
APTS ASP Exercises 2017

Markov chains and reversibility

1. Suppose that px,y are transition probabilities for a discrete state-space Markov chain satisfying
detailed balance. Show that if the system of probabilities given by πx satisfy the detailed balance
equations then they must also satisfy the equilibrium equations.

2. Show that unconstrained simple symmetric random walk has period 2. Show that simple symmetric
random walk subject to double reflection “by prohibition” must be aperiodic.

3. Solve the equilibrium equations πP = π for simple symmetric random walk on {0, 1, . . . , k} subject
to double reflection “by prohibition”.

4. Suppose that X0, X1, . . . , is a simple symmetric random walk with double reflection “by prohibi-
tion” as above.

• Use the definition of conditional probability to compute

py,x =
P [Xn−1 = x , Xn = y]

P [Xn = y]
,

• then show that
P [Xn−1 = x , Xn = y]

P [Xn = y]
=

P [Xn−1 = x] px,y
P [Xn = y]

,

• now substitute, using P [Xn = i] = 1
k+1 for all i so py,x = px,y.

• Use the symmetry of the kernel (px,y = py,x) to show that the backwards kernel py,x is the
same as the forwards kernel py,x = py,x.

5. Show that if X0, X1, . . . , is a simple asymmetric random walk with double reflection “by prohibi-
tion”, running in equilibrium, then it also has the same statistical behaviour as its reversed chain
(i.e. solve the detailed balance equations!).

6. Show that detailed balance doesn’t work for the 3-state chain with transition probabilities 1
3 for

0→ 1, 1→ 2, 2→ 0 and 2
3 for 2→ 1, 1→ 0, 0→ 2.

7. Use Burke’s theorem for a feed-forward ·/M/1 queueing network (no loops) to show that in equi-
librium each queue viewed in isolation is M/M/1. This uses the fact that independent thinnings
and superpositions of Poisson processes are still Poisson . . . .

8. Work through the Random Chess example to compute the mean return time to a corner of the
chessboard.

9. Verify for the Ising model that

P
[
S = s(i)

∣∣∣S ∈ {s, s(i)}] =
exp

(
−J

∑
j:j∼i sisj

)
exp

(
J
∑
j:j∼i sisj

)
+ exp

(
−J

∑
j:j∼i sisj

) .
Determine how this changes in the presence of an external field. Confirm that detailed balance
holds for the heat-bath Markov chain.

10. Write down the transition probability kernel for the Metropolis-Hastings sampler. Verify that it
has the desired probability distribution as an equilibrium distribution.
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Renewal processes and stationarity

1. Suppose that X is a simple symmetric random walk on Z, started from 0. Show that

T = inf{n ≥ 0 : Xn ∈ {−10, 10}}

is a stopping time (i.e. show that the event {T ≤ n} is determined by X0, X1, . . . , Xn). What is
the value of P [T <∞]? What is the distribution of XT ?

2. For a Markov chain (Xn)n≥0 on a state-space S, fix i ∈ S and let H
(i)
0 = inf{n ≥ 0 : Xn = i}. For

m ≥ 0, let

H
(i)
m+1 = inf{n > H(i)

m : Xn = i}.

Show that H
(i)
0 , H

(i)
1 , . . . is a sequence of stopping times.

3. Check that it follows from the Strong Markov property that (H
(i)
m+1 −H

(i)
m ,m ≥ 0) is a sequence

of i.i.d. random variables, independent of H
(i)
0 .

4. Suppose that (N(n))n≥0 is a delayed renewal process with inter-arrival times Z0, Z1, . . . where Z0 is
a non-negative random variable, independent of Z1, Z2, . . . which are i.i.d. strictly positive random
variables with common mean µ. Use the Strong Law of Large Numbers for Tk =

∑k
i=0 Zi to show

that
N(n)

n
→ 1

µ
a.s. as n→∞.

Hint: note that TN(n) ≤ n < TN(n)+1 so that N(n)/n can be sandwiched between N(n)/TN(n)+1

and N(n)/TN(n). Use this and the fact that N(n)→∞ as n→∞.

5. Let (Y (n))n≥0 be the auxiliary Markov chain associated to a delayed renewal process (N(n))n≥0
i.e. Y (n) = TN(n−1)−n. Check that you agree with the transition probabilities given in the lecture
notes.

