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1 Introduction

1.1 High-dimensional data

Over the last 25 years, the sorts of datasets that statisticians have been challenged to
study have changed greatly. Where in the past, we were used to datasets with many
observations with a few carefully chosen variables, we are now seeing datasets where the
number of variables run into the thousands and even exceed the number of observations.
For example, the field of genomics routinely encounters datasets where the number of
variables or predictors can be in the tens of thousands or more. Classical statistical methods
are often simply not applicable in these “high-dimensional” situations. Designing methods
that can cope with these challenging settings has been and continues to be one of the most
active areas of research in statistics. Before we dive into the details of these methods, it
will be helpful to review some results from classical statistical theory to set the scene for
the more modern methods to follow.

1.2 Classical statistics

Consider response–covariate pairs (Yi,xi) ∈ R × Rp, i = 1, . . . , n. A linear model for the
data assumes that it is generated according to

Y = Xβ0 + ε, (1.1)

where Y ∈ Rn is the vector of responses; X ∈ Rn×p is the predictor matrix (or design
matrix) with ith row xTi ; ε ∈ Rn represents random error; and β0 ∈ Rp is the unknown
vector of coefficients.

Provided p� n, a sensible way to estimate β0 is by ordinary least squares (OLS). This

yields an estimator β̂
OLS

with

β̂
OLS

:= arg min
β∈Rp

‖Y −Xβ‖22 = (XTX)−1XTY, (1.2)

provided X has full column rank.

Provided E(ε) = 0 and Var(ε) = σ2I, β̂
OLS

is unbiased and has variance σ2(XTX)−1.
How small is this variance? The Gauss–Markov theorem states that OLS is the best linear
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unbiased estimator in this setting: for any other estimator β̃ that is linear in Y (so β̃ = AY
for some fixed matrix A), we have

Varβ0,σ2(β̃)− Varβ0,σ2(β̂
OLS

)

is positive semi-definite.

1.3 Maximum likelihood estimation

The method of least squares is just one way to construct as estimator. A more general
technique is that of maximum likelihood estimation. Here given data y ∈ Rn that we take
as a realisation of a random variable Y, we specify its density f(y;θ) up to some unknown
vector of parameters θ ∈ Θ ⊆ Rd, where Θ is the parameter space. The likelihood function
is a function of θ for each fixed y given by

L(θ) := L(θ; y) = c(y)f(y;θ),

where c(y) is an arbitrary constant of proportionality. The maximum likelihood estimate
of θ maximises the likelihood, or equivalently it maximises the log-likelihood

`(θ) := `(θ; y) = log f(y;θ) + log(c(y)).

A very useful quantity in the context of maximum likelihood estimation is the Fisher
information matrix with jkth (1 ≤ j, k ≤ d) entry

ijk(θ) := −Eθ

{
∂2

∂θj∂θk
`(θ)

}
.

It can be thought of as a measure of how hard it is to estimate θ when it is the true
parameter value. The Cramér–Rao lower bound states that if θ̃ is an unbiased estimator
of θ, then under regularity conditions,

Varθ(θ̃)− i−1(θ)

is positive semi-definite.
A remarkable fact about maximum likelihood estimators (MLEs) is that (under quite

general conditions) they are asymptotically normally distributed, asymptotically unbiased
and asymptotically achieve the Cramér–Rao lower bound.

Assume that the Fisher information matrix when there are n independent observations,
i(n)(θ) (where we have made the dependence on n explicit) satisfies i(n)(θ)/n → I(θ) for
some positive definite matrix I. Then denoting the maximum likelihood estimator of

θ when there are n observations by θ̂
(n)

, under regularity conditions, as the number of
observations n→∞ we have

√
n(θ̂

(n)
− θ)

d→ Nd(0, I−1(θ)).
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Returning to our linear model, if we assume in addition that ε ∼ Nn(0, σ2I), then the
log-likelihood for (β, σ2) is

`(β, σ2) = −n
2

log(σ2)− 1

2σ2

n∑
i=1

(Yi − xTi β)2.

We see that the maximum likelihood estimate of β and OLS coincide. You can check that

i(β, σ2) =

(
σ−2XTX 0

0 nσ−4/2

)
.

The general theory for MLEs would suggest that approximately
√
n(β̂ − β0) ∼ Np(0, nσ2(XTX)−1);

in fact it is straight-forward to show that this distributional result is exact.

1.4 Shortcomings of classical statistics

We have seen that the classical statistical methods of OLS and maximum likelihood es-
timation enjoy important optimality properties and come ready with a framework for
performing inference. However, these methods do have their limitations.

� A crucial part of the optimality arguments for OLS and MLEs was unbiasedness. Do
there exist biased methods whose variance is is reduced compared to OLS such that
their overall prediction error is lower? Yes!—in fact the use of biased estimators is
essential in dealing with settings where the number of parameters to be estimated is
large compared to the number of observations.

� The asymptotic statements concerning MLEs may not be relevant in many practical
settings. These statements concern what happens as n → ∞ whilst p is kept fixed.
In practice we often find that datasets with a large n also have a large p. Thus a
more relevant asymptotic regime may be to consider p increasing with n at some
rate; in these settings the optimality properties of MLEs will typically fail to hold.

1.5 Notation

Given A,B ⊆ {1, . . . , p}, and x ∈ Rp, we will write xA for the sub-vector of x formed from
those components of x indexed by A. Similarly, we will write MA for the submatrix of
M formed from those columns of M indexed by A. Further, MA,B will be the submatrix
of M formed from columns and rows indexed by A and B respectively. For example,
x{1,2} = (x1, x2)

T , M{1,2} is the matrix formed from the first two columns of M, and
M{1,2},{1,2} is the top left 2× 2 submatrix of M.

In addition, when used in subscripts, we will use −j and −jk to denote {1, . . . , p} \
{j} := {j}c and {1, . . . , p} \ {j, k} := {j, k}c respectively. So for example, M−jk is the
submatrix of M that has columns j and k removed.
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2 Ridge regression

Let us revisit the linear model
Yi = xTi β

0 + εi

where E(εi) = 0 and Var(ε) = σ2I. For unbiased estimators of β0, their variance gives
a way of comparing their quality in terms of squared error loss. For a potentially biased
estimator, β̃, the relevant quantity is

Eβ0,σ2{(β̃ − β0)(β̃ − β0)T} = E[{β̃ − E(β̃) + E(β̃)− β0}{β̃ − E(β̃) + E(β̃)− β0}T ]

= Var(β̃) + {E(β̃ − β0)}{E(β̃ − β0)}T ,

a sum of squared bias and variance terms. In this section and the next, we will explore
two important methods for variance reduction based on different forms of penalisation:
rather than forming estimators via optimising a least squares or log-likelihood term, we
will introduce an additional penalty term that encourages estimates to be shrunk towards
0 in some sense. This will allow us to produce reliable estimators that work well when
classical MLEs are infeasible, and in other situations can greatly out-perform the classical
approaches.

One way to reduce the variance of β̂
OLS

is to shrink the estimated coefficients towards 0.
Ridge regression [Hoerl and Kennard, 1970] does this by solving the following optimisation
problem

(µ̂R
λ , β̂

R

λ ) = arg min
(µ,β)∈R×Rp

{‖Y − µ1−Xβ‖22 + λ‖β‖22}.

Here 1 is an n-vector of 1’s. We see that the usual OLS objective is penalised by an
additional term proportional to ‖β‖22. The parameter λ ≥ 0, which controls the severity of
the penalty and therefore the degree of the shrinkage towards 0, is known as a regularisation
parameter or tuning parameter. Note we have explicitly included an intercept term which is
not penalised. The reason for this is that were the variables to have their origins shifted so
e.g. a variable representing temperature is given in units of Kelvin rather than Celsius, the
fitted values would not change. However, Xβ̂ is not invariant under scale transformations
of the variables so it is standard practice to centre each column of X (hence making them
orthogonal to the intercept term) and then scale them to have `2-norm

√
n.

