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What is ‘Survival analysis’ ?

� Survival analysis (or duration analysis) is an area of
statistics that models and studies the time until an
event of interest takes place.

� In practice, for some subjects the event of interest
cannot be observed for various reasons, e.g.

• the event is not yet observed at the end of the study
• another event takes place before the event of interest
• ...

� In survival analysis the aim is
� to model ‘time-to-event data’ in an appropriate way
� to do correct inference taking these special features of

the data into account.
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Examples

� Medicine :
• time to death for patients having a certain disease
• time to getting cured from a certain disease
• time to relapse of a certain disease

� Agriculture :
• time until a farm experiences its first case of a certain

disease

� Sociology (‘duration analysis’) :
• time to find a new job after a period of unemployment
• time until re-arrest after release from prison

� Engineering (‘reliability analysis’) :
• time to the failure of a machine
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Common functions in survival analysis

� Let T be a non-negative continuous random variable,
representing the time until the event of interest.

� Denote

F (t) = P(T ≤ t) distribution function
f (t) probability density function

� For survival data, we consider rather

S(t) survival function
H(t) cumulative hazard function
h(t) hazard function
mrl(t) mean residual life function

� Knowing one of these functions suffices to determine
the other functions.
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Survival function :

S(t) = P(T > t) = 1− F (t)

� Probability that a randomly selected individual will
survive beyond time t

� Decreasing function, taking values in [0,1]

� Equals 1 at t = 0 and 0 at t =∞

Cumulative hazard function :

H(t) = − log S(t)

� Increasing function, taking values in [0,+∞]

� S(t) = exp(−H(t))
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Hazard function (or hazard rate) :

h(t) = lim
∆t→0

P(t ≤ T < t + ∆t | T ≥ t)
∆t

=
1

P(T ≥ t)
lim

∆t→0

P(t ≤ T < t + ∆t)
∆t

=
f (t)
S(t)

=
−d
dt

log S(t) =
d
dt

H(t)

� h(t) measures the instantaneous risk of dying right
after time t given the individual is alive at time t

� Positive function (not necessarily increasing or
decreasing)

� The hazard function h(t) can have many different
shapes and is therefore a useful tool to summarize
survival data
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Mean residual life function :

� The mrl function measures the expected remaining
lifetime for an individual of age t . As a function of t , we
have

mrl(t) =

∫∞
t S(s)ds

S(t)
� This result is obtained from

mrl(t) = E(T − t | T > t) =

∫∞
t (s − t)f (s)ds

S(t)
� Mean life time :

E(T ) = mrl(0) =

∫ ∞
0

sf (s)ds =

∫ ∞
0

S(s)ds
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Incomplete data
� Censoring :

• For certain individuals under study, the time to the event
of interest is only known to be within a certain interval

• Ex : In a clinical trial, some patients have not yet died at
the time of the analysis of the data
⇒ Only a lower bound of the true survival time is known
(right censoring)

� Truncation :
• Part of the relevant subjects will not be present at all in

the data

• Ex : In a mortality study based on HIV/AIDS death
records, only subjects who died of HIV/AIDS and
recorded as such are included (right truncation)
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Censoring and truncation do not only take place in
‘time-to-event’ data.

Examples

� Insurance : Car accidents involving costs below a
certain threshold are often not declared to the
insurance company
⇒ Left truncation

� Ecology : Chemicals in river water cannot be detected
below the detection limit of the laboratory instrument
⇒ Left censoring

� Astronomy : A star is only observable with a telescope
if it is bright enough to be seen by the telescope
⇒ Left truncation
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Right censoring

Only a lower bound for the time of interest is known

T = survival time

C = censoring time

⇒ Data : (Y , δ) with

Y = min(T ,C)

δ = I(T ≤ C)
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Type I right censoring

� All subjects are followed for a fixed amount of time
→ all censored subjects have the same censoring time

� Ex : Type I censoring in animal study
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Type II right censoring

� All subjects start to be followed up at the same time and
follow up continues until r individuals have experienced
the event of interest (r is some predetermined integer)
→ The n − r censored items all have a censoring time
equal to the failure time of the r th item.

