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Abstract

How, and how well, do people switch between exploration and exploitation to search for and

accumulate resources? We study the decision processes underlying such exploration/exploitation

trade-offs using a novel card selection task that captures the common situation of searching among

multiple resources (e.g., jobs) that can be exploited without depleting. With experience, partici-

pants learn to switch appropriately between exploration and exploitation and approach optimal

performance. We model participants’ behavior on this task with random, threshold, and sampling

strategies, and find that a linear decreasing threshold rule best fits participants’ results. Further evi-

dence that participants use decreasing threshold-based strategies comes from reaction time differ-

ences between exploration and exploitation; however, participants themselves report non-

decreasing thresholds. Decreasing threshold strategies that “front-load” exploration and switch

quickly to exploitation are particularly effective in resource accumulation tasks, in contrast to opti-

mal stopping problems like the Secretary Problem requiring longer exploration.

Keywords: Exploration; exploitation trade-off; Optimal search; Resource patches; Model

comparison; Threshold strategy; Secretary Problem

1. Introduction

Search is a ubiquitous requirement of everyday life. Applicants look for the best job to

match their skills; scientists search for information to help their research; and web surfers

use search engines like Google to obtain information and products from the internet. In

many situations, whether to search (i.e., explore for better options) or to stop searching
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(and exploit the fruits of search already done) is a key issue for making good decisions.

Because of its importance, strategies for balancing between exploration and exploitation

have been widely studied across many fields, including animal behavior, psychology,

management, and computer science (Christian & Griffiths, 2016; Hills et al., 2015; Todd,

Hills, & Robbins, 2012). The kinds of strategies that humans and other organisms can

use to deploy exploration and exploitation effectively depend on the details of the search

tasks they face. In this paper, we investigate a common type of search task to study how,

and how well, people regulate and adjust their use of these two components of search.

Many common search tasks involve exploring a sequence of options and deciding

whether and how long to exploit (i.e., stick with) each one, with the searcher getting

payoff from each selected option at each point of the search. For instance, a person’s

career can be thought of as a search process over a sequence of jobs—the searcher

explores and finds a new job and accepts it, receiving a payoff for as long as they

exploit that opportunity; but at any point they can decide to explore again to find a new

job. In some of these cases, the rewards from exploiting an option can decrease over

time—this happens when the option is actually consumed or used up, as in patches of

food eaten by foraging animals (Charnov, 1976; Hills, Kalff, & Wiener, 2013; Hutchin-

son, Wilke, & Todd, 2008) or clusters of webpages found and read by an individual

online (Pirolli, 2005, 2007) or when the challenges from a particular job become routine

and uninteresting. These situations require an ongoing switch back and forth between

exploring for a new bountiful option, exploiting that option and extracting its benefit for

some time, and then exploring again once the option is sufficiently used up. The searcher

here decides how long to exploit the diminishing option before leaving to explore and

find a better one.

In other cases, the resources do not deplete, but rather stay constant over time (e.g., a

job with a salary that tracks inflation), or go up (e.g., a job with substantial raises, or a

romantic relationship that deepens with time), or even alternate (as in a cyclically rising

and falling stock, or the Leapfrog task of Knox, Otto, Stone, and Love (2012), where the

value of two resource options switch rank over time). Even for these situations of ongo-

ing benefit, there can still be a reason to leave a current option and explore for possibly

better ones (e.g., if one’s current salary is insufficient); sit-and-wait foragers such as web-

building spiders and some ocean-dwelling filter feeders also face this kind of search as

they leave a currently stable feeding site to seek a better one (Beachly, Stephens, &

Toyer, 1995). Here the searcher must trade off between exploiting their current option

and thereby getting some sure return, versus exploring more to find a better option but

possibly obtaining a lower payoff until then.

This is the frequently encountered search task we explore in this paper—deciding

when to explore more and when to stop (or stay) and exploit what is available, in a situa-

tion where both exploring and exploiting provide rewards, and where there are multiple

non-depleting options with known rewards to choose among, but there could be better

options still to be found. Consequently, along two important dimensions of search (among

several), exploitation with depleting versus non-depleting resources and exploration with

ongoing reward versus without, we focus on one commonly occurring combination:
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search over non-depleting resources with ongoing rewards during exploration. Other

dimensions, such as fixed versus open-ended time horizon and known versus unknown

reward distributions, are not explored here; we use a known and fixed horizon and inform

participants of the reward distribution in these studies. While there has been a fair

amount of research (described in the next section) on how people search for non-deplet-

ing resources and what the optimal strategies are in cases like the Secretary Problem

where exploration has no direct reward, less is known about the common cases we inves-

tigate here where both exploration and exploitation provide rewards (see Mehlhorn et al.,

2015, for a review). Do people use the same strategies for these two types of search and

are the optimal strategies similar? To find out, we devise a task to study the strategies

that people use to make the explore/exploit trade-off in situations where both are reward-

ing, and we assess how well people perform in comparison to random baseline and opti-

mal strategies. We also compare the strategies people use with those previously reported

for the Secretary Problem, to assess how sensitive the strategies are to the presence of

rewards during exploration. Finally, given that people can learn to improve their perfor-

mance without rewards while exploring (Seale & Rapoport, 1997), we look at the extent

of learning when rewards are present (for both exploration and exploitation). We begin in

the next section with a consideration of possible strategies for search with and without

rewarding exploration, before turning to our experimental design and empirical and simu-

lation results.

2. Search strategies for non-depleting resources

2.1. Exploration without reward: The Secretary Problem

To provide a point of comparison for our novel task, where the searcher can switch

back and forth between exploration and exploitation, it is useful to first introduce a form

of search that has been well-studied by mathematicians, economists, and psychologists:

optimal stopping problems, in which the task is to make a one-time decision about when

to stop exploration and switch to exploiting the current discovered option (Ferguson,

n.d.). In many optimal stopping problems, individuals must first explore through some of

the available options without accruing any reward, until they find the one option they

want to choose and exploit for its payoff thereafter. For example, employers may con-

sider many job applicants over an extended period without employing anyone until they

finally decide to hire a particular person and start benefitting from having their position

filled. This type of search task is embodied in the classic Secretary Problem (Ferguson,

1989), in which a searcher (employer) sees one secretarial candidate at a time and aims

to hire the single best applicant in the population, without knowing the overall distribu-

tion of abilities in the population and without being able to return to any previously inter-

viewed candidate (e.g., because those people were hired elsewhere in the meantime). The

employer must decide when they think they have found the best candidate and then stop

their exploration and make the hire to get the benefit from “exploiting” the worker. In
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this case, the searcher must trade off exploring more and possibly finding a better candi-

date but also possibly passing over the best candidate, against exploiting sooner with the

best candidate seen so far who may not be the best overall. Similar search tasks also

appear in domains including selecting a mate (Todd & Miller, 1999), finding a parking

space (Hutchinson, Fanselow, & Todd, 2012), and buying a house or other unique items

(though in these cases, there can be both search costs and also benefits from stopping

search sooner and exploiting a chosen option for longer, aspects that are absent in the

generic Secretary Problem).

In the Secretary Problem, the solution for optimizing the probability of selecting the

very best applicant involves two stages: First, the searcher must explore (and pass by) an

initial set of applicants, the size of this set approaching N/e for large numbers of appli-

cants N (where e is the base of the natural logarithm, �2.71828); second, the searcher

must stop and accept the first applicant after the initial set who is better than all other

applicants seen so far (Ferguson, 1989). The first stage can be thought of as gathering

information about the range of possible values and setting a threshold (the highest value

seen so far) for the second stage. This optimal strategy gives the searcher a 37% proba-

bility of selecting the best applicant.