The following lemma shows that after this standardisation of X, µ̂R
λ = Ȳ :=

∑n
i=1 Yi/n,

so we may assume that
∑n

i=1 Yi = 0 by replacing Yi by Yi − Ȳ and then we can remove µ
from our objective function.

Lemma 1. Suppose the columns of X have been centred. If a minimiser (µ̂, β̂) of

‖Y − µ1−Xβ‖22 + J(β).

over (µ,β) ∈ R× Rp exists, then µ̂ = Ȳ.
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Once these modifications have been made, differentiating the resulting objective with
respect to β yields

β̂
R

λ = (XTX + λI)−1XTY.

In this form, we can see how the addition of the λI term helps to stabilise the estimator.
Note that when X does not have full column rank (such as in high-dimensional situations),

β̂
R

λ can still be computed. On the other hand, when X does have full column rank and
assuming a linear model, we have the following theorem.

Theorem 2. For λ sufficiently small (depending on β0 and σ2),

E(β̂
OLS
− β0)(β̂

OLS
− β0)T − E(β̂

R

λ − β0)(β̂
R

λ − β0)T

is positive definite.

At first sight this might appear to contradict the Gauss-Markov theorem. However,
though ridge regression is a linear estimator, it is not unbiased. In order to better under-
stand the performance of ridge regression, we will turn to one of the key matrix decompo-
sitions used in statisitcs.

2.1 The SVD and PCA

Recall that we can factorise any X ∈ Rn×p into its SVD

X = UDVT .

Here the U ∈ Rn×n and V ∈ Rp×p are orthogonal matrices and D ∈ Rn×p has D11 ≥ D22 ≥
· · · ≥ Dmm ≥ 0 where m := min(n, p) and all other entries of D are zero.

When n > p, we can replace U by its first p columns and D by its first p rows to produce
another version of the SVD (sometimes known as the thin SVD). Then X = UDVT where
U ∈ Rn×p has orthonormal columns (but is no longer square) and D is square and diagonal.
There is an equivalent version for when p > n.

Let us take X ∈ Rn×p as our matrix of predictors and suppose n ≥ p. Using the (thin)
SVD we may write the fitted values from ridge regression as follows.

Xβ̂
R

λ = X(XTX + λI)−1XTY

= UDVT (VD2VT + λI)−1VDUTY

= UD(D2 + λI)−1DUTY

=

p∑
j=1

Uj

D2
jj

D2
jj + λ

UT
j Y.

Here we have used the notation (which we shall use throughout the course) that Uj is the
jth column of U. For comparison, the fitted values from OLS (when X has full column
rank) are

Xβ̂
OLS

= X(XTX)−1XTY = UUTY.
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Both OLS and ridge regression compute the coordinates of Y with respect to the columns
of U. Ridge regression then shrinks these coordinates by the factors D2

jj/(D
2
jj + λ); if Djj

is small, the amount of shrinkage will be larger.
To interpret this further, note that the SVD is intimately connected with Principal

Component Analysis (PCA). Consider v ∈ Rp with ‖v‖2 = 1. Since the columns of X
have had their means subtracted, the sample variance of Xv ∈ Rn, is

1

n
vTXTXv =

1

n
vTVD2VTv.

Writing a = VTv, so ‖a‖2 = 1, we have

1

n
vTVD2VTv =

1

n
aTD2a =

1

n

∑
j

a2jD
2
jj ≤

1

n
D11

∑
j

a2j =
1

n
D2

11.

As ‖XV1‖22/n = D2
11/n, V1 determines the linear combination of the columns of X that

has the largest sample variance, when the coefficients of the linear combination are con-
strained to have `2-norm 1. XV1 = D11U1 is known as the first principal component of
X. Subsequent principal components D22U2, . . . , DppUp have maximum variance D2

jj/n,
subject to being orthogonal to all earlier ones.

Returning to ridge regression, we see that it shrinks Y most in the smaller principal
components of X. Thus it will work well when most of the signal is in the large principal
components of X. We now turn to the problem of choosing λ.

2.2 Cross-validation

Cross-validation is a general technique for selecting a good regression method from among
several competing regression methods. We illustrate the principle with ridge regression,
where we have a family of regression methods given by different λ values.

So far, we have considered the matrix of predictors X as fixed and non-random. How-
ever, in many cases, it makes sense to think of it as random. Let us assume that our data
are i.i.d. pairs (xi,Yi), i = 1, . . . , n. Then ideally, we might want to pick a λ value such
that

E{(Y ∗ − x∗T β̂
R

λ (X,Y))2|X,Y} (2.1)

is minimised. Here (x∗, Y ∗) ∈ Rp×R is independent of (X,Y) and has the same distribution

as (x1,Y1), and we have made the dependence of β̂
R

λ on the training data (X,Y) explicit.
This λ is such that conditional on the original training data, it minimises the expected
prediction error on a new observation drawn from the same distribution as the training
data.

A less ambitious goal is to find a λ value to minimise the expected prediction error,

E[E{(Y ∗ − x∗T β̂
R

λ (X,Y))2|X,Y}] (2.2)

where compared with (2.1), we have taken a further expectation over the training set.
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We still have no way of computing (2.2) directly, but we can attempt to estimate it.
The idea of v-fold cross-validation is to split the data into v groups or folds of roughly
equal size: (X(1),Y(1)), . . . , (X(v),Y(v)). Let (X(−k),Y(−k)) be all the data except that

in the kth fold. For each λ on a grid of values, we compute β̂
R

λ (X(−k),Y(−k)): the ridge
regression estimate based on all the data except the kth fold. Writing κ(i) for the fold to
which (xi, Yi) belongs, we choose the value of λ that minimises

CV(λ) =
1

n

n∑
i=1

{Yi − xTi β̂
R

λ (X(−κ(i)),Y(−κ(i)))}2. (2.3)

Writing λCV for the minimiser, our final estimate of β0 can then be β̂
R

λCV
(X,Y).

Note that for each i,

E{Yi − xTi β̂
R

λ (X(−κ(i)),Y(−κ(i)))}2 = E[E{Yi − xTi β̂
R

λ (X(−κ(i)),Y(−κ(i)))}2|X(−κ(i)),Y(−κ(i))].
(2.4)

This is precisely the expected prediction error in (2.2) but with the training data X,Y
replaced with a training data set of smaller size. If all the folds have the same size, then
CV(λ) is an average of n identically distributed quantities, each with expected value as in
(2.4). However, the quantities being averaged are not independent as they share the same
data.

Thus cross-validation gives a biased estimate of the expected prediction error. The
amount of the bias depends on the size of the folds, the case when the v = n giving the
least bias—this is known as leave-one-out cross-validation. The quality of the estimate,
though, may be worse as the quantities being averaged in (2.3) will be highly positively
correlated. Typical choices of v are 5 or 10.

Cross-validation aims to allow us to choose the single best λ (or more generally regres-
sion procedure); we could instead aim to find the best weighted combination of regression
procedures. Returning to our ridge regression example, suppose λ is restricted to a grid of
values λ1 > λ2 > · · · > λL. We can then minimise

1

n

n∑
i=1

{
Yi −

L∑
l=1

wlx
T
i β̂

R

λl
(X(−κ(i)),Y(−κ(i)))

}2

over w ∈ RL subject to wl ≥ 0 for all l. This is a non-negative least-squares optimisation,
for which efficient algorithms are available. This sort of idea is known as stacking [Wolpert,
1992, Breiman, 1996] and it can often outperform cross-validation.

2.3 The kernel trick

The fitted values from ridge regression are

X(XTX + λI)−1XTY. (2.5)
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An alternative way of writing this is suggested by the following

XT (XXT + λI) = (XTX + λI)XT

(XTX + λI)−1XT = XT (XXT + λI)−1

X(XTX + λI)−1XTY = XXT (XXT + λI)−1Y. (2.6)

Two remarks are in order:

� Note while XTX is p × p, XXT is n × n. Computing fitted values using (2.5)
would require roughly O(np2 + p3) operations. If p � n this could be extremely
costly. However, our alternative formulation would only require roughly O(n2p+n3)
operations, which could be substantially smaller.