� Ex : Type II censoring in industrial study : all lamps are
put on test at the same time and the test is terminated
when r of the n lamps have failed.
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Random right censoring
� The study itself continues until a fixed time point but

subjects enter and leave the study at different times
→ censoring is a random variable
→ censoring can occur for various reasons:

– end of study
– lost to follow up
– competing event (e.g. death due to some cause other

than the cause of interest)
– patient withdrawing from the study, change of treatment,

...

� Ex : Random right censoring in a cancer clinical trial
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Example : Random right censoring in HIV study

� Study enrolment: January 2005 - December 2006

� Study end: December 2008

� Objective: HIV patients followed up to death due to
AIDS or AIDS related complication (time in month from
confirmed diagnosis)
� Possible causes of censoring :

• death due to other cause
• lost to follow up / dropped out
• still alive at the end of study
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Table: Data of 6 patients in HIV study

Patient id Entry Date Date last seen Status Time Censoring
1 18 March 2005 20 June 2005 Dropped out 3 0
2 19 Sept 2006 20 March 2007 Dead due to AIDS 6 1
3 15 May 2006 16 Oct 2006 Dead due to accident 5 0
4 01 Dec 2005 31 Dec 2008 Alive 37 0
5 9 Apr 2005 10 Feb 2007 Dead due to AIDS 22 1
6 25 Jan 2005 24 Jan 2006 Dead due to AIDS 12 1
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Left censoring

� Some subjects have already experienced the event of
interest at the time they enter in the trial

� Only an upper bound for the time of interest is known
⇒ Data : (Y`, δ`) with

Y` = max(T ,C`)

δ` = I(T > C`)

C` = censoring time
� Ex : Left censoring in malaria trial

• Children between 2 and 10 years are followed up for
malaria

• Once children have experienced malaria, they will have
antibodies in their blood against the Plasmodium
parasite

• Children entered at the age of 2 might have already
been in touch with the parasite



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Interval censoring

� The event of interest is only known to occur within a
certain interval (L,U)

� Contrary to right and left censoring, we never observe
the exact survival time

� Typically occurs if diagnostic tests are used to assess
the event of interest

� Ex : Interval censoring in malaria trial
→ The exact time to malaria is between the last
negative and the first positive test
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Truncation : Individuals of a subset of the population of
interest do not appear in the sample

Left truncation

� Occurs often in studies where a subject must first meet
a particular condition before he/she can enter in the
study and followed up for the event of interest
⇒ Subjects that experience the event of interest before
the condition is met, will not appear in the study

� Data : (T ,L) observed if T ≥ L, with

T = survival time

L = left truncation time
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� Ex : Left truncation in HIV study
• Incubation period between HIV infection and

seroconversion
• An individual is considered to have been infected with

HIV only after seroconversion
⇒ If we study HIV infected individuals and follow them
for survival, all subjects that died between HIV infection
and seroconversion will not be considered for inclusion
in the study
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Right truncation

� Occurs when only subjects who have experienced the
event of interest are included in the sample

� Data : (T ,R) observed if T ≤ R, with

T = survival time

R = right truncation time
� Ex : Right truncation in AIDS study

• Consider time between HIV seroconversion and
development of AIDS

• Often use a sample of AIDS patients, and ascertain
retrospectively time of HIV infection
⇒ Patients with long incubation time will not be part of
the sample, nor patients that die from another cause
before they develop AIDS
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Remark

� Censoring :
At least some information is available for a ‘complete’
random sample of the population

� Truncation :
No information at all is available for a subset of the
population
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Nonparametric estimation
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We will develop nonparametric estimators of the

� survival function

� cumulative hazard function

� hazard rate

for censored and truncated data

All these estimators will be based on the nonparametric
likelihood function :

� Different from the likelihood for completely observed
data due to the presence of censoring and truncation
� We will derive the likelihood function for :

• right censored data
• any type of censored data (right, left and interval

censoring)
• truncated data
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Likelihood for randomly right censored data
� Random sample of individuals of size n :

