
APTS Statistical Computing:
Assessment 2016/17

The work provided here is intended to take up to half a week to complete. Students
should talk to their supervisors to find out whether or not their department requires this
work as part of any formal accreditation process. It is anticipated that departments will
decide on the appropriate level of assessment locally, and may choose to drop some (or
indeed all) of the parts, accordingly. So make sure that your supervisor or local organizer
of APTS assessment has looked at the assignment before you start, and has told you which
parts of it to do. In order to avoid undermining institutions’ local assessment procedures
the module lecturer will not respond to enquiries from students about this assignment.

1. The theoretical definitions of many probability and statistics statements are replaced
by alternative expressions that have more robust computational floating point arith-
metic properties, e.g. asymptotic series for tail probabilities in cumulative distri-
bution functions. Here, you will investigate a computational robustification of the
Box-Cox transformation.

The Box-Cox transformation y(λ)i = G(yi;λ) of positive data values yi is defined via

G(y;λ) =

{
yλ−1
λ
, λ 6= 0,

ln(y), λ = 0.

In mathematical theory, the λ = 0 case is the limit of G(y;λ) as λ → 0, but
in computational practice, cancellation error is introduced for small λ and ln(y)
values. One way of reducing the error is to replace the expression with a few terms
of the Taylor expansion around λ ln(y) = 0. For simplicity we can assume that the
error is caused by yλ being evaluated as comp{yλ} = yλ(1 + ε) for some |ε| ≈ ε0,
greater than or equal to the machine precision.

Note: If we were to use the results in practice, the appropriate value for ε0 needs to
be determined; doing that is not part of the assignment.

Hint: yλ = eλ ln(y) and ex =
∑∞

k=0
xk

k!

(a) Find an expression for an approximate error bound for comp
{
yλ−1
λ

}
, valid for

small λ ln(y) values.

(b) Derive a Taylor expansion of G(y;λ) valid for small values of λ ln(y).

(c) For |λ ln(y)| ≤ δ < 1, the Taylor series of order one has an error that can be
bounded by Cδ2|ln(y)| for some constant C. Find C.

(d) Find a value δ > 0 such that the first degree Taylor approximation error bound
is smaller than the error bound for comp

{
yλ−1
λ

}
for all |λ ln(y)| ≤ δ

(e) Take the boxcox template function below and modify it to implement the
robustified Box-Cox transformation you have now derived.
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## y: vector of values > 0
## lambda: arbitrary scalar
boxcox <- function(y, lambda) {

eps <- 1e6 * .Machine$double.eps
delta <- NA ### What is \delta?
use.taylor <- abs(lambda * log(y)) <= delta
result <- numeric(length(y))
if (any(!use.taylor)) {

result[!use.taylor] <- (y[!use.taylor]^lambda - 1) / lambda
}
if (any(use.taylor)) {

logy <- log(y[use.taylor])
result[use.taylor] <- NA ### What is the Taylor approximation?

}
result

}

(f) The approximation derived above may not be appropriate for numerical deriva-
tives of the Box-Cox transformation. Why? Suggest a method for fixing that
problem.

2. A traditional setup for measuring the gravitational constant is to have two spheres
suspended in an arrangement that leads to an dampened oscillating movement,
where the oscillation frequency is related to the gravitational constant. Taking mea-
surement error into account, a reasonable model for the measurements (y1, y2, . . . , yn)
of the positions at times (t1, t2, . . . , tn) is given by

yi = αe−βti cos(ωti + γ) + εi,

where α, β, ω are positive parameters, γ ∈ [0, 2π) is a phase shift parameter, and
εi are iid N(0, σ2).

(a) Run the following code to generate a synthetic data set:

model.mean <- function(time, theta) {
(theta[1] * exp(-theta[2] * time) *
cos(theta[3] * time + theta[4]))

}
set.seed(12345L)
theta00 <- c(10, 0.02, 0.1, 0.2, log(0.1))
data <- data.frame(time=0:200,

y=(model.mean(0:200, theta00) +
rnorm(201, sd=exp(theta00[5]))))

plot(data$time, data$y)

(b) Complete the function below for evaluating the negated log-likelihood for θ =
(α, β, ω, γ, log(σ)):
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## theta = c(\alpha, \beta, \omega, \gamma, \sigma)
negloglike <- function(theta, data) {

## Use model.mean(...) in combination with -sum(dnorm(..., log=TRUE))
## to evaluate the negated log-likelihood

}

(c) In the following, you may treat all the parameters as having no constraints (ex-
cept σ, as shown in the code above). This leads to a non-identifiable model. Ex-
plain some of the difficulties this may lead to when using numerical optimisation
to estimate ω and γ in particular. You will use optim to find the maximum like-
lihood estimate of θ, starting from theta.start <- c(5, 0.05, 0.05, 0.05, 0).
The following code shows the shape of the negative log-likelihood function
around the starting point:

## Draw the local shape of the target function:
par(mfrow=c(2,2))
curve(vapply(x, function(x) negloglike(

theta.start*c(0,1,1,1,1)+c(x,0,0,0,0), data), 1.0),
-10, 10, n=10000)

curve(vapply(x, function(x) negloglike(
theta.start*c(1,0,1,1,1)+c(0,x,0,0,0), data), 1.0),

-0.1, 0.1, n=10000)
curve(vapply(x, function(x) negloglike(

theta.start*c(1,1,0,1,1)+c(0,0,x,0,0), data), 1.0),
-1, 1, n=10000)

curve(vapply(x, function(x) negloglike(
theta.start*c(1,1,1,0,1)+c(0,0,0,x,0), data), 1.0),

-10, 10, n=10000)
par(mfrow=c(1,1))

(d) Try to optimise negloglike and inspect the output:

opt <- optim(theta.start, negloglike, data=data)
rbind(theta00, opt$par)
opt$convergence
opt$counts

Is the result close to the true θ values? If no, what went wrong?

(e) Fix the optimisation problem by setting a suitable control option in the call
to optim.

(f) Use the observed Fisher information to construct an approximate 95% con-
fidence interval for ω. Hint: optimHess can be used to obtain a numerical
evaluation of the Hessian of the negative log-likelihood.
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