! DCPK+

]

�[B� ! DCPK�
] + �[B+ ! DCPK+

]

=

2rB sin �B sin �

1 + r2B + 2rB cos �B cos �

AADS =

�[B� ! DADSK�
]� �[B+ ! DCPK+

]

�[B� ! DADSK�
] + �[B+ ! DADSK+

]

=

2rBrD sin(�B + �D) sin �

r2B + r2D + 2rBrD cos(�B + �D) cos �
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Λb→p𝝁−ν
• Measure ratio of  

!

!

• Use secondary vertex to define 
corrected mass  

!

where      is  the missing transverse 
momentum. 

• Use form-factors from lattice QCD at 
high q2 to determine Vub. 
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Vub from Λb decays
• Can also determine                

using Λb baryon decays at 
LHCb by measuring 

!

• Use secondary vertex to 
define corrected mass  

!

where      is the missing 
transverse momentum. 

• Use form-factors from 
Lattice QCD at high q2 to 
determine
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