� We see that the fitted values of ridge regression depend only on inner products
K = XXT between observations (note Kij = xTi xj).

Now suppose that we believe the signal depends quadratically on the predictors:

Yi = xTi β +
∑
k,l

xikxilθkl + εi.

We can still use ridge regression provided we work with an enlarged set of predictors

xi1, . . . , xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip.

This will give us O(p2) predictors. Our new approach to computing fitted values would
therefore have complexity O(n2p2 + n3), which could still be rather costly if p is large.

However, rather than first creating all the additional predictors and then computing
the new K matrix, we can attempt to directly compute K. To this end consider

(1 + xTi xj)
2 =

(
1 +

∑
k

xikxjk

)2

= 1 + 2
∑
k

xikxjk +
∑
k,l

xikxilxjkxjl.

Observe this amounts to an inner product between vectors of the form

(1,
√

2xi1, . . . ,
√

2xip, xi1xi1, . . . , xi1xip, xi2xi1, . . . , xi2xip, . . . , xipxip)
T . (2.7)

Thus if we set
Kij = (1 + xTi xj)

2 (2.8)

and plug this into the formula for the fitted values, it is exactly as if we had performed
ridge regression on an enlarged set of variables given by (2.7). Now computing K using
(2.8) would require only p operations per entry, so O(n2p) operations in total. It thus
seems we have improved things by a factor of p using our new approach. This is a nice
computational trick, but more importantly for us it serves to illustrate some general points.
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� Since ridge regression only depends on inner products between observations, rather
than fitting non-linear models by first mapping the original data xi ∈ Rp to φ(xi) ∈
Rd (say) using some feature map φ (which could, for example introduce quadratic
effects), we can instead try to directly compute k(xi,xj) = 〈φ(xi), φ(xj)〉.

� In fact rather than thinking in terms of feature maps, we can instead try to think
about an appropriate measure of similarity k(xi,xj) between observations, known as
a kernel. It turns out that a necessary and sufficient property for such a kernel to have
in order for it to correspond to an inner product of the form k(xi,xj) = 〈φ(xi), φ(xj)〉
is that given any collection of m potential observation vectors x1, . . . ,xm, the matrix
K ∈ Rm×m with entries

Kij = k(xi,xj)

should be positive semi-definite. Modelling by directly picking a kernel with this
property is sometimes easier and more natural than thinking in terms of feature
maps.

Ridge regression is just one of many procedures that depends only on inner products
between observation vectors. Any method involving optimising an objective of the form

c(Y,Xβ) + λ‖β‖22 (2.9)

only depends on K = XXT provided it is the fitted values Xβ̂ that are of interest rather
than β̂ itself. Indeed, let P ∈ Rp×p be the orthogonal projection on to the row space of X
and note that Xβ = XPβ. Meanwhile

‖β‖22 = ‖Pβ‖22 + ‖(I−P)β‖22.

We conclude that any minimiser β̂ must satisfy β̂ = Pβ̂, that is β̂ must be in the row
space of X. This means that we may write β̂ = XT α̂ for some α̂ ∈ Rn. Thus the fitted
values are Xβ̂ = Kα̂ where substituting β = XTα into (2.9), we see that α̂ minimises

c(Y,Kα) + λαTKα

over α ∈ Rn.
This result is a slightly simplified version of what is known as the representer theorem

[Kimeldorf and Wahba, 1970, Schölkopf et al., 2001]. A key application is to the famous
support vector classifier which is commonly used in the classification setting when the
response is binary so Y ∈ {−1, 1}n. The optimisation problem can be expressed as

n∑
i=1

(1− YixTi β)+ + λ‖β‖22,

which we see is of the form (2.9). Note here (x)+ = x1{x>0}.
This section has been the briefest of introductions to the world of kernel machines

which form an important class of machine learning methods. If you are interested in
learning more, you can try the survey paper Hofmann et al. [2008], or Scholkopf and
Smola [2001] for an more in depth treatment.
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3 The Lasso

Let us revisit the linear model Y = Xβ0 + ε where E(ε) = 0, Var(ε) = σ2I. In many
modern datasets, there are reasons to believe there are many more variables present than
are necessary to explain the response. The MSPE of OLS is

1

n
E‖Xβ0 −Xβ̂

OLS
‖22 =

1

n
E{(β0 − β̂

OLS
)TXTX(β0 − β̂

OLS
)}

=
1

n
E[tr{(β0 − β̂

OLS
)(β0 − β̂

OLS
)TXTX}]

=
1

n
tr[E{(β0 − β̂

OLS
)(β0 − β̂

OLS
)T}XTX]

=
1

n
tr(Var(β̂

OLS
)XTX) =

p

n
σ2.

Let S be the set S = {k : β0
k 6= 0} and suppose s := |S| � p. If we could identify S and

then fit a linear model using just these variables, we’d obtain an MSPE of σ2s/n which
could be substantially smaller than σ2p/n. Furthermore, it can be shown that parameter
estimates from the reduced model are more accurate. The smaller model would also be
easier to interpret.

We now briefly review some classical model selection strategies.

Best subset regression. A natural approach to finding S is to consider all 2p pos-
sible regression procedures each involving regressing the response on a different sets of
explanatory variables XM where M is a subset of {1, . . . , p}. We can then pick the best
regression procedure using cross-validation (say). For general design matrices, this involves
an exhaustive search over all subsets, so this is not really feasible for p > 50.

Forward selection. This can be seen as a greedy way of performing best subsets regres-
sion. Given a target model size m (the tuning parameter), this works as follows.

1. Start by fitting an intercept only model.

2. Add to the current model the predictor variable that reduces the residual sum of
squares the most.

3. Continue step 2 until m predictor variables have been selected.

3.1 The Lasso estimator

The Least absolute shrinkage and selection operator (Lasso) [Tibshirani, 1996] estimates

β0 by β̂
L

λ, where (µ̂L, β̂
L

λ) minimise

1

2n
‖Y − µ1−Xβ‖22 + λ‖β‖1 (3.1)
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over (µ,β) ∈ R× Rp. Here ‖β‖1 is the `1-norm of β: ‖β‖1 =
∑p

k=1 |βk|.
Like ridge regression, β̂

L

λ shrinks the OLS estimate towards the origin, but there is
an important difference. The `1 penalty can force some of the estimated coefficients to be
exactly 0. In this way the Lasso can perform simultaneous variable selection and parameter
estimation. As we did with ridge regression, we can centre and scale the X matrix, and
also centre Y and thus remove µ from the objective (see Lemma 1). Define

Qλ(β) =
1

2n
‖Y −Xβ‖22 + λ‖β‖1. (3.2)

Now any minimiser of Qλ(β) will also be a minimiser of

‖Y −Xβ‖22 subject to ‖β‖1 ≤ ‖β̂
L

λ‖1.

Similarly, in the case of the ridge regression objective, we know that β̂
R

λ minimises ‖Y −
Xβ‖22 subject to ‖β‖2 ≤ ‖β̂

R

λ‖2.
The contours of the OLS objective ‖Y−Xβ‖22 are ellipsoids centred at β̂

OLS
, while the

contours of ‖β‖22 are spheres centred at the origin, and the contours of ‖β‖1 are ‘diamonds’
centred at 0.

The important point to note is that the `1 ball {β ∈ Rp : ‖β‖1 ≤ ‖β̂
L

λ‖1} has corners
where some of the components are zero, and it is likely that the OLS contours will intersect
the `1 ball at such a corner.

3.2 Prediction error

A remarkable property of the Lasso is that even when p � n, it can still perform well in
terms of prediction error. Suppose the columns of X have been centred and scaled (as we
will always assume from now on unless stated otherwise) and a linear model holds:

Y = Xβ0 + ε− ε̄1. (3.3)

Note we have already centred Y. We will further assume that the εi are independent
mean-zero sub-Gaussian random variables with common parameter σ. Note this includes
as a special case ε ∼ Nn(0, σ2I).