To see how and how well people actually solve this problem, Seale and Rapoport

(1997) presented participants with fixed-length sequences of values (using ranks rather

than actual values so that distributions could not be learned) and had participants stop the

search whenever they thought they were on the highest value. Participants most often

appeared to use a cutoff rule having the same form as the optimal strategy—passing over

an initial number of options and then taking the first subsequent option seen that exceeds

all the preceding options. Across 100 searches with N = 40 options each, participants

achieved a 30% mean proportion of success in selecting the single best option. This was

lower than the optimal performance of 37% in part because participants did not search

long enough. Participants did show quite effective learning, improving their mean rate of

success from 26% in the first 50 trials to 35% in the second 50 trials, largely by search-

ing longer. Participants thus could learn to perform rather well in this sequential search

task by increasing the amount of exploration they did, even though there was no direct

payoff during exploration.

2.2. A search task with rewarding exploration and exploitation

Optimal stopping problems like the Secretary Problem involve exploring some number

of sequential options with no payoff other than gathering information to determine when

to stop exploring and make the single switch to the final exploitation phase. Other para-

digms allow for transitions back and forth between information-gathering exploration

(which is again non-rewarding) and reward-accumulating exploitation (Navarro, Newell,

& Schulze, 2016). However, many common search domains provide payoff during explo-

ration and exploitation (which may serve to increase the amount of exploration done) and

also allow switching back and forth between periods of exploring, exploiting the found

resources, and exploring again for something better. Such search can occur, for example,
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when checking out and selecting restaurants, genres of books to read, movies to watch,

music to listen to, specific products to buy, and relationships to engage in (Cohen &

Todd, 2018). It is commonly studied in the form of bandit problems with multiple

rewarding options (arms) to explore and select among; in some such experimental settings

people have been found to switch once from exploration to exploitation, as in optimal

stopping problems (Lee, Zhang, Munro, & Steyvers, 2011). We are interested here in the

effective strategies for this widespread type of search, the actual strategies that people

apply, and how they differ from optimal strategies and from strategies people use in stop-

ping problems without ongoing rewards such as the Secretary Problem.

To study the exploration/exploitation trade-off strategies that people employ when

exploration (as well as exploitation) can provide a payoff, we developed a search task

game in which participants must accrue resources over a sequence of 20 turns (Sang,

Todd, & Goldstone, 2011). The resources are represented as points on cards, which indi-

vidual participants search through on a computer screen. The participant begins with a

deck of 20 cards all face-down in the lower left corner of their screen; they are told (ac-

curately) that each card has a number from 1 to 99 on it, that the card values are uni-

formly distributed in the decks (with repetitions of particular values possible in each

deck) so the expected value of each new card is 50, that they have 20 turns in a game,

and that their task is to accrue as many points as they can during the 20 turns in each

game. (We also occasionally refer to games as trials.) There are two distinct actions pos-

sible on each turn in the game, corresponding to exploration and exploitation, and partici-

pants get points from each action as follows: A participant can either explore by flipping

over a card from the deck and getting the points revealed on that card, at which point the

card is displayed face-up across the top of the screen (see Fig. 1); or they can exploit a

card they have previously found by clicking on it in the display, and getting the points

shown on that card added to their total score. (In this way our task differs from a stan-

dard bandit problem, as here exploring creates new options that can be exploited again

on subsequent turns, and which never change their value.) Thus, a participant’s total score

for a game is the sum of all of the points accrued by their explorations (choosing cards

from the deck) and their exploitations (choosing cards already on the screen) over all 20

turns.

This search problem differs from optimal stopping problems like the Secretary Prob-

lem in a number of ways. As described earlier, the key difference is that individuals in

our card task do not decide when to stop their search, but rather decide how to allocate

their actions as they see fit between exploration and exploitation across the duration of

the task. They also receive payoff during both types of search actions, in contrast to the

Secretary Problem where payoff is solely determined by what value the searcher

chooses to stop on and exploit. Reflecting many real-world situations, searchers in the

card task have knowledge of the possible outcomes they face, they can return to previ-

ously seen options, and they can switch back and forth repeatedly between bouts of

exploration and exploitation—aspects missing from the Secretary Problem. The card task

and Secretary Problem do, though, both share a known fixed time horizon and a lack of

explicit search costs.1
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To provide an upper bound on participants’ performance on this task and determine a

possible approach that they might use to solve it, we determined the optimal strategy

using backward mathematical induction (see Supplemental Materials). The optimal strat-

egy for the card task with rewarding exploration and exploitation is to begin by exploring

and then switch once from exploration to exploiting the best card found so far (i.e., one

displayed on the screen) for all remaining turns whenever that best card’s value exceeds

a predetermined threshold level that falls with increasing turns. This decreasing threshold

curve is influenced by the range of possible card values (highest and lowest) and the

number of turns remaining at each point in the search game. For the settings here, with

card values ranging from 1 to 99 and 20 total turns in the game, the optimal threshold

curve is shown in Fig. 2. This function is based not only on comparing the results of

Fig. 1. A screen shot of the card search experiment. In the lower-left corner is the deck of face-down cards

that can be explored, whereas the previously found cards (here, four so far out of up to 20 possible) that can

be further exploited for their points are displayed in the upper portion of the screen. The highest score face-

up card is highlighted in red. Also displayed near the bottom of the screen are the number of cards left in the

deck, number of turns taken and left, total points accrued so far, and the values of all cards already selected

at each turn (in brackets)—here, the value 91 has been exploited several times.
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exploiting the value of the current highest card versus the expected value of exploring

again once, but also on the expected value of exploring further and then exploiting a bet-

ter card value found later in the search. While this optimal strategy does not call for

switching back and forth between multiple phases of exploration and exploitation, its

time-varying threshold is also quite different from the optimal 37% rule for the Secretary

Problem. One striking consequence is that searchers could pass by a value early in their

search that they should accept (i.e., return to and exploit) later in their search—this hap-

pens in about 9% of card sequences in the current setting, but it cannot occur in the opti-

mal Secretary Problem solution.

3. Methods

To find out how people search in settings when both exploration and exploitation are

rewarding, we conducted a search experiment to study participants’ decisions, and com-

pared their behavior to a range of strategies including optimal and random baselines,

decreasing threshold rules based on the optimal strategy, and sample-based rules like the

cutoff rule found for the Secretary Problem. We investigated participants’ strategies both

through model fitting and by explicitly asking them what thresholds they may have been

using across their search. We recruited 191 participants from the Indiana University

Bloomington psychology student participant pool in exchange for credit for their courses.

They were told that their goal was to accumulate as many points as possible in each

search game, by flipping over cards from the deck to get their points or clicking on cards

Fig. 2. Threshold curve for the optimal strategy: For any turn (on x-axis), if the highest card value found so

far exceeds the optimal threshold for that turn, then that card should be exploited for all remaining turns in

the game.
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already found and displayed on the screen and getting the points shown on those cards.

Participants were also informed about the distribution of card values, as indicated earlier.

The general framework of the experiment is shown in Fig. 3.

In the experiment, a turn refers to one exploration or exploitation decision, and every

game consists of 20 turns. On the first turn, the participant had to explore, flipping over

the top card on the deck, and thereafter the participant decided at each turn whether to

explore from the deck or exploit a displayed card value. Participants’ choices and

response times (RTs) between choices were recorded. After completing each game by

playing 20 turns, the screen was cleared and the next game began (with a new deck with

the same parameters); participants played 30 games so we could evaluate their change in

strategy and performance over time.