6. Let

νi =
1

µ
P [Z1 ≥ i+ 1] , i ≥ 0.

Check that ν = (νi)i≥0 defines a probability mass function.

7. Suppose that Z∗ has the size-biased distribution associated with the distribution of Z1, defined by

P [Z∗ = i] =
iP [Z1 = i]

µ
, i ≥ 1.

(a) Verify that this is a probability mass function.

(b) Given Z∗ = k, let L ∼ U{0, 1, . . . , k − 1}. Show that, unconditionally, L ∼ ν.
Note that you can generate L starting from Z∗ by letting U ∼ U[0, 1] and then setting L =
bUZ∗c.

(c) What is the size-biased distribution associated with Po(λ)?

8. Show that ν is stationary for Y .
Hint: Y is clearly not reversible, so there’s no point trying detailed balance!

9. Check that if P [Z1 = k] = (1−p)k−1p, for k ≥ 1, the stationary distribution ν for the time until the
next renewal is νi = (1− p)ip, for i ≥ 0. (In other words, if we flip a biased coin with probability
p of heads at times n = 0, 1, 2, . . . and let N(n) = #{0 ≤ k ≤ n : we see a head at time k} then
(N(n), n ≥ 0) is a stationary delayed renewal process.)
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Martingales

1. Let X be a martingale. Use the tower property for conditional expectation to deduce that

E [Xn+k|Fn] = Xn , k = 0, 1, 2, . . . .

2. Recall Thackeray’s martingale: let Y1, Y2, . . . be a sequence of independent random variables, with
P [Y1 = 1] = P [Y1 = −1] = 1/2. Define the Markov chain M by

M0 = 0; Mn =

{
1− 2n if Y1 = Y2 = · · · = Yn = −1,

1 otherwise.

(a) Compute E [Mn] from first principles.

(b) What should be the value of E
[
M̃n

]
if M̃ is computed as for M but stopping play if M hits

level 1− 2N?

3. Consider a branching process Y , where Y0 = 1 and Yn+1 is the sum Zn+1,1 + . . . + Zn+1,Yn of Yn
independent copies of a non-negative integer-valued family-size r.v. Z.

(a) Suppose E [Z] = µ <∞. Show that Xn = Yn/µ
n is a martingale.

(b) Show that Y is itself a supermartingale if µ < 1 and a submartingale if µ > 1.

(c) Suppose E
[
sZ
]

= G(s). Let η be the smallest non-negative root of the equation G(s) = s.
Show that ηYn defines a martingale.

(d) Let Hn = Y0+. . .+Yn be the total of all populations up to time n. Show that sHn/(G(s)Hn−1)
is a martingale.

(e) How should these three expressions be altered if Y0 = k ≥ 1?

4. Consider asymmetric simple random walk, stopped when it first returns to 0. Show that this
is a supermartingale if jumps have non-positive expectation, a submartingale if jumps have non-
negative expectation (and therefore a martingale if jumps have zero expectation).

5. Consider Thackeray’s martingale based on asymmetric random walk. Show that this is a super-
martingale or submartingale depending on whether jumps have negative or positive expectation.

6. Show, using the conditional form of Jensen’s inequality, that if X is a martingale then |X| is a
submartingale.

7. A shuffled pack of cards contains b black and r red cards. The pack is placed face down, and cards
are turned over one at a time. Let Bn denote the number of black cards left just before the nth

card is turned over. Let

Yn =
Bn

r + b− (n− 1)
.

(So Yn equals the proportion of black cards left just before the nth card is revealed.) Show that Y
is a martingale.

8. Suppose N1, N2, . . . are independent identically distributed normal random variables of mean 0
and variance σ2, and put Sn = N1 + . . .+Nn.

(a) Show that S is a martingale.

(b) Show that Yn = exp
(
Sn − n

2σ
2
)

is a martingale.

(c) How should these expressions be altered if E [Ni] = µ 6= 0?

9. Let X be a discrete-time Markov chain on a countable state-space S with transition probabil-
ities px,y. Let f : S → R be a bounded function. Let Fn contain all the information about
X0, X1, . . . , Xn. Show that

Mn = f(Xn)− f(X0)−
n−1∑
i=0

∑
y∈S

(f(y)− f(Xi))pXi,y
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defines a martingale. (Hint: first note that E [f(Xi+1)− f(Xi)|Xi] =
∑
y∈S(f(y) − f(Xi))pXi,y.

Using this and the Markov property of X, check that E [Mn+1 −Mn|Fn] = 0.)

10. Let Y be a discrete-time birth-death process absorbed at zero:

pk,k+1 =
λ

λ+ µ
, pk,k−1 =

µ

λ+ µ
, for k > 0, with 0 < λ < µ.

(a) Show that Y is a supermartingale.

(b) Let T = inf{n : Yn = 0} (so T <∞ a.s.), and define

Xn = Yn∧T +

(
µ− λ
µ+ λ

)
(n ∧ T ) .

Show that X is a non-negative supermartingale, converging to

Z =

(
µ− λ
µ+ λ

)
T .

(c) Deduce that

E [T |Y0 = y] ≤
(
µ+ λ

µ− λ

)
y .

11. Let L(θ;X1, X2, . . . , Xn) be the likelihood of parameter θ given a sample of independent and
identically distributed random variables, X1, X2, . . . , Xn.

(a) Check that if the “true” value of θ is θ0 then the likelihood ratio

Mn =
L(θ1;X1, X2, . . . , Xn)

L(θ0;X1, X2, . . . , Xn)

defines a martingale with E [Mn] = 1 for all n ≥ 1.

(b) Using the strong law of large numbers and Jensen’s inequality, show that

1

n
logMn → −c as n→∞.

12. Let X be a simple symmetric random walk absorbed at boundaries a < b.

(a) Show that

f(x) =
x− a
b− a

x ∈ [a, b]

is a bounded harmonic function.

(b) Use the martingale convergence theorem and optional stopping theorem to show that

f(x) = P [X hits b before a|X0 = x] .

Recurrence and rates of convergence

1. Recall that the total variation distance between two probability distributions µ and ν on X is given
by

distTV(µ, ν) = sup
A⊆X
{µ(A)− ν(A)} .

Show that this is equivalent to the distance (note the absolute value signs!)

sup
A⊆X

|µ(A)− ν(A)| .
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2. Show that if X is discrete, then

distTV(µ, ν) = 1
2

∑
y∈X
|µ(y)− ν(y)| .

(Here we do need to use the absolute value on the RHS!)
Hint: consider A = {y : µ(y) > ν(y)}.

3. Suppose now that µ and ν are density functions on R. Show that

distTV(µ, ν) = 1−
∫ ∞
−∞

min{µ(y), ν(y)}dy .

Hint: remember that |µ− ν| = µ+ ν − 2 min{µ, ν}.

4. Let X be a random walk on R, with increments given by the standard normal distribution. Recall
that any bounded set is small of lag 1. Does there exist k ≥ 1 such that the whole state space is
small of lag k?

5. Consider a Markov chain X with continuous transition density kernel. Show that it possesses many
small sets of lag 1.

6. Consider a Vervaat perpetuity X, where

X0 = 0; Xn+1 = Un+1(Xn + 1) ,

and where U1, U2, . . . are independent Uniform(0, 1) (simulated below).

20 40 60 80 100
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4

Find a small set for this chain.

7. Recall the idea of regenerating when our chain hits a small set: suppose that C is a small set (with
lag 1) for a φ-recurrent chain X, i.e. for x ∈ C,

P [X1 ∈ A|X0 = x] ≥ αν(A).

Suppose that Xn ∈ C. Then with probability α let Xn+1 ∼ ν, and otherwise let it have transition

distribution p(x,·)−αν(·)
1−α .

(a) Check that the latter expression really gives a probability distribution.

(b) Check that Xn+1 constructed in this manner obeys the correct transition distribution from
Xn.

8. Define a reflected random walk as follows: Xn+1 = max{Xn + Zn+1, 0}, for Z1, Z2, . . . i.i.d. with
continuous density f(z),

E [Z1] < 0 and P [Z1 > 0] > 0 .

Show that the Foster-Lyapunov criterion for positive recurrence holds, using Λ(x) = x.
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