12



Theorem 3. Let β̂ be the Lasso solution when

λ = Aσ

√
log(p)

n
.

With probability at least 1− 2p−(A
2/2−1)

1

n
‖X(β0 − β̂)‖22 ≤ 4Aσ

√
log(p)

n
‖β0‖1.

Proof. From the definition of β̂ we have

1

2n
‖Y −Xβ̂‖22 + λ‖β̂‖1 ≤

1

2n
‖Y −Xβ0‖22 + λ‖β0‖1.

Rearranging,

1

2n
‖X(β0 − β̂)‖22 ≤

1

n
εTX(β̂ − β0) + λ‖β0‖1 − λ‖β̂‖1.

Now |εTX(β̂ − β0)| ≤ ‖XTε‖∞‖β̂ − β0‖1 by Hölder’s inequality. Let Ω = {‖XTε‖∞/n ≤
λ}. Lemma 6 below shows that P(Ω) ≥ 1−2p−(A

2/2−1). Working on the event Ω, we obtain

1

2n
‖X(β0 − β̂)‖22 ≤ λ‖β0 − β̂‖1 + λ‖β0‖1 − λ‖β̂‖1,

1

n
‖X(β0 − β̂)‖22 ≤ 4λ‖β0‖1, by the triangle inequality.

3.2.1 The event Ω

The proof of Theorem 3 relies on a lower bound for the probability of the event Ω. A union
bound gives

P(‖XTε‖∞/n > λ) = P(∪pj=1|XT
j ε|/n > λ)

≤
p∑
j=1

P(|XT
j ε|/n > λ).

Thus if we can obtain tail probability bounds on |XT
j ε|/n, the argument above will give a

lower bound for P(Ω).
Recall a random variable is said to be sub-Gaussian with parameter σ if

Eeα(W−EW ) ≤ eα
2σ2/2

for all α ∈ R (see Section 6 of the preliminary material). This property implies the tail
bound

P(W − EW ≥ t) ≤ e−t
2/(2σ2).

If W ∼ N (0, σ2), then W is sub-Gaussian with parameter σ. The sub-Gaussian class also
includes bounded random variables:

13



Lemma 4 (Hoeffding’s lemma). If W is mean-zero and takes values in [a, b], then W is
sub-Gaussian with parameter (b− a)/2.

The following proposition shows that analogously to how a linear combination of jointly
Gaussian random variables is Gaussian, a linear combination of sub-Gaussian random
variables is also sub-Gaussian.

Proposition 5. Let (Wi)
n
i=1 be a sequence of independent mean-zero sub-Gaussian ran-

dom variables with parameters (σi)
n
i=1 and let γ ∈ Rn. Then γTW is sub-Gaussian with

parameter
(∑

i γ
2
i σ

2
i

)1/2
.

Proof.

E exp
(
α

n∑
i=1

γiWi

)
=

n∏
i=1

E exp(αγiWi)

≤
n∏
i=1

exp(α2γ2i σ
2
i /2)

= exp
(
α2

n∑
i=1

γ2i σ
2
i /2
)
.

We are now in a position to obtain the probability bound required for Theorem 3.

Lemma 6. Suppose (εi)
n
i=1 are independent, mean-zero and sub-Gaussian with common

parameter σ. Let λ = Aσ
√

log(p)/n. Then

P(‖XTε‖∞/n ≤ λ) ≥ 1− 2p−(A
2/2−1).

Proof.

P(‖XTε‖∞/n > λ) ≤
p∑
j=1

P(|XT
j ε|/n > λ).

But ±XT
j ε/n are both sub-Gaussian with parameter (σ2‖Xj‖22/n2)1/2 = σ/

√
n. Thus the

RHS is at most
2p exp(−A2 log(p)/2) = 2p1−A

2/2.

3.3 Estimation error

Consider once more the model Y = Xβ0 +ε− ε̄1 where the components of ε are indepen-
dent mean-zero sub-Gaussian random variables with common parameter σ. Let S, s and
N be defined as in the previous section. As we have noted before, in an artificial situation
where S is known, we could apply OLS on XS and have an MSPE of σ2s/n. Under a
so-called compatibility condition on the design matrix, we can obtain a similar MSPE for
the Lasso.

14



Definition 1. Given a matrix of predictors X ∈ Rn×p and support set S, define

φ2 = inf
β∈Rp:βS 6=0, ‖βN‖1≤3‖βS‖1

1
n
‖Xβ‖22
1
s
‖βS‖21

= inf
β∈Rp:‖βS‖1=1, ‖βN‖1≤3

s

n
‖XSβS −XNβN‖22,

and we take φ ≥ 0. The compatibility condition is that φ2 > 0.

Note that if XTX/n has minimum eigenvalue cmin > 0 (so necessarily p ≤ n), then
φ2 > cmin. Indeed by the Cauchy–Schwarz inequality,

‖βS‖1 = sgn(βS)TβS ≤
√
s‖βS‖2 ≤

√
s‖β‖2.

Thus

φ2 ≥ inf
β 6=0

1
n
‖Xβ‖22
‖β‖22

= cmin.

Although in the high-dimensional setting we would have cmin = 0, the fact that the infimum
in the definition of φ2 is over a restricted set of β can still allow φ2 to be positive even in
this case. Indeed, for example if the rows of X were drawn independently from a Np(0,Σ)
distribution with the minimum eigenvalue of Σ greater than some constant c > 0. Then it
can be shown that P(φ2 > c/2) → 1 if s

√
log(p)/n → 0 (in fact stronger results are true

[Raskutti et al., 2010]).

Theorem 7. Suppose the compatibility condition holds and let β̂ be the Lasso solution with
λ = Aσ

√
log(p)/n for A > 0. Then with probability at least 1− 2p−(A

2/8−1), we have

1

n
‖X(β0 − β̂)‖22 + λ‖β̂ − β0‖1 ≤

12λ2s

φ2
=

12A2 log(p)

φ2

σ2s

n
.

Proof. As in Theorem 3 we start with the “basic inequality”:

1

2n
‖X(β̂ − β0)‖22 + λ‖β̂‖1 ≤

1

n
εTX(β̂ − β0) + λ‖β0‖1.

We work on the event Ω = {2‖XTε‖∞/n ≤ λ} where after applying Hölder’s inequality,
we get

1

n
‖X(β̂ − β0)‖22 + 2λ‖β̂‖1 ≤ λ‖β̂ − β0‖1 + 2λ‖β0‖1. (3.4)

Lemma 6 shows that P(Ω) ≥ 1− 2p−(A
2/8−1).

To motivate the rest of the proof, consider the following idea. We know

1

n
‖X(β̂ − β0)‖22 ≤ 3λ‖β̂ − β0‖1.

If we could get

3λ‖β̂ − β0‖1 ≤
cλ√
n
‖X(β̂ − β0)‖2

15



for some constant c > 0, then we would have that ‖X(β̂ − β0)‖22/n ≤ c2λ2 and also
3λ‖β0 − β̂‖1 ≤ c2λ2.

Returning to the actual proof, write a = ‖X(β̂ − β0)‖22/(nλ). Then from (3.4) we can
derive the following string of inequalities:

a+ 2(‖β̂N‖1 + ‖β̂S‖1) ≤ ‖β̂S − β0
S‖1 + ‖β̂N‖1 + 2‖β0

S‖1
a+ ‖β̂N‖1 ≤ ‖β̂S − β0

S‖1 + 2‖β0
S‖1 − 2‖β̂S‖1

a+ ‖β̂N − β0
N‖1 ≤ 3‖β0

S − β̂S‖1.

Now, using the compatibility condition with β = β̂ − β0 we have

1

n
‖X(β̂ − β0)‖22 + λ‖β0

N − β̂N‖1 ≤ 3λ‖β0
S − β̂S‖1

≤ 3λ

φ

√
s

n
‖X(β̂ − β0)‖2.

From this we get
1√
n
‖X(β̂ − β0)‖2 ≤

3λ
√
s

φ
,

which substituting into the RHS of the above gives

1

n
‖X(β̂ − β0)‖22 + λ‖β0

N − β̂N‖1 ≤ 9λs/φ2.

Adding the inequality
‖β0

S − β̂S‖1 ≤ 3λs/φ2 (3.5)

to both sides then gives the result.

Variable screening. The estimation error results shows in particular that if components
of β0 are sufficiently far away from 0, the corresponding Lasso coefficients will also be non-
zero (and have the same sign). Thus the set of non-zeroes of the Lasso Ŝλ should contain
the set of important predictors, though we may miss some variables in S that have small
coefficients.

Corollary 8. Consider the setup of Theorem 7. Let Simp = {j : |β0
j | > 3σsA

√
log(p)/n/φ2}.

With probability 1− 2p−(A
2/8−1)

Ŝλ ⊃ Simp.

Proof. From (3.5) we know that on Ω we have (in particular) for j ∈ Simp

|β0
j − β̂j| ≤ 3σsA

√
log(p)/n/φ2

which implies sgn(β̂j) = sgn(β0
j ).
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The conditions required for Ŝλ = S are somewhat stronger [Meinshausen and Bühlmann,
2006, Zhao and Yu, 2006, Wainwright, 2009].

Note that the choice of λ given in the results above involves σ which is typically un-
known. In practice λ is usually selected by cross-validation (or some form of stacking may
be used). However Belloni et al. [2011], Sun and Zhang [2012] show that by modifying the
Lasso objective to remove the square on the least squares term ‖Y−Xβ‖22 (known as the
square-root Lasso), there is a universal choice of λ not depending on σ for which the above
results hold.

3.4 Subgradients and the KKT conditions

Efficient computation of Lasso solutions makes use of a set of necessary and sufficient
conditions for a vector to minimise the Lasso objective. These conditions are effectively
zero gradient conditions, but take account of the fact that the Lasso objective is not
differentiable at any point where any βj = 0. In order to derive these conditions, we
must introduce the notion of a subgradeient, which generalises the gradient to potentially
non-differentiable but convex functions.

Definition 2. A vector v ∈ Rd is a subgradient of a convex function f : Rd → R at x if

f(y) ≥ f(x) + vT (y − x) for all y ∈ Rd.

The set of subgradients of f at x is called the subdifferential of f at x and denoted ∂f(x).

In order to make use of subgradients, we will require the following two facts:

Proposition 9. Let f : Rd → R be convex, and suppose f is differentiable at x. Then
∂f(x) = {∂f/∂x}.

Proposition 10. Let f, g : Rd → R be convex and let α > 0. Then

∂(αf)(x) = α∂f(x) = {αv : v ∈ ∂f(x)},
∂(f + g)(x) = ∂f(x) + ∂g(x) = {v + w : v ∈ ∂f(x), w ∈ ∂g(x)}.

The following easy (but key) result is often referred to in the statistical literature as the
Karush–Kuhn–Tucker (KKT) conditions, though it is actually a much simplified version
of them.

Proposition 11. x∗ ∈ arg min
x∈Rd

f(x) if and only if 0 ∈ ∂f(x∗).

Proof.

f(y) ≥ f(x∗) for all y ∈ Rd ⇔ f(y) ≥ f(x∗) + 0T (y − x) for all y ∈ Rd

⇔ 0 ∈ ∂f(x∗).
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Let us now compute the subdifferential of the `1-norm. First note that ‖ · ‖1 : Rd → R
is convex. Indeed it is a norm so the triangle inequality gives ‖tx + (1− t)y‖1 ≤ t‖x‖1 +
(1− t)‖y‖1.

Proposition 12. For x ∈ Rd let A = {j : xj 6= 0}. Then

∂‖x‖1 = {v ∈ Rd : ‖v‖∞ ≤ 1 and vA = sgn(xA)}

Proof. For j = 1, . . . , d, let

gj : Rd → R
x 7→ |xj|.

Then ‖ · ‖ =
∑

j gj(·) so by Proposition 10, ∂‖x‖1 =
∑

j ∂gj(x). When x has xj 6= 0, gj
is differentiable at x so by Proposition 9 ∂gj(x) = {sgn(xj)ej} where ej is the jth unit
vector. When xj = 0, if v ∈ ∂gj(x) we must have

gj(y) ≥ gj(x) + vT (y − x) for all y ∈ Rd,

so
|yj| ≥ vT (y − x) for all y ∈ Rd. (3.6)

we claim that the above holds if and only if vj ∈ [−1, 1] and v−j = 0. For the ‘if’ direction,
note that vT (y − x) = vjyj ≤ |yj|. Conversely, set y−j = x−j + v−j and yj = 0 in (3.6) to
get 0 ≥ ‖v−j‖22, so v−j = 0. Then take y with y−j = x−j to get |yj| ≥ vjyj for all yj ∈ R,
so |vj| ≤ 1. Forming the set sum of the subdifferentials then gives the result.

Equipped with these tools from convex analysis, we can now fully characterise the

solutions to the Lasso. We have that β̂
L

λ is a Lasso solution if and only if 0 ∈ ∂Qλ(β̂
L

λ),
which is equivalent to

1

n
XT (Y −Xβ̂

L

λ) = λν̂,

for ν̂ with ‖ν̂‖∞ ≤ 1 and writing Ŝλ = {k : β̂
L

λ,k 6= 0}, ν̂ Ŝλ = sgn(β̂
L

λ,Ŝλ
).

3.5 Computation

One of the most efficient ways of computing Lasso solutions is to use a optimisation tech-
nique called coordinate descent. This is a quite general way of minimising a function
f : Rd → R and works particularly well for functions of the form

f(x) = g(x) +
d∑
j=1

hj(xj)
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where g is convex and differentiable and each hj : R→ R is convex (and so continuous). We
start with an initial guess of the minimiser x(0) (e.g. x(0) = 0) and repeat for m = 1, 2, . . .

x
(m)
1 = arg min

x1∈R
f(x1, x

(m−1)
2 , . . . , x

(m−1)
d )

x
(m)
2 = arg min

x2∈R
f(x

(m)
1 , x2, x

(m−1)
3 , . . . , x

(m−1)
d )

...

x
(m)
d = arg min

xd∈R
f(x

(m)
1 , x

(m)
2 , . . . , x

(m)
d−1, xd).

Tseng [2001] proves that provided A0 = {x : f(x) ≤ f(x(0))} is closed and bounded, then
every converging subsequence of x(m) will converge to a minimiser of f (which must exist
since a continuous function on a closed bounded set attains its bounds). In particular this
means that f(x(m)) → f(x∗) where x∗ is a minimiser of f . Moreover if x∗ is the unique
minimiser of f then x(m) → x∗.

Coordinate descent is particularly useful in the case of the Lasso because the coordinate-
wise updates have closed-form expressions. Indeed

arg min
βj∈R

{
1

2n
‖Y −X−jb− βjXj‖22 + λ|βj|

}
= Tλ(X

T
j (Y −X−jb)/n)

where Tλ(x) = sgn(x)(|x|−λ)+ is the so-called soft-thresholding operation. This result can
easily be verified by checking that the given minimiser does satisfy the KKT conditions of
the objective above.

We often want to solve the Lasso on a grid of λ values λ0 > · · · > λL (for the purposes
of cross-validation for example). To do this, we can first solve for λ0, and then solve at
subsequent grid points by using the solution at the previous grid points as an initial guess
(known as a warm start). An active set strategy can further speed up computation. This
works as follows: For l = 1, . . . , L

1. Initialise Al = {k : β̂
L

λl−1,k
6= 0}.

2. Perform coordinate descent only on coordinates in Al obtaining a solution β̂ (all
components β̂k with k /∈ Al are set to zero).

3. Let V = {k : |XT
k (Y −Xβ̂)|/n > λl}, the set of coordinates which violate the KKT

conditions when β̂ is taken as a candidate solution.

4. If V is empty, we set β̂
L

λl
= β̂. Else we update Al = Al ∪ V and return to 2.

Note that λ0 may be taken as ‖XTY/n‖∞ as for λ larger than this, β̂
L

λ = 0 (you can check
that 0 satisfies the KKT conditions when λ larger than λ0).
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3.6 Extensions of the Lasso

3.6.1 Generalised linear models

We can add an `1 penalty to many other log-likelihoods besides that arising from the
normal linear model. For `1-penalised generalised linear models, such as logistic regression,
similar theoretical results to those we have obtained are available [van de Geer, 2008] and
computations can proceed in a similar fashion to above [Friedman et al., 2009].

3.6.2 Removing the bias of the Lasso

One potential drawback of the Lasso is that the same shrinkage effect that sets many
estimated coefficients exactly to zero also shrinks all non-zero estimated coefficients towards

zero. One possible solution is to take Ŝλ = {k : β̂
L

λ,k 6= 0} and then re-estimate β0
Ŝλ

by
OLS regression on XŜλ

. Another option is to re-estimate using the Lasso on XŜλ
; this

procedure is known as the relaxed Lasso [Meinshausen, 2007].

The adaptive Lasso [Zou, 2006] takes an initial estimate of β0, β̂
init

(e.g. from the Lasso)
and then performs weighted Lasso regression:

β̂
adapt

λ = arg min
β∈Rp:βŜc

init
=0

{
1

2n
‖Y −Xβ‖22 + λ

∑
k∈Ŝinit

|βk|
|β̂init
k |

}
,

where Ŝinit = {k : β̂
init

k 6= 0}.
Yet another approach involves using a family of non-convex penalty functions pλ,γ :

[0,∞)→ [0,∞) and attempting to minimise

1

2n
‖Y −Xβ‖22 +

p∑
k=1

pλ,γ(|βk|).

A prominent example is the minimax concave penalty (MCP) [Zhang, 2010] which takes

p′λ(u) =

(
λ− u

γ

)
+

.

One disadvantage of using a non-convex penalty is that there may be multiple local minima
which can make optimisation problematic. However, typically if the non-convexity is not
too severe, coordinate descent can produce reasonable results.

3.6.3 The elastic net

The elastic net [Zou and Hastie, 2005] uses a weighted combination of ridge and Lasso
penalties:

β̂
EN

λ,α = arg min
β∈Rp

{
1

2n
‖Y −Xβ‖22 + λ{α‖β‖1 + (1− α)‖β‖22}

}
.
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Here α ∈ [0, 1] is an additional tuning parameter. The presence of the `2 penalty encourages
coefficients of variables correlated to other variables with non-zero estimated coefficients
to also be non-zero.

3.6.4 Group Lasso

The Lasso penalty encourages the estimated coefficients to be shrunk towards 0 and some-
times exactly to 0. Other penalty functions can be constructed to encourage different types
of sparsity. Suppose we have a partition G1, . . . , Gq of {1, . . . , p} (so ∪qk=1Gk = {1, . . . , p},
Gj ∩Gk = ∅ for j 6= k). The group Lasso penalty [Yuan and Lin, 2006] is given by

λ

q∑
j=1

mj‖βGj‖2.

The multipliers mj > 0 serve to balance cases where the groups are of very different sizes;
typically we choose mj =

√
|Gj|. This penalty encourages either an entire group G to have

β̂G = 0 or β̂k 6= 0 for all k ∈ G. Such a property is useful when groups occur through coding
for categorical predictors or when expanding predictors using basis functions [Ravikumar
et al., 2007].

4 Graphical modelling

So far we have considered the problem of relating a particular response to a large collection
of explanatory variables. In some settings however, we do not have a distinguished response
variable and instead we would like to better understand relationships between all the
variables. We may, for example, wish to identify variables that are ‘directly related’ to
each other in some sense. Trying to find pairs of variables that are independent and so
unlikely to be related to each other is not necessarily a good way to proceed as each variable
may be correlated with a large number of variables without being directly related to them.
A potentially better approach is to use conditional independence.

Definition 3. If X, Y and Z are random vectors with a joint density fXYZ then we say
X is conditionally independent of Y given Z, and write

X ⊥⊥ Y|Z

if
fXY|Z(x,y|z) = fX|Z(x|z)fY|Z(y|z).

Equivalently
X ⊥⊥ Y|Z⇐⇒ fX|YZ(x|y, z) = fX|Z(x|z) :

the conditional distribution of X given Y and Z depends only on Z.
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4.1 Conditional independence graphs

Graphs provide a convenient way to visualise conditional independencies between random
variables. A graph G is a pair (V,E) where V is a set and E is a subset of

{{x, y} : x, y ∈ V, x 6= y},

the set of unordered distinct pairs from V . We call the members of V vertices and members
of E edges. In the graphs that we consider, we will always take V to be {1, . . . , |V |}.

Given j, k ∈ V a path of length m from j to k is a sequence j = j1, j2, . . . , jm = k of
distinct vertices such that {ji, ji+1} ∈ E, i = 1, . . . ,m− 1.

Given a triple of subsets of vertices A,B, S, we say S separates A from B if every path
from a vertex in A to a vertex in B contains a vertex in S.

Let Z = (Z1, . . . , Zp)
T be a collection of random variables with joint law P and consider

a graph G = (V,E) where V = {1, . . . , p}. We say that P satisfies the pairwise Markov
property w.r.t. G if for any pair j, k ∈ V with j 6= k and {j, k} /∈ E,

Zj ⊥⊥ Zk|Z−jk.

Note that the complete graph that has edges between every pair of vertices will satisfy the
pairwise Markov property for any P . The minimal graph satisfying the pairwise Markov
property w.r.t. a given P is called the conditional independence graph (CIG) for P . This
does not have an edge between j and k if and only if Zj ⊥⊥ Zk|Z−jk.

We say P satisfies the global Markov property w.r.t. G if for any triple (A,B, S) of
disjoint subsets of V such that S separates A from B, we have

ZA ⊥⊥ ZB|ZS.

Proposition 13 (See Lauritzen [1996] for example). If P has a positive density then if it
satisfies the pairwise Markov property w.r.t. a graph G, it also satisfies the global Markov
property w.r.t. G and vice versa.

4.2 Gaussian graphical models

Estimating the CIG given a sample drawn from P is a difficult task in general. However,
in the case where P is multivariate Gaussian, things simplify considerably as we shall see.

The following result on the conditional distributions of a multivariate normal (see the
preliminary material for a proof) will be central to our discussion. Let Z ∼ Np(µ,Σ) with
Σ positive definite. Note ΣA,A is also positive definite for any A.

Proposition 14.

ZA|ZB = zB ∼ N|A|(µA + ΣA,BΣ−1B,B(zB − µB), ΣA,A −ΣA,BΣ−1B,BΣB,A)
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4.2.1 Neighbourhood selection

Specialising to the case where A = {k} and B = {k}c we see that when conditioning on
Z−k = z−k, we may write

Zk = mk + zT−kΣ
−1
−k,−kΣ−k,k + εk,

where

mk = µk −Σk,−kΣ
−1
−k,−kµ−k

εk|Z−k = z−k ∼ N (0, Σk,k −Σk,−kΣ
−1
−k,−kΣ−k,k).

Note that if the jth element of the vector of coefficients Σ−1−k,−kΣ−k,k is zero, then the
distribution of Zk conditional on Z−k will not depend at all on the jth component of Z−k.
Then if that jth component was Zj′ , we would have that Zk|Z−k = z−k has the same
distribution as Zk|Z−j′k = z−j′k, so Zk ⊥⊥ Zj|Z−j′k.

Thus given x1, . . . ,xn
i.i.d.∼ Z and writing

X =

xT1
...

xTn

 ,

we may estimate the coefficient vector Σ−1−k,−kΣ−k,k by regressing Xk on X−k and including
an intercept term.

The technique of neighbourhood selection [Meinshausen and Bühlmann, 2006] involves
performing such a regression for each variable, using the Lasso. There are two options for
populating our estimate of the CIG with edges based on the Lasso estimates. Writing Ŝk
for the selected set of variables when regressing Xk on X−k, we can use the “OR” rule and
put an edge between vertices j and k if and only if k ∈ Ŝj or j ∈ Ŝk. An alternative is the

“AND” rule where we put an edge between j and k if and only if k ∈ Ŝj and j ∈ Ŝk.
Another popular approach to estimating the CIG works by estimating the precision

matrix Σ−1.

4.2.2 Schur complements and the precision matrix

The following facts about blockwise inversion of matrices will help us to interpret the mean
and variance in Proposition 14.

Proposition 15. Let M ∈ Rp×p be a symmetric positive definite matrix and suppose

M =

(
P QT

Q R

)
with P and R square matrices. The Schur complement of R is P −QTR−1Q =: S. We
have that S is positive definite and

M−1 =

(
S−1 −S−1QTR−1

−R−1QS−1 R−1 + R−1QS−1QTR−1

)
.
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Set M to be Σ and let Ω = Σ−1 be the precision matrix. Taking P = Σ11 we see that

Ω−1,1 = −Σ−1−1,−1Σ−1,1Ω11.

By symmetry we then also have Σ−1−k,−kΣ−k,k = −Ω−1kkΩ−k,k so

(Σ−1−k,−kΣ−k,k)j = 0⇔

{
Ωj,k = 0 for j < k

Ωj+1,k = 0 for j ≥ k.

Thus
Zk ⊥⊥ Zj|Z−jk ⇔ Ωjk = 0.

This motivates another approach to estimating the CIG.

4.2.3 The Graphical Lasso

Recall that the density of Np(µ,Σ) is

f(z) =
1

(2π)p/2det(Σ)1/2
exp

(
− 1

2
(z− µ)TΣ−1(z− µ)

)
.

The log-likelihood of (µ,Σ) based on an i.i.d. sample x1, . . . ,xn is

`(µ,Ω) =
n

2
log det(Ω)− 1

2

n∑
i=1

(xi − µ)TΩ(xi − µ).

Write

X̄ =
1

n

n∑
i=1

xi, S =
1

n

n∑
i=1

(xi − X̄)(xi − X̄)T .

Then
n∑
i=1

(xi − µ)TΩ(xi − µ) =
n∑
i=1

(xi − X̄ + X̄− µ)TΩ(xi − X̄ + X̄− µ)

=
n∑
i=1

(xi − X̄)TΩ(xi − X̄) + n(X̄− µ)TΩ(X̄− µ)

+ 2
n∑
i=1

(xi − X̄)TΩ(X̄− µ).

Also,

n∑
i=1

(xi − X̄)TΩ(xi − X̄) =
n∑
i=1

tr{(xi − X̄)TΩ(xi − X̄)}

=
n∑
i=1

tr{(xi − X̄)(xi − X̄)TΩ}

= ntr(SΩ).
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Thus
`(µ,Ω) = −n

2
{tr(SΩ)− log det(Ω) + (X̄− µ)TΩ(X̄− µ)}

and
max
µ∈Rp

`(µ,Ω) = −n
2
{tr(SΩ)− log det(Ω)}.

Hence the maximum likelihood estimate of Ω can be obtained by solving

min
Ω:Ω�0

{− log det(Ω) + tr(SΩ)},

where Ω � 0 means Ω is positive definite. One can show that the objective is convex and
we are minimising over a convex set.

The graphical Lasso [Yuan and Lin, 2007, Friedman et al., 2008] penalises the log-
likelihood for Ω and solves

min
Ω:Ω�0

{− log det(Ω) + tr(SΩ) + λ‖Ω‖1},

where ‖Ω‖1 =
∑

j,k |Ωjk|; this results in a sparse estimate of the precision matrix from
which an estimate of the CIG can be constructed.

5 High-dimensional inference

In many modern applications, we may be interested in testing many hypotheses simulta-
neously. Suppose we are interested in testing null hypotheses H1, . . . , Hm and Hi, i ∈ I0
are the true null hypotheses with |I0| = m0. We will suppose we have available p-values
p1, . . . , pm for each of the hypotheses so

P(pi ≤ α) ≤ α

for all α ∈ [0, 1], i ∈ I0. Consider the following contingency table:

Claimed non-significant Claimed significant (reject) Total

True null hypotheses N00 N01 m0

False null hypotheses N10 N11 m−m0

Total m−R R m

The Njj are unobserved random variables; R is observed.

5.1 Family-wise error rate control

Traditional approaches to multiple testing have sought to control the familywise error rate
(FWER) defined by

FWER = P(N01 ≥ 1)

at a prescribed level α; i.e. find procedures for which FWER ≤ α. The simplest such
procedure is the Bonferroni correction, which rejects Hi if pi ≤ α/m.
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Theorem 16. Using Bonferroni correction,

P(N01 ≥ 1) ≤ E(N01) ≤
m0α

m
≤ α.

Proof. The first inequality comes from Markov’s inequality. Next

E(N01) = E
(∑

i∈I0

1{pi≤α/m}

)
=
∑
i∈I0

P(pi ≤ α/m)

≤ m0α

m
.

A more sophisticated approach is the closed testing procedure. Given our family of
hypotheses {Hi}mi=1, define the closure of this family to be

{HI : I ⊆ {1, . . . ,m}, I 6= ∅}

where HI = ∩i∈IHi is known as an intersection hypothesis (HI is the hypothesis that all
Hi i ∈ I are true).

Suppose that for each I, we have an α-level test φI taking values in {0, 1} for testing
HI (we reject if φI = 1), so under HI ,

PHI (φI = 1) ≤ α.

The φI are known as local tests.
The closed testing procedure [Marcus et al., 1976] is defined as follows:

Reject HI if and only if for all J ⊇ I,

HJ is rejected by the local test φJ .

Typically we only make use of the individual hypotheses that are rejected by the procedure
i.e. those rejected HI where I is a singleton.

We consider the case of 4 hypotheses as an example. Suppose the underlined hypotheses
are rejected by the local tests.

H1234

H123 H124 H134 H234

H12 H13 H14 H23 H24 H34

H1 H2 H3 H4

� Here H1 is rejected be the closed testing procedure.
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� H2 is not rejected by the closed testing procedure as H24 is not rejected by the local
test.

� H23 is rejected by the closed testing procedure.

Theorem 17. The closed testing procedure makes no false rejections with probability 1−α.
In particular it controls the FWER at level α.

Proof. Assume I0 is not empty (as otherwise no rejection can be false anyway). Define the
events

A = {at least one false rejection} ⊇ {N01 ≥ 1},
B = {reject HI0 with the local test} = {φI0 = 1}.

In order for there to be a false rejection, we must have rejected HI0 with the local test.
Thus B ⊇ A, so

FWER ≤ P(A) ≤ P(φI0 = 1) ≤ α.

Different choices for the local tests give rise to different testing procedures. Holm’s
procedure [Holm, 1979] takes φI to be the Bonferroni test i.e.

φI =

{
1 if mini∈I pi ≤ α

|I|

0 otherwise.

To understand what Holm’s procedure does, let us order the p-values p1, . . . , pm as p(1) ≤
· · · ≤ p(m) with corresponding hypothesis tests H(1), . . . , H(m), so (i) is the index of the ith
smallest p-value. First consider under what circumstances H(1) is rejected. All subsets I
containing (1) must have mini∈I pi = p(1) ≤ α/|I|. The minimum of the RHS occurs when
I is the full set {1, . . . ,m} so we conclude H(1) is rejected if and only if p(1) ≤ α/m.

Similarly H(2) will be rejected when all I containing (2) have mini∈I pi ≤ α/|I|. Thus
we must certainly have p(1) ≤ α/m, in which case we only need to ensure all I containing
(2) but not (1) have mini∈I pi = p(2) ≤ α/|I|. The minimum of the RHS occurs when
I = {1, . . . ,m} \ {1}, so we must have p(2) ≤ α/(m − 1). Continuing this argument, we
see that Holm’s procedure amounts to the following:

Step 1. If p(1) ≤ α/m reject H(1), and go to step 2. Otherwise accept H(1), . . . , H(m) and
stop.

Step i. If p(i) ≤ α/(m−i+1), reject H(i) and go to step i+1. Otherwise accept H(i), . . . , H(m).

Step m. If p(m) ≤ α, reject H(m). Otherwise accept H(m).

The p-values are visited in ascending order and rejected until the first time a p-value exceeds
a given critical value. This sort of approach is known (slightly confusingly) as a step-down
procedure.
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5.2 The False Discovery Rate

A different approach to multiple testing does not try to control the FWER, but instead
attempts to control the false discovery rate (FDR) defined by

FDR = E(FDP)

FDP =
N01

max(R, 1)
,

where FDP is the false discovery proportion. Note the maximum in the denominator is
to ensure division by zero does not occur. The FDR was introduced in Benjamini and
Hochberg [1995], and it is now widely used across science, particularly biostatistics.

The Benjamini–Hochberg procedure attempts to control the FDR at level α and works
as follows. Let

k̂ = max

{
i : p(i) ≤

iα

m

}
.

Reject H(1), . . . , H(k̂) (or perform no rejections if k̂ is not defined).

Theorem 18. Suppose that the pi, i ∈ I0 are independent, and independent of {pi :
i /∈ I0}. Then the Benjamini–Hochberg procedure controls the FDR at level α; in fact
FDR ≤ αm0/m.

Proof. For each i ∈ I0, let Ri denote the number of rejections we get by applying a modified
Benjamini–Hochberg procedure to

p\i := {p1, p2, . . . , pi−1, pi+1, . . . , pm}

with cutoff

k̂i = max

{
j : p

\i
(j) ≤

α(j + 1)

m

}
,

where p
\i
(j) is the jth smallest p-value in the set p\i.

For r = 1, . . . ,m and i ∈ I0, note that{
pi ≤

αr

m
, R = r

}
=

{
pi ≤

αr

m
, p(r) ≤

αr

m
, p(s) >

αs

m
for all s > r

}
=

{
pi ≤

αr

m
, p
\i
(r−1) ≤

αr

m
, p
\i
(s−1) >

αs

m
for all s > r

}
=

{
pi ≤

αr

m
, Ri = r − 1

}
.
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Thus

FDR = E
(

N01

max(R, 1)

)
=

m∑
r=1

E
(
N01

r
1{R=r}

)
=

m∑
r=1

1

r
E
(∑

i∈I0

1{pi≤αr/m}1{R=r}

)

=
m∑
r=1

1

r

∑
i∈I0

P(pi ≤ αr/m, R = r)

=
m∑
r=1

1

r

∑
i∈I0

P(pi ≤ αr/m)P(Ri = r − 1)

≤ α

m

∑
i∈I0

m∑
r=1

P(Ri = r − 1)

=
αm0

m
.

5.3 Hypothesis testing in high-dimensional regression

Consider the normal linear model Y = Xβ0 + ε where ε ∼ Nn(0, σ2I). In the low-

dimensional setting, the fact that β̂
OLS
− β0 ∼ Np(0, σ2(XTX)−1) allows us to perform

hypothesis tests with H0 : β0
j = 0, for example.

One might hope that studying the distribution of β̂
L

λ − β0 would enable us to do this

in the high-dimensional setting when p � n. However, the distribution of β̂
L

λ − β0 is
intractable and depends delicately on the unknown β0, making it unsuitable as a basis
performing formal hypothesis tests. Other approaches must therefore be used and below
we review some of these (see also Dezeure et al. [2015] for a broader review).

Stability selection. Stability selection [Meinshausen and Bühlmann, 2010, Shah and
Samworth, 2013] is a general technique for uncertainty quantification when performing
variable selection. Given a base variable selection procedure (e.g. Ŝλ from the Lasso,
or the first q set of variables selected by forward selection) it advocates applying this to
subsamples of the data of size bn/2c. We can then compute the proportion of times π̂j
that the jth variable was selected across the different subsamples, for each j. We can take
as our final selected set Ŝτ = {j : π̂j ≥ τ} for some threshold τ . One advantage over
simply taking the set of variables selected by the base selection procedure is that bounds
are available on E(|Ŝτ ∩ Sc|). However formal hypothesis tests are unavailable.
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Sample splitting. The approach of Meinshausen et al. [2009] exploits the variable
screening property of the Lasso (Corollary 8) that provided the true non-zero coefficients
are sufficiently far from 0, the set of nonzeroes of the Lasso will contain the true set S.
Specifically, first the data are split into two halves: (Y(1),X(1)), (Y(2),X(2)). The Lasso is
applied on (Y(1),X(1)) giving a selected set Ŝ. Next OLS is applied on (Y(2),X(2))Ŝ and

p-values are obtained for those variables in Ŝ. The p-values for those variables in Ŝc are
set to 1. This process is applied using different random splits of the data and the resulting
collection of p-values are aggregated to give a single p-value for each variable. Though this
works reasonably well in practice, a drawback is that the validity of the p-values requires
a condition on the unknown β0. Given that the task is to perform inference for β0, such
conditions are undesirable.

Recent advances. In the last few years, new methods have been introduced based on
debiasing the Lasso that overcome the issue above [Zhang and Zhang, 2014, Van de Geer
et al., 2014]. Extending and improving on these methods is currently a highly active area
of research. We will try to give a flavour of some of these developments by outlining a
simple method for performing hypothesis testing based on some material from Shah and
Bühlmann [2017]. Consider testing Hj : β0

j 6= 0 so under the null hypothesis

Y = X−jβ
0
−j + ε

(we will ignore the intercept term for simplicity). Further assume ε ∼ Nn(0, σ2I). Idea:
if the null model is true, the residuals from regressing Y on X−j using the Lasso should
look roughly like ε, and so their correlation with Xj should be small in absolute value. On
the other hand, if β0

j 6= 0, the residuals should contain some trace of β0
jXj and so perhaps

correlation with Xj will be larger in absolute value.

Let β̂ be the Lasso estimate from regression of Y on X−j with tuning parameter

Aσ
√

log(p)/n. Now under the null, the residuals are X−j(β
0
−j − β̂) + ε. If we consider the

dot product with Xj, we get

1√
n

XT
j X−j(β

0
−j − β̂−j)︸ ︷︷ ︸

negligible?

+
1√
n

XT
j ε︸ ︷︷ ︸

∼N (0,σ2)

. (5.1)

Unfortunately however, though we know from Theorem 7 that

‖β0
−j − β̂‖1 ≤ 12Aσs

√
log(p)/n

with high probability, ‖XT
−jXj‖∞/

√
n is the maximum of a sum of n terms and would

typically be growing like n/
√
n =

√
n. We cannot therefore apply Hölder’s inequality to

conclude that the first term is negligible as desired. Instead consider defining Wj to be the

residuals from regressing Xj on to X−j using the Lasso with tuning parameter B
√

log(p)/n
for some B > 0. The KKT conditions give us that

1

n
‖XT
−jWj‖∞ ≤ B

√
log(p)/n.

30



By replacing Xj with its decorrelated version Wj and choosing τ appropriately, we can
ensure that the first term in (5.1) is negligible. Indeed by Hölder’s inequality,

|WT
j X−j(β

0
−j − β̂)|/‖Wj‖2 ≤ 12ABσ log(p)s/‖Wj‖2

with high probability.
Thus under the null hypothesis, our test statistic WT

j (Y −X−jβ̂)/‖Wj‖2 is approxi-
mately N (0, σ2) provided σ log(p)s/‖Wj‖2 is small. Making use of the square-root Lasso
gives a similar test statistic whose approximate null distribution is in fact standard normal
thereby allowing for the computation of p-values. One can also show that the test has
optimal power in a certain sense [Van de Geer et al., 2014, Shah and Bühlmann, 2017].
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