T1, . . . ,Tn survival time
C1, . . . ,Cn censoring time

⇒ Observed data : (Yi , δi) (i = 1, . . . ,n) with

Yi = min(Ti ,Ci)

δi = I(Ti ≤ Ci)

� Denote
f (·) and F (·) for the density and distribution of T
g(·) and G(·) for the density and distribution of C

and we assume that T and C are independent (called
independent censoring)
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Contribution to the likelihood of an event (yi = ti , δi = 1) :

lim
ε→0
>

1
2ε

P (yi − ε < Y < yi + ε, δ = 1)

= lim
ε→0
>

1
2ε

P (yi − ε < T < yi + ε,T ≤ C)

= lim
ε→0
>

1
2ε

yi +ε∫
yi−ε

∞∫
t

dG(c)dF (t) (due to independence)

= lim
ε→0
>

1
2ε

yi +ε∫
yi−ε

(1−G(t))dF (t)

= (1−G(yi))f (yi)



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Contribution to the likelihood of a right censored observation
(yi = ci , δi = 0) :

lim
ε→0
>

1
2ε

P (yi − ε < Y < yi + ε, δ = 0)

= lim
ε→0
>

1
2ε

P (yi − ε < C < yi + ε,T > C)

= (1− F (yi))g(yi)

This leads to the following formula of the likelihood :

n∏
i=1

[
(1−G(yi))f (yi)

]δi
[
(1− F (yi))g(yi)

]1−δi
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We assume that the censoring is uninformative, i.e. the
distribution of the censoring times does not depend on the
parameters of interest related to the survival function.

⇒ The factors (1−G(yi))δi and g(yi)
1−δi are

non-informative for inference on the survival function

⇒ They can be removed from the likelihood, leading to

n∏
i=1

f (yi)
δi S(yi)

1−δi =
n∏

i=1

h(yi)
δi S(yi)
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� This likelihood can also be written as

L =
∏
i∈D

f (yi)
∏
i∈R

S(yi)

with D the index set of survival times and R the index
set of right censored times

� It is straightforward to see that the same survival
likelihood is also valid in the case of fixed censoring
times (type I and type II)
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Likelihood for right, left and/or interval censored data

Generalization of the previous likelihood to include right, left
and interval censoring :

L =
∏
i∈D

f (yi)
∏
i∈R

S(yi)
∏
i∈L

(1− S(yi))
∏
i∈I

(S(li)− S(ri)),

with

D index set of survival times
R index set of right censored times
L index set of left censored times
I index set of interval censored times

(with li the lower limit and ri the upper limit)



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Likelihood for left truncated data

Suppose that the survival time Ti is left truncated at ai

⇒We have to consider the conditional distribution of Ti

given Ti ≥ ai :

f (ti |T ≥ ai) = lim
ε→0
>

1
2ε

P(ti − ε < T < ti + ε | T ≥ ai)

= lim
ε→0
>

1
2ε

P(ti − ε < T < ti + ε,T ≥ ai)

P(T ≥ ai)

=
1

P(T ≥ ai)
lim
ε→0
>

P(ti < T < ti + ε)

ε

=
f (ti)

S(ai)
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This leads to the following likelihood, accommodating left
truncation and any type of censoring :

L =
∏
i∈D

f (ti)
S(ai)

∏
i∈R

S(ti)
S(ai)

∏
i∈L

S(ai)− S(ti)
S(ai)

∏
i∈I

S(li)− S(ri)

S(ai)

For right truncated data :

� Consider the conditional density obtained by replacing
S(ai) by 1− S(bi), where bi is the right truncation time
for subject i

� The likelihood function can then be constructed in a
similar way
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Nonparametric estimation of the survival function

� The survival (or distribution) function is at the basis of
many other quantities (mean, quantiles, ...)

� The survival function is also useful to identify an
appropriate parametric distribution

� For estimating the survival function in a nonparametric
way, we need to take censoring and truncation into
account
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Kaplan-Meier estimator of the survival function

� Kaplan and Meier (JASA, 1958)

� Nonparametric estimation of the survival function for
right censored data

� Based on the order in which events and censored
observations occur

Notations :

� n observations y1, . . . , yn with censoring indicators
δ1, . . . , δn

� r distinct event times (r ≤ n)

� ordered event times : y(1), . . . , y(r) and corresponding
number of events: d(1), . . . ,d(r)

� R(j) is the size of the risk set at event time y(j)
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� Log-likelihood for right censored data :
n∑

i=1

[
δi log f (yi) + (1− δi) log S(yi)

]
� Replacing the density function f (yi) by S(yi−)− S(yi),

yields the nonparametric log-likelihood :

log L =
n∑

i=1

[
δi log(S(yi−)− S(yi)) + (1− δi) log S(yi)

]
� Aim : finding an estimator Ŝ(·) which maximizes log L

� It can be shown that the maximizer of log L takes the
following form :

Ŝ(t) =
∏

j:y(j)≤t

(1− h(j)),

for some h(1), . . . ,h(r)
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� Plugging-in Ŝ(·) into the log-likelihood, gives after some
algebra :

log L =
r∑

j=1

[
d(j) log h(j) +

(
R(j) − d(j)

)
log(1− h(j))

]
� Using this expression to solve

d
dh(j)

log L = 0

leads to

ĥ(j) =
d(j)

R(j)
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� Plugging in this estimate ĥ(j) in Ŝ(t) =
∏

j:y(j)≤t (1− h(j))

we obtain :

Ŝ(t) =
∏

j:y(j)≤t

R(j) − d(j)

R(j)
= Kaplan-Meier estimator

� Step function with jumps at the event times
� If the largest observation, say yn, is censored :

• Ŝ(t) does not attain 0
• Impossible to estimate S(t) consistently beyond yn

• Various solutions :
- Set Ŝ(t) = 0 for t ≥ yn

- Set Ŝ(t) = Ŝ(yn) for t ≥ yn

- Let Ŝ(t) be undefined for t ≥ yn
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Uncensored case

When all data are uncensored, the Kaplan-Meier estimator
reduces to the empirical distribution function

Consider case without ties for simplicity :

� If no censoring, R(j) − d(j) = R(j+1) for j = 1, . . . , r

� We can rewrite the KM estimator as

Ŝ(t) =
R(2)

R(1)

R(3)

R(2)
· · ·

R(k+1)

R(k)
where y(k) ≤ t < y(k+1)

=
R(k+1)

R(1)

=
# subjects with survival time ≥ y(k+1)

# at risk before first death time

=
1
n

n∑
i=1

I(yi > t)
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Asymptotic normality of the KM estimator

� Asymptotic variance of the KM estimator :

VAs(Ŝ(t)) = n−1S2(t)
∫ t

0

dHu(s)

(1− H(s))(1− H(s−))
,

where
- H(t) = P(Y ≤ t) = 1− S(t)(1−G(t))

- Hu(t) = P(Y ≤ t , δ = 1)

� This variance can be consistently estimated as
(Greenwood formula)

V̂As(Ŝ(t)) = Ŝ2(t)
∑

j:y(j)≤t

d(j)

R(j)(R(j) − d(j))

� Asymptotic normality of Ŝ(t) :

Ŝ(t)− S(t)√
V̂As(Ŝ(t))

d→ N(0,1)
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Nelson-Aalen estimator of the cumulative hazard function

� Proposed independently by Nelson (Technometrics,
1972) and Aalen (Annals of Statistics, 1978) :

Ĥ(t) =
∑

j:y(j)≤t

d(j)

R(j)
for t ≤ y(r)

� Its asymptotic variance can be estimated by

V̂As(Ĥ(t)) =
∑

j:y(j)≤t

d(j)

R2
(j)

� Asymptotic normality :
Ĥ(t)− H(t)√

V̂As(Ĥ(t))

d→ N(0,1)



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Alternative for KM estimator

� An alternative estimator for S(t) can be obtained based
on the Nelson-Aalen estimator using the relation

S(t) = exp(−H(t)),

leading to

Ŝalt (t) =
∏

j:y(j)≤t

exp
(
−

d(j)

R(j)

)
� Ŝ(t) and Ŝalt (t) are asymptotically equivalