APTS - Survival Analysis
 Lab Session 1
 Ingrid Van Keilegom
 August 23, 2017

Before starting, you will have to download the package 'survival' in R :

```
install.packages("survival")
library("survival")
```

1. A study was conducted on the effects of ploidy on the prognosis of patients with cancers of the mouth. Patients were selected who had a paraffin-embedded sample of the cancerous tissue taken at the time of surgery. Follow-up survival data were obtained for each patient. The tissue samples were examined using a flow cytometer to determine if the tumor had an aneuploid (abnormal) or diploid (normal) DNA profile. The data can be found as follows in R :
```
install.packages("KMsurv")
library("KMsurv")
data(tongue)
```

Explanation about the data set can be found at https://cran.r-project.org/web/packages/KMsurv/KMsurv.pdf
(a) Plot the survival functions and their standard errors for both the diploid and aneuploid groups (in separate graphs).
(b) Estimate the median time to death, and find a 95% confidence interval for the median survival time for both the diploid and aneuploid groups. Interpret the results.

Hint : Use 'survfit' in R (and type 'help(survfit.formula)' for more details).
2. Consider data on the times until staphylococcus infection of burn patients, also available in the 'KMsurv' package as follows :

```
data(burn)
```

(a) Using the log-rank test, test the hypothesis of no difference in the time to staphylococcus infection between patients whose burns were cared for with a routine bathing care method versus those whose body cleansing was initially performed using 4% chlorhexidine gluconate. Use a two-sided test and a 0.05 significance level.
(b) Solve the same exercise by stratifying on the percentage of surface area burned (0-29\%, 30-50\%, 51-100\%).

Hint : Use 'survdiff' in R.

If time allows, the following exercises are also very useful :
3. Consider the following dataset:

$$
\begin{array}{c|c|c|c|c|c|c|c|c|c|c}
\text { subject } & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline T_{i} & 3^{+} & 5 & 7 & 2 & 18^{+} & 16 & 2 & 9 & 16 & 5^{+}
\end{array}
$$

where ${ }^{+}$means that the observation is censored.
(a) Specify:
(i) the number of distinct event times ?
(ii) the ordered event times?
(iii) the size of the risk set at time $y_{(1)}$?
(b) Calculate by hand (without using R),
(i) the Kaplan-Meier estimator,
(ii) the Nelson-Aalen estimator.
(c) Represent graphically the Kaplan-Meier estimator.
(d) For the Kaplan-Meier estimator, compare the results to those obtained via the function survfit in R.
4. Consider the following dataset :

Group 1:	4.1	7.8^{+}	10	10	12.3^{+}	17.2
Group 2:	9.7	10	11.1^{+}	13.1^{+}	19.7	24.1^{+}

where ${ }^{+}$means that the observation is censored.
(a) Calculate by hand the log-rank test in order to compare the survival curves of the two groups.
(b) Is the result the same when using the function survdiff in R ?