For example, in Fig. 1, four cards have been taken from the card deck so far, with

the first three values shown in a small font and the highest (and most recently found)

card value, 91, in a larger, red font. The screen shows that the number of turns taken

thus far is 15, there are five turns left, and the point total so far for this game is

1,245. The number of points received by the participant on each turn in this game is

shown in the list beside the deck. On this 16th turn, the participant must decide

whether to exploit the highest value 91 again, as has been done for the previous 12

turns (and which the optimal strategy dictates), or explore the deck further, hoping for

an even higher card value.

After each of the 30 independent games, participants were told the points they received

on that game, the points that the optimal strategy would have earned, and (redundantly)

whether the participant did better, worse, or the same as the optimal strategy. After finish-

ing all 30 games, participants were asked to state explicitly what card-value thresholds

they may have had in mind while searching. For turns 2, 5, 9, 13, 17, and 20, participants

indicated the minimum card value that they would have been satisfied with at that point,

and hence would have made them stop exploring and start exploiting this card for the rest

of the turns in the game. (Whether or not they were actually using a threshold rule to

make their decisions, they could still have a sense of what card values would be good

Fig. 3. General framework of the experiment, showing a single game (trial) consisting of 20 turns of explor-

ing or exploiting, with 30 games overall, followed by a strategy questionnaire regarding the thresholds that

participants used.
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enough to make them switch to exploitation at each turn, and this potential knowledge

should be stronger after 30 games of practice and improvement toward an effective strat-

egy.) Participants were asked to report explicitly this threshold value with the following

instructions:

Post-experiment Questionnaire: We ask you about your general strategy for doing

this task. At different points in the game, you may have felt that if you had a large

enough card value showing on the table, then you would be satisfied with it, and

would pick it instead of drawing a new card from the deck. For example, on the first

round, if you happened to draw a 99, then you may have been satisfied enough with it

to pick it for the rest of the game. For each of the rounds listed below, what was the

LOWEST value for a card that would be enough for you to pick it for the rest of the

game? When you are finished, click the <space bar> to submit your numbers.

For the 2nd [5th, etc.] round out of 20, the lowest card that would be enough was

_____.

4. Decision behavior

Across all of the turns taken by all participants (191 9 30 9 20 = 114,600 turns),

there was 73.3% exploitation and 26.7% exploration. The optimal strategy calls for more

exploitation, 81%, across the same games that participants saw2 (t(190) = 6.31, p < .001;

pairwise t test). In other words, participants explored too much. Participants’ mean total

points per 20-turn game was 1,528 (SD 266), lower than that achieved by the optimal

strategy applied to the same values that participants saw, 1,595 (SD 224; t(190) = 16.07,

p < .001; pairwise t test).

4.1. Switches and final exploitation patterns

The optimal strategy for this search task dictates that there will be at most one switch

from exploration to exploitation per 20-turn game—only when the highest card seen so

far exceeds the current optimal threshold. There should never be a switch from exploita-

tion back to exploration—all exploration should be “front loaded” to the first portion of a

game because this maximizes the opportunities to subsequently take advantage of (i.e.,

exploit) high values that are found during explorations. Participants behaving non-opti-

mally, by contrast, might switch back from exploitation to exploration for many reasons,

including intrinsic stochasticity, boredom, employing particular strategies, and/or chang-

ing strategies over time. Subsequently, as the end of the game approaches, any partici-

pants who have switched from exploiting to exploring may well switch to exploitation

again to take advantage of previously found high values.
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Participants switched between exploration and exploitation a mean of 1.83 times per

game. In most cases, after some number of turns (during which they have explored and

possibly exploited over one or more stretches), participants made a final switch to

exploitation for the rest of the turns until the end of the game (and hence ended up

exploiting on the last turn in 94.9% of all games). The turn on which this final run of

persistent exploitation begins will vary depending on the search strategy used. For exam-

ple, a strategy with a constant exploitation threshold of 90 would lead to a later mean

switch point than the optimal strategy does, because cards exceeding this high threshold

are less common than cards exceeding the decreasing optimal threshold. The mean posi-

tion of the initial turn for this persistent exploitation (i.e., the first exploitation turn of a

game that has no later exploration turns after it) is 7.64 across all participants. The opti-

mal strategy, when applied to all of the same data that participants saw, switched to per-

sistent exploitation at (mean) turn 5.14. This indicates that people continue exploring for

longer than optimal by about two turns. Fig. 4 shows the frequency distributions of these

initial turns of persistent exploitation for both participants and the optimal strategy. Com-

pared to the optimal strategy, the distribution of participants’ behavior has a fatter tail,

with an appreciable proportion of participants exploring even until the very end of some

games. (See Section 6 for how these results change with learning across games.)

4.2. Response times

How long participants took to decide whether to switch between exploring and

exploiting or to continue doing what they were doing can give insight into the decision

strategies they use. Table 1 shows descriptive statistics for RTs—that is, times leading

up to the click on a certain action (since the last click)—for deciding to continue to

explore or exploit (i.e., the previous action and current action are the same) and decid-

ing to switch to explore or exploit (i.e., the previous and current actions are different;

all switches to exploit are included, not just the final switch). These RTs are calculated

as follows.

When a participant switches from exploration to exploitation (or vice versa), part of

the RT comes from the motoric behavior of moving the mouse from the deck to a card

displayed on the screen (or vice versa). This movement time should not be included in

the RT for the psychological decision process. To account for this motoric effect, we

built a linear regression model for each participant to predict the log(RT) values associ-

ated with each action based solely on whether that action is a switch or not; the residuals

from this model then should reflect only the decision process involved (Knox, Otto,

Stone, & Love, 2012). To show the mean RTs in seconds in Table 1, we convert the

residuals from the log(RT) predictions back into RTs by exponentiation; but because the

RTs are not normally distributed, we analyze them further in their log(RT) form.

We next compared categories of residual RTs in the log scale to see whether some

types of search decisions took longer than others. Deciding to continue to explore takes

longer than deciding to switch to exploit (t(380) = 4.84, p < .001; two-sample t test

at the individual level), which takes longer than deciding to continue to exploit
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(t(380) = 29.21, p < .001; two-sample t test). A second analysis of this data that explic-

itly seeks to remove motor RT found the same ordering for these three key decision

times: continue to explore > switch to exploit > continue to exploit—see Supplemental

Materials. This fits with the cognitive steps involved in following a decreasing threshold

rule (like the optimal strategy introduced above and others discussed in Section 5): Once

the searcher decides to exploit, she should continue to exploit without having to consider

any further information, making this a quick decision. But to decide to continue to

explore (after any turn of exploration) takes longer, because the searcher needs to verify

Fig. 4. Frequency distributions of initial turns for final persistent exploitation phase, for participants (left)

and the optimal strategy applied to the same data participants saw (right).

Table 1

Mean and standard deviation for response times of different decision types

Type of Decision (and number) Mean Residual Response Time, s SD

Continue to explore (22,335) 1.41 2.35

Continue to exploit (76,021) 0.59 0.41

Switch to explore (2,538) 1.14 1.34

Switch to exploit (7,976) 1.24 0.88
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(a) that the card just found is not above the current exploitation threshold, and also verify

(b) that the best card found previously is not now better than the current threshold (which

may be lower than the threshold when that card was first seen). If either of those verifica-

tion steps fails, then the searcher would decide to switch to exploitation. Since this fail

and switch could happen after one or two verification steps, on average we would expect

the switch-to-exploit decision to take less time than the continue-to-explore decision

which requires passing both verification steps, but takes longer than the continue-to-ex-

ploit decision which involves no verification steps—and this is the pattern we see in the

RT data. (A fixed-threshold rule would only require the first verification step, making the

switch-to-exploit and continue-to-explore decisions take similar amounts of time, which

goes against the pattern seen in these data.)

The intermediate duration of the rarer decisions to switch back from exploitation to

exploration may suggest a different strategy (or strategy component) for this decision. It

could involve one or more computational comparisons, as for the switch-to-exploit deci-

sion, or could just involve an internal threshold that does not require checking any card

values, such as an “impatience” to return to exploring.

4.3. Explicitly reported versus modeled thresholds

Given that the optimal strategy takes the form of a threshold rule, we next analyzed

what thresholds participants may have been using, both by asking them explicitly to

report their thresholds and by modeling their best-fitting thresholds. Participants’ reported

thresholds for exploiting are plotted in Fig. 5, first averaged across all participants for

each of the six specific turns for which participants were asked to give thresholds and

then linearly interpolated between those mean values for the six turns. The general trend

of the mean reported threshold is flat over turns (the 95% confidence interval for a regres-

sion coefficient of reported threshold values on turns is [�0.0004, 0.3684], including 0),

in contrast to the optimal threshold also shown which decreases over turns. This flat

aggregated pattern reflects wide variance in individuals’ reported thresholds, some of

which even increase across turns (see Fig. S1 in Supplemental Materials).

In addition to participants’ explicitly reported thresholds, we also attempted to infer

the thresholds that may underlie their decisions in the experiment. We first looked at

whether participants were adjusting the range of card values that they would exploit at

different turns in each game. Fig. 6 plots the participants’ probabilities at each turn of

exploiting the highest-available card if its value fell within a certain range (starting with

turn 2, the first turn where exploitation is possible), calculated across all exploitations in

all games for all participants. (Participants only rarely exploit a card value that is not the

highest one available, in just 1.6% of all exploitation decisions.) For example, the top

curve shows the probability at each turn that a participant would choose exploitation,

given that the highest card value available to exploit on the screen at that turn was

between 90 and 99.3 All of the curves generally increase over turns, with the lower high-

est-value curves increasing more rapidly. For turns toward the end of a game, the

exploitation probability nears 1.0 for all card values, indicating that participants will
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exploit whatever highest card value they have once they get to the end of their search.

These results indicate that people are taking the turns into account by gradually shifting

their exploitation tendency for all card values upward, which is consistent with a gradu-

ally decreasing threshold, applied with noise. It is not compatible with a fixed or increas-

ing threshold. (If everyone used exactly the deterministic decreasing threshold of the

optimal strategy of Fig. 2, this plot would show abrupt changes in acceptance probabili-

ties for each bin across turns: For example, for highest-value cards in the 70–74 bin, a

searcher following the optimal strategy would have a 0% probability of exploiting for

turns 2–8 and then would quickly rise to a 100% probability of exploiting for turns 12–
20. Mixtures of participants using something close to the optimal strategy could however

produce this pattern in aggregate.)

To estimate the underlying thresholds that participants may have been using (which

could differ from what they reported using), we treated the thresholds at different turns

as model parameters and used maximum likelihood estimation (MLE) to find values that

best fit participants’ decisions. We built a model that uses a stepwise threshold to decide

when to switch from exploration to exploitation. To allow easy comparison with the par-

ticipants’ reported thresholds, the model’s stepwise thresholds are estimated for the same

six turns that we asked participants about (turns 2, 5, 9, 13, 17, and 20). Given that this

model is focused on estimating thresholds rather than reflecting the psychological choice

process, it may not capture the details of participants’ turn-by-turn behavior well; we

compare it to other plausible models in the next section.

This six-threshold model has seven parameters: T1–T6 represent the thresholds, from 1

to 99, that apply across turns 2, 3–5, 6–9, 10–13, 14–17, and 18–20, respectively, and the

Fig. 5. Mean reported and modeled thresholds (interpolated between the six indicated turns) along with opti-

mal thresholds for switching from exploration to exploitation, across turns. Error bars are 1 SEM.
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strength parameter s is a positive value that reflects how strongly and consistently the

participant follows the threshold rule—if s is large, then participants usually make a

choice that is consistent with the current threshold T(t) that holds at turn t, and if s is

small, then the model shows considerable randomness in determining whether to explore

or exploit on a given game. The model specifies the probability of exploring at each turn

t with respect to the current threshold as follows:

PrexploreðtÞ ¼ 1

1þ e�s½TðtÞ�Max� ð1Þ

where s is the strength parameter, Max is the highest card value seen (i.e., on the table)

before turn t, and T(t) is the threshold (T1–T6) that holds at turn t. When the model indi-

cates exploitation rather than exploring, it exploits the highest available card.

We used MLE to estimate parameter values for each individual. The average best-fit-

ting model threshold function is plotted in Fig. 5, interpolating between the medians of

the six threshold parameters across participants (using medians because the parameter dis-

tributions are skewed). This modeled threshold falls across turns, though relatively evenly

and not as steeply as the optimal threshold at the end of each game.4 There is also an

evident mismatch between the flat reported threshold and the falling modeled threshold,

which could be a consequence of participants using thresholds but reporting them incor-

rectly (e.g., not knowing or remembering them), or of participants making their decisions

in some way other than just using thresholds (see next section). However, as discussed in

Fig. 6. Mean probability at each turn that participants would exploit the highest-available card if its value

fell in various ranges (indicated by different lines). Error bars omitted for clarity; values for later turns are

based on fewer data points.
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Section 5.2, these differences in threshold patterns do not have a very large effect on the

performance achieved using them with threshold rules in the card search task—even if

participants are not describing closely what they may be doing, what they do describe

would perform well if it were used. Finally, the median of the strength parameter s is

0.13, indicating substantial randomness in choices—that is, there are many situations in

which the model chooses to exploit even though the highest card on the table is below

the current estimated threshold, and chooses to explore even though the highest card is

above the threshold. This randomness reflects the stochasticity of participants’ choices.

5. Comparison of decision strategies

Of course, a multi-stage changing-threshold mechanism may not be what people are

actually using to make their decisions. We therefore tested a variety of further strategies in

terms of both their fit to participants’ data and their performance compared to the optimal

threshold rule. We assessed three types of strategies: random baseline models, threshold

models, and sampling models that, like the cutoff rule for the Secretary Problem, decide

when to stop based on an initial sample of values. We first describe the models and then

report their performance on the card search task and their fit to participants’ data.

5.1. Strategies compared

For all of the strategies below we describe a stochastic model used to find the parame-

ters that best fit the model to participants’ data. We also report the performance on the

card search task of the corresponding deterministic form of each model (except the epsi-

lon-greedy baseline).

5.1.1. Random baseline models
A standard type of random model for exploration/exploitation tasks is the epsilon-

greedy model (Sutton & Barto, 1998), which uses a single parameter e to control the

probability of exploration (selecting a new card) on each turn, versus exploitation (taking

the value of the highest card seen so far). A model more specific for this card search task

is the random switch model (also with one parameter), which randomly picks a turn k at

which to switch from exploration to exploitation, with k chosen from the range [2, 20]

using the distribution of switch turns from participants shown in Fig. 4 (left). The model

then has a tendency to explore for k � 1 turns and to exploit on subsequent turns in that

game, with the probability influenced by the strength parameter s:

PrexploreðtÞ ¼ 1

1þ e�s½k�t� ð2Þ

where Prexplore(t) is the probability of exploration on turn t, s is the strength parameter,

and k is the randomly chosen switch turn (not a fitted parameter). This equation results in

K. Sang et al. / Cognitive Science 44 (2020) 15 of 30



higher likelihood of exploring at the beginning of the game and higher likelihood of

exploiting at the end, with equal probability of both at the switch turn (when t = k).

5.1.2. Threshold models
Given the prevalence of simple threshold rules in human bounded rationality (e.g., sat-

isficing rules—Simon, 1990) and the fact that optimal behavior in the card search task

follows such a strategy, we also tested three forms of threshold models. The simplest

one-threshold model (two parameters) has a single fixed threshold T that applies across

all turns and a strength parameter s controlling the probability of exploring on a given

turn based on how far the highest card seen so far is from the threshold T (above or

below), according to Eq. 1. The linear decreasing threshold model (three parameters)

uses Eq. 1 with a falling threshold T(t) = b + m(t – 2), where b is the initial threshold at

turn 2 and m is the (negative) slope, along with strength parameter s. The two-threshold
model (four parameters) has two threshold values T1 and T2 and a “jump turn” parameter

k in the range [2, 20] that determines how long each threshold is used: T1 for turns 2 to

k, and T2 for turns k + 1 to 20. It also uses a strength parameter s and determines the

probability of exploring by Eq. 1. Finally, the six-threshold model (with seven parame-

ters) described earlier has six threshold values T1–T6 that are used for turns 2, 3–5, 6–9,
10–13, 14–17, and 18–20, respectively, and a strength parameter s combined via Eq. 1.

5.1.3. Sampling models
Another class of simple search rules base their stopping decisions on information

gained from an initial sample of options. Each of these models has two parameters: one

parameter that controls the size of the sample used, and another, h (for “trembling

hand”—see Selten, 1975), that introduces stochasticity by setting the probability of the

model’s deterministically selected action (exploring or exploiting) to 1 � h and the prob-

ability of the other action to h (so larger h indicates more stochasticity, whereas larger s
in the previous models indicates less stochasticity). The fixed-sample model first assesses
a sample of fixed size by exploring for k turns and then exploits the highest value card

seen in that sample starting on turn k + 1 (and for all remaining turns).5 (This is very

similar to the epsilon-first strategy in multi-armed bandit problems—see Lee, Zhang,

Munro, & Steyvers, 2011, where it is also called p-first.) The cutoff model similarly

explores for k turns, determines the highest value seen in that initial sample and sets it as

the cutoff threshold (rather than exploiting it), and then continues exploring until it finds

a card that is above that cutoff threshold, which it exploits for the rest of the turns. Use

of this rule has been studied particularly for situations where the distribution of available

values is not known, as for the Secretary Problem discussed earlier. The successive non-
candidate count model, also studied as a potential strategy to solve the Secretary Problem

(Seale & Rapoport, 1997), is defined in terms of “candidates,” which are those cards that

have the highest values seen so far in the current game (and hence are candidates for

exploitation), and “non-candidates,” which are all other cards (i.e., those not the highest

seen so far, hence not appropriate to exploit). The model starts with the necessary explo-

ration on turn 1; that first card is by definition a candidate (as it is the highest-value card
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seen so far). It continues exploring, assessing whether each new card is a candidate or a

non-candidate and counting up how many non-candidates in a row it encounters. If the

number of successive non-candidates seen in a row reaches a threshold value j, then the

model will exploit (for all remaining turns) the next candidate it encounters. This model

can thus be interpreted as being based on impatience—if it has been too long since find-

ing the previous exploitable candidate option, then the searcher “gets impatient” and takes

the next option that is higher than all those encountered previously.

5.2. Model performance

How well do these different models perform on the search task, balancing exploration

and exploitation? To find out, we used grid search to find the best performing parameter

values for the deterministic version of each model when applied to a set of 50,000 ran-

domly generated sequences of 20 card values (different from the sequences seen by par-

ticipants). The mean scores of the best performing models over the 50,000 simulated runs

are shown in Table 2. The optimal strategy scored 1,601.8; participants scored 1,528 on

average. The threshold strategies all scored very close to the optimal (around 1,600),

whereas the two random strategies both performed more poorly (around 1,300). The sam-

ple-based strategies fell in between, with the cutoff strategy from the Secretary Problem

doing worst of these (at 1,391). Thus, for this problem, a simple threshold rule—even

one that uses a single fixed threshold, set at 79—can perform about as well as the optimal

decreasing threshold strategy.

One potential drawback of the threshold rules is that they need to have their thresholds

and any switch points for changing the thresholds predetermined based on knowledge of

the distribution of values that will be encountered. In contrast, the sampling rules learn

their stopping thresholds through the initial sample of values they collect as they are

used, making them robust across differences in underlying distributions. For example, the

sample-based cutoff rule scored 87% of the optimal score in the original 1–100 card

value range with its sample size parameter set at 2, and it actually improves its perfor-

mance to 94% of optimal when applied with the same sample size to an expanded card

value range of 500–1,000. In contrast, the one-threshold rule does not show this robust-

ness to changing inputs: With its threshold set at the best-performing value of 79 for card

value range 1–100, it scored 99.8% of optimal, but its performance with that threshold

falls to 83% when applied to cards in the range 500–1,000.
However, the threshold rules make up for their lower input-based robustness by being

very robust with respect to changes in their parameters, specifically the threshold level,

given a particular card value distribution. The one-threshold rule applied to card values

1–100, for instance, scores above 1,500 (94% of optimal) for thresholds from 58 to 90,

and even with the mid-distribution threshold of 50 it still performs well above the best

score of the cutoff rule (reaching 1,442, vs. 1,391 for the cutoff rule). We can also see

this robustness of the threshold rules in the performance comparison of participants’ aver-

age self-reported threshold versus the optimal and modeled thresholds shown in Fig. 5:

When applied to the actual card value data each participant saw, the optimal threshold
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strategy scored 1,595, the average reported threshold (which looks quite different) came

very close at 1,589, and the modeled threshold scored in between with 1,591. In contrast,

the sample-based rules are not robust with respect to their sample size parameter—the

Table 2

Comparison of parameters for best performing and best fitting models across strategies

Strategy

Best Performing Model Best Fitting Model to Data

Score

per

Game

Best

Parameter

Values

Switch

Turn (and

% switch-

ing)

Exploited

Card

Value

Best Fit

Parameter

Values

Best Fit

Error

Parameter

Number of

Parameters BIC

Participant

performance

1,528.0 NA 7.64

(94.9%)

86.12 NA NA NA NA

Optimal 1,601.8 NA 5.51

(100%)

88.86 NA s = 0.12 1 431.5

Epsilon-

greedy

1,312.0 e = 0.34 NA 74.84 e = 0.21 NA 1 596.5

Random

switch

1,318.9 NA 7.62

(95.3%)

73.84 NA s = 0.21 1 454.8

One-

threshold

1,599.0 T = 79 5.50

(99.0%)

89.03 T = 68.3 s = 0.132 2 378.3

Linear

decreasing

threshold

1,601.7 m = �0.58

b = 81

5.47

(99.9%)

88.80 m = �1.78

b = 80.65

s = 0.12 3 326.4

Two-

threshold

1,601.1 T1 = 80

T2 = 75

k = 8

5.44

(99.7%)

88.81 T1 = 77.1

T2 = 57.7

k = 7

s = 0.126 4 335.7

Six-threshold 1,601.7 T1 = 82

T2 = 81

T3 = 79

T4 = 76

T5 = 71

T6 = 58

5.55

(100%)

88.86 T1 = 82.0

T2 = 77.7

T3 = 69.9

T4 = 62.5

T5 = 54.1

T6 = 44.1

s = 0.13 7 346.8

Fixed sample 1,495.7 k = 6 7.0

(100%)

85.41 k = 4 h = 0.42 2 445.6

Cutoff 1,391.6 k = 2 6.60

(90.4%)

80.07 k = 2 h = 0.095 2 389.5

Successive

non-

candidate

count

1,469.9 j = 3 7.29

(99.99%)

84.29 j = 1 h = 0.46 2 592.7

Note. See text for explanation of all parameters. All values for the best performing models are means cal-

culated over 50,000 random games. Switch turn shows the mean turn on which the model switched to final

persistent exploitation as in Fig. 4 (followed by the percent of games in which a switch to exploitation was

made). For the best fitting models, the parameter values are medians over the best fitting values for each par-

ticipant using the same sequence of card values that each participant saw. Larger h (trembling hand) indicates

more stochasticity, whereas larger s (strength) indicates less stochasticity. BIC values for best fitting models

are means; the linear decreasing threshold model has the lowest BIC (shown in bold).
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performance of the cutoff rule, for instance, quickly falls as the sample size increases, to

a score of 1,302 (81% of optimal) at sample size 5 (cf. Todd & Miller, 1999).6

5.3. Model fits to participant data

Simple threshold rules do very well on this task, but is that how people actually navi-

gate it themselves? To compare how well the different models describe participants’

choices, we used the Bayesian information criterion (BIC = �2 LL + k log(N), where LL
is the maximized value of the log likelihood function of the model, k is the number of

free parameters in the model, and N is the number of observations of each participant).

The BIC value was computed for each participant, and the mean over all participants is

shown in Table 2. Models with smaller BIC values are preferred. For this fitting compar-

ison, the stochastic version of each model was assessed, as described in Section 5.1

(along with a stochastic version of the optimal threshold model, using a strength parame-

ter s and Eq. 1). The best-fitting parameter values for each stochastic model were deter-

mined for each participant’s data (using the exact sequences of values that each

participant saw), and then the medians of these values were calculated and reported in

Table 2.

As seen in the right-most column of Table 2, the threshold strategies (other than the

optimal threshold) also achieved the best fit to participant data, with the linear decreasing

threshold strategy having the lowest BIC score, followed closely by the two-threshold

strategy. The best-fitting linear decreasing threshold strategy begins with a threshold of

80, and then lowers the threshold by nearly 1.8 on each successive turn. This strategy

(along with the rapidly decreasing best-fitting six-threshold strategy, shown in Fig. 5) sup-

ports the idea that participants generally may have been lowering a threshold quickly as

turns progressed, enabling them to begin long-term exploitation early (around turn 7, as

shown in the row for participant performance), though not as early as the optimal strategy

(around turn 5). These two best-fitting strategies both end with thresholds below 50

(which is always inappropriate), but this would have little effect on overall performance

because very few explore choices are made in the last few turns.

Surprisingly, the cutoff strategy, which performs comparatively poorly on this type of

search, fit participants’ data well, close to the BIC fit of the threshold strategies.7 To

explore the possible distribution of strategies used in more depth, we analyzed which

strategy best fit the data of each participant at the individual level (in terms of lowest

BIC). As seen in Table 3, the model which achieves the best fit for all the participant

data together, the linear decreasing threshold strategy, also fits the most individual partici-

pants best. But the cutoff strategy fits the second largest group of participants individu-

ally. The other threshold rules best describe a few more participants, whereas the other

sample-based rules and the random rules fit almost nobody best. Thus, there appears to

be variation in strategy use across individuals, with the majority following a decreasing

threshold strategy that performs very well on this type of search problem (and enables

them to achieve a mean performance of 1,545 points), and others using a cutoff strategy
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more appropriate to optimal stopping problems like the Secretary Problem (which yields

1,491 points in this task).

6. Learning effects

Although participants do not know or exactly follow the optimal strategy, their perfor-

mance comes quite close. How does this happen—do participants start the task with a

good strategy and use it consistently across the 30 games, or do they start with lower per-

formance and learn and improve over time, perhaps based on the feedback they are given

after each game?

To find out, we divided participants’ data into three parts according to games. Data

from games 1–10 form the first part; from games 11–20 are the second (middle) part; and

from games 21–30 are the third (last) part. For each part, we analyzed the number of

switches per game, the initial turn of persistent exploitation (i.e., the first exploitation turn

that was not followed by an exploration turn within the game), and task performance.

The means for each measure are shown in Table 4, along with the means of the measures

for the optimal rule applied to the last 10 games of card value sequences that participants

saw (as in Section 4). The three sections of games were treated as three different levels

of the independent variable in a repeated-measure one-way ANOVA for each of these

three measures. As shown in Table 5, all of the measures—mean switching, start of

exploitation, and performance—improved appreciably from the first to the last 10 games,

more closely approximating the optimal strategy over time. The frequency distributions

of the initial turn of persistent exploitation for the three parts are shown in Fig. 7, along

with the optimal threshold’s distribution. Over games, the participants’ distributions

become more similar to the optimal one. These results support the presence of learning in

terms of reduced switching between exploring and exploiting, and exploiting high-valued

cards earlier, yielding improved performance as well.

Finally, the best-fitting linear decreasing threshold model was found for each of the

three parts of the results to determine how participants’ thresholds change over games.

Table 3

Number of participants whose choices are best fit by each strategy

Strategy Number of Participants Participants’ Mean Score

Linear decreasing threshold 117 1,545

Cutoff 38 1,486

Two-threshold 24 1,531

One-threshold 9 1,532

Random switch 2 1,415

Fixed sample 1 1,306

Six-threshold 0 NA

Epsilon-greedy 0 NA

Successive non-candidate count 0 NA
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The median fitted parameter values for the linear decreasing threshold models that best fit

the first 10, middle 10, and last 10 games for all 191 participants are shown in Table 6,

and the corresponding decreasing thresholds are plotted in Fig. 8.

These parameter values show that participants on average acted as though they used a

high threshold for card values at the beginning of each game (being as choosy as the

optimal strategy, with intercept b around 83), and lowered their threshold as the game

continued (negative slope m; both aspects are also seen in the best-fitting six-threshold

model in Fig. 5). Participants also changed their behavior over the course of the experi-

ment, lowering their threshold more quickly in later games (lower values of m). Further-
more, they applied their changing thresholds more consistently, more than doubling their

strength parameter s from the first to the last games. Hence, overall these results show

support for participants learning to adjust their behavior across games in this search task

in a way that improves their performance to become closer to optimal levels. The 38 par-

ticipants best fit by the cutoff model also showed considerable learning across games with

respect to improving parameters and fit of the cutoff model—see Table S6 in Supplemen-

tal Materials.

7. Discussion

When people face the common search problem of needing to choose among a succes-

sion of reward-providing options in a given period of time, the best approach is to start

off being quite selective, passing by any options that are not among the best until a

good-enough one is found to stick with, gradually becoming less choosy if no satisfactory

option is found, and more rapidly decreasing in choosiness near the end of the time per-

iod. Many people appear to adopt a simple linear decreasing threshold (choosiness) strat-

egy in our laboratory version of this problem, and learn to improve their threshold

strategy with experience, even if they report doing something different. Starting off

choosy and dropping one’s threshold once after some time has passed (or even maintain-

ing the single choosy threshold) can do almost as well. People are thus able to search

effectively in this setting by selecting between exploring for possibly better new resource

options and exploiting a good-enough option that has already been found.

Table 4

Mean switching, start of exploitation, and performance across games (with SD)

Games Number of Switches Initial Turn of Persistent Exploitation Performance

First 10 2.57 (1.96) 8.77 (3.63) 1,492 (112.3)

Middle 10 1.54 (1.20) 6.90 (2.80) 1,539 (102.6)

Last 10 1.39 (1.00) 6.39 (2.13) 1,553 (91.5)

Optimal 1.0 (0.0) 5.08 (1.04)a 1,595 (70.6)a

Notes. aThese values differ from those in Table 2 because here they are calculated over the last 10 games

of card value sequences that participants saw, whereas in Table 2 they are calculated over 50,000 random

sequences.
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Why do these simple rules work well for this task? The most important component of

an effective strategy for this kind of search problem seems to be to start exploiting a rela-

tively good (high-value) option early; most of the time (i.e., turns) can then be spent

repeatedly accruing that good (exploited) value rather than collecting random returns

Table 5

Repeated-measure one-way ANOVA of mean switching, start of exploitation, and performance across games

df F p g2

Number of switches (2, 380) 78.78 <.001 0.29

Initial turn of persistent exploitation (2, 380) 84.14 <.001 0.31

Performance (2, 380) 22.44 <.001 0.11

Fig. 7. Frequency distributions of initial turns for final persistent exploitation phase, divided into first, mid-

dle, and last 10 games for participants, along with the distribution for the optimal strategy applied to the

same data participants saw across all games (i.e., the same distribution as in Fig. 4, here plotted with one

third of the data so that the y-axis matches the other graphs). Participants’ persistent exploitation commences

earlier as they complete more games, and approaches the optimal distribution.
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from exploring. Thus, this type of search calls for a faster transition to exploitation than

for many optimal stopping problems, because of the importance of accumulated payoffs

here versus the one-time reward from a single chosen value as in the Secretary Problem.

(For instance, the mean point at which the optimal strategy for the card search task

switches to exploitation is within six turns, whereas for the equivalent Secretary Problem

with 20 options the optimal cutoff strategy leads to stopping and exploiting after around

14 turns.) Accordingly, even a simple fixed one-threshold rule does very well on this

task, typically leading to an effective early switch to exploiting. Only if a searcher gets

to the rare case of still exploring in the last few turns should they rapidly lower their

threshold for what values to exploit. Such cases of extended exploration become increas-

ingly unlikely, though, for longer search lengths—as the task gets longer, there are more

chances along the way for a good option to have appeared—so the possible advantage of

decreasing one’s threshold at the end of the search shrinks, again supporting the

Table 6

Median fitted parameter and BIC values (with 95% confidence intervals) for best-fitting linear decreasing

threshold model across games

Games Slope m Intercept b Strength s BIC

First 10 �1.29

[�1.59, �1.00]

82.75

[79.31, 84.71]

0.11

[0.09, 0.13]

133.36

[120.36, 147.82]

Middle 10 �1.68

[�1.96, �1.22]

82.65

[81.02, 84.29]

0.25

[0.21, 0.28]

68.53

[60.31, 79.82]

Last 10 �1.93

[�2.27, �1.54]

83.10

[81.29, 84.84]

0.28

[0.23, 0.34]

55.56

[49.56, 64.16]

Fig. 8. Best fitting modeled threshold curves found for the first, middle, and last 10 games from the linear

decreasing threshold model applied to all 191 participants.
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appropriateness of a fixed threshold. In contrast to this “get out quick” approach, the opti-

mal exploration time for the Secretary Problem grows essentially linearly with the overall

length of the search task.

This difference in best strategies arises from the distinct natures of the exploration/ex-

ploitation trade-off for the two types of search: In the resource-accumulating search of

this card task, more exploration slowly increases the highest value that could be exploited

but also rapidly decreases the total amount achievable by exploitation, whereas in the

optimal stopping Secretary Problem, more exploration rapidly increases the chance of set-

ting an aspiration level that could select the highest value to exploit, but slowly decreases

the likelihood of being able to exploit that value because it may have been passed by

already (e.g., Todd & Miller, 1999, fig. 13-1). A threshold rule that quickly switches to

exploitation makes the appropriate trade-off for the former accumulative search problems,

whereas a cutoff rule that explores more extensively balances better against exploitation

in the latter type of optimal stopping problems.

In line with the performance advantages of simple threshold rules in this resource-ac-

cumulating type of search problem, the behavior of a majority of participants in our

experiment (60%) was best fit by the linear decreasing threshold strategy. This type of

decreasing threshold strategy is also supported by the pattern of RTs found for continu-

ing, and switching between, exploration and exploitation. Furthermore, a decreasing

threshold implies some rate of returning to exploit previously explored values, which we

saw in the data: Participants exploit earlier values on 27% of games. (In comparison, the

optimal strategy goes back to exploit an earlier card rather less often, on 531 out of the

5,730 games, or about 9% of the time; out of these “returning” games, participants also

went back to the same card in 88 cases, or 1.5% of all games, but they missed the opti-

mal point to return to a previous card in the other 443 cases.) The fact that most partici-

pants were best fit by a decreasing threshold rule rather than the simpler and nearly

equally performing one-threshold rule may indicate a general expectation that one should

get less choosy as a deadline approaches, as suggested for various search contexts includ-

ing mate choice (e.g., Cohen et al., 2019). In another version of this task with a known

variable game length of 5–10 turns, Song, Bnaya, and Ma (2019) also found that partici-

pants’ exploitation decisions were fit well by a linear decreasing threshold rule, and

showed that in this case the thresholds declined in proportion to the length of the game

(slower for longer games) in a reasonable way.

Somewhat surprisingly, though, the second-largest group of participants (20%) was

best fit by the cutoff rule, better suited to the optimal stopping Secretary Problem (though

in this case the initial sample period was very short, just 2 turns, leading to a relatively

early switch from exploration to exploitation). Perhaps these participants do not recognize

or appreciate the differences between the current search task setting and that of an opti-

mal stopping problem like the Secretary Problem and so they apply a type of rule that is

appropriate and commonly used for the latter problem here as well (without suffering too

much in performance in the current task). In contrast, Baumann, Gershman, Singmann,

and von Helversen (2019) found that a linear threshold rule also best fit participants’

behavior in a version of the Secretary Problem with earned distributions of actual-value
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rewards, whereas a cutoff model failed to fit anyone well. This points to the possible

importance of knowledge of the distribution of rewards for what rules people use. Testing

what rules best fit the behavior of people facing other types of search tasks will help to

clarify these issues.

One of the most marked differences between our participants’ behavior and the optimal

rule was that participants explored more than was optimal in two senses: They too often

chose an unknown card from the deck rather than a known card from the table, and they

switched back and forth between exploration and exploitation too often (i.e., more than

once). Both of these behaviors could be accounted for by participants treating our static

environment paradigm as a dynamic environment, in which the distribution of card values

might change over time, and consequently exploring more (Navarro et al., 2016; Tversky

& Edwards, 1966; Zhang & Yu, 2013). In a dynamic environment, expected values for

actions change over time. Greater exploration is predicted and observed (Speekenbrink &

Konstantinidis, 2015) for dynamic environments because decision makers need to make

periodic checks on uncertain resources to assess whether their value has changed. In fact,

people are highly sensitive to the informational requirements of dynamic environments,

approaching optimal behavior in some settings (Brown & Steyvers, 2009). The possibility

that our participants initially had the wrong assumption about the static versus dynamic

nature of the experimental paradigm is consistent with their gradually improving perfor-

mance with experience (including fewer switches from exploitation back to exploration—
Table 4), and with similar improvements found in other related experiments (Navarro

et al., 2016; Rakow, Newell, & Zougkou, 2010).

Indeed, we found that people can perform better (closer to optimal) over time via

learning based on minimal feedback. Notably, people did not get any feedback about

whether particular choices followed the optimal strategy, only whether they had done bet-

ter, worse, or the same as the optimal strategy at the end of each 20-turn game. Partici-

pants’ mean total points per game, number of switches between exploring and exploiting,

and number of turns before initiating persistent exploitation became closer to those of the

optimal strategy as they completed more games of searching. (Interestingly, they

appeared to improve by learning to explore less, whereas in the Secretary Problem studies

of Seale & Rapoport, 1997, participants improved by learning to search more—again

pointing to a fundamental difference between these two tasks.) The best-fitting linear

decreasing threshold model of participants’ behavior also moved toward the optimal solu-

tion across games by becoming less choosy sooner, and more deterministic and consistent

with respect to the specified thresholds. This learning leads to a final model that achieved

a cumulative score quite close to that attained by the optimal strategy (linear decreasing

threshold model performance = 1,588 over the last 10 games seen by participants,

whereas optimal model performance = 1,595 for the same last 10 games)—even though

that final, best-fitting model has a simple linear decreasing shape, different from the

accelerating fall-off seen in the optimal threshold. It could be that the participants employ

a learning process that is more adept at constructing a simple rule of this linear form,

involving few parameters, than what optimal performance calls for; however, in this set-

ting at least, performance hardly suffers as a consequence. Whether or not participants
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are actually using a threshold to determine their choices, we can at least say that the

threshold rule does an increasingly good job of predicting participants’ choices as they

gain experience with the card search task.

Participants themselves mostly did not report that they thought they were using a

threshold that decreased over turns within a search game. When asked to explicitly state

their thresholds, the majority reported that they changed in the opposite direction of the

modeled and optimal thresholds, rising (slightly) across turns. This mismatch between

reported and modeled thresholds may have arisen because participants were not using a

threshold-based mechanism to make their decisions (though the linear decreasing thresh-

old model did best fit most participants’ behavior). The mismatch could also be a conse-

quence of participants not remembering or incorrectly reporting whatever thresholds they

might be using, or of reporting what value they expect to be able to obtain after a partic-

ular number of turns. Or participants may have introspected little and just reported that

their threshold should increase as the turns increase. Such use of a linguistic frame in par-

ticipants’ responses, in which one variable (e.g., threshold) increases as another variable

(e.g., turns) increases, could potentially be alleviated in future work by rewording the

threshold-reporting question and asking it repeatedly between games. In any case, partici-

pants probably do not explicitly know what is optimal nor what they may actually be

doing, as is often found in decision-making tasks (Nisbett & Wilson, 1977), but they still

improve, getting closer to optimal, over the course of learning.

8. Conclusion

In this paper we have investigated situations in which people searching for resources

that they accumulate over time must decide how to allocate their effort between exploring

for high-value resources and exploiting those resources once they have been discovered.

We found evidence for people using a simple linear threshold mechanism to determine

when to switch between exploration and exploitation in a card search task incorporating

such accumulating resources. With experience, our participants improved their search

behavior and approached the performance of the optimal strategy, apparently by adjusting

their linear threshold strategy appropriately.

Previous work on search has typically focused on only one aspect of the explore/ex-

ploit trade-off or a single transition between exploration and exploitation. For example,

studies of optimal stopping problems including the Secretary Problem have mainly looked

at how long to explore before stopping (and making the single switch to exploitation). In

the field of decision making, the bandit problem (e.g., Lee, Zhang, Munro, & Steyvers,

2011; Steyvers, Lee, & Wagenmakers, 2009) and the repeated-choice paradigm for study-

ing decisions from experience (Gonzalez & Dutt, 2011) have been argued to rely on

related cognitive processes that make a transition from an exploration to an exploitation

phase. Future research using a search task that instead calls for repeated transitions

between exploration and exploitation (as in foraging among patches) may present a differ-

ent picture of the search mechanisms people typically use. Such a task involving multiple
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explore/exploit trade-off decisions over time could also make individual differences in

search behavior easier to observe, along with their correlations with other measures such

as working memory and impulsivity.

In the current card search task, participants made relatively few transitions from

exploitation back to exploration in part because the exploited card values were non-de-

pleting—once participants found a sufficiently high card value, they could have been suf-

ficiently satisfied with that value to exploit it until the end of that game (which is also

the pattern of behavior that the optimal strategy dictates). To induce more exploit-to-ex-

plore transitions in this task, we can make the card values depleting so that every time a

particular card gets exploited, its value will decrease by a certain amount. Moreover,

changing the number of turns in each game from a known fixed length to a random

length may have a similar effect of increasing participants’ switches back and forth

between both phases of search (see Sang, 2017, for examples of both of these manipula-

tions of the card search task). New search models may be needed to predict these

switches, including mechanisms combining stochasticity with inertia or momentum,

which can lead to alternating stretches of exploration and exploitation.

Open questions beckon regarding how individual differences in the tendency to explore

versus exploit play out across different search settings, including social search and infor-

mation search on the Web, as well as measuring priming effects between settings (Hills,

Todd, & Goldstone, 2008; Hills et al., 2015). Finally, different clinical populations may

make the explore/exploit trade-off in different ways, emphasizing one aspect of search

over the other (Hills, 2006), and fMRI could also be useful in exploring these differences

and providing insights into the neural mechanisms used in search across different

domains. By stripping search down to a setting where exploration and exploitation are

most prominent, the card search task and its possible variations may help us elucidate the

decision strategies underlying search more effectively.
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Notes

1. For an interesting hybrid search task that involves payoff from all items seen, but

without knowing their values, only their ranks, see Richard Feynman’s restaurant

problem: http://www.feynmanlectures.info/solutions/restaurant_problem_sol_1.html

2. Conceptually, 30 sequences of 20 values were generated for each participant, and

the optimal strategy was applied to those same values, which could mean that the
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optimal strategy “saw” fewer or more values than a participant did in any particular

game sequence if it specified switching to exploitation at an earlier or later turn

than the participant selected.

3. Bins over ranges of highest card value available are used because plotting probabil-

ities for single card values would result in considerable noise in the graph. There is

still some noise at the end of the trial for some lower highest-value bins, because,

for example, there are very few trials in which a participant gets to turn 18 and still

has not uncovered a card with a value greater than 60.

4. This falling threshold was also found when modeling subsets of participants with

different patterns of reported thresholds, including increasing—see Fig. S2 in Sup-

plemental Materials.

5. Note that the size of the initial sample will be reduced if any of the first k turns

individually “tremble” into unintended exploitation, decreasing the number of cards

explored; but the intended ongoing exploitation will still start at turn k + 1.

6. Note that the best sample size for the cutoff rule in the original version of the Sec-

retary Problem with 20 options is 7, much larger than the best sample size in our

current card search problem.

7. To examine the role of noise in models for these results, we also tested how well a

version of the cutoff rule with stochasticity from the logistic function in Eq. 1

could fit the participants’ choices, using a threshold of 100 for the first k � 1 steps

and after that using a threshold of the highest value seen in the first k � 1 steps.

This model fit the data very poorly (BIC = 599.6, k = 1, s = 0.05; all values are

medians), suggesting that the lower relative performance of the sampling models is

not due solely to a trembling hand version of noise. Similarly poor fits to human

data by this kind of probabilistic cutoff rule in an optimal stopping Secretary Prob-

lem were found by Baumann et al. (2019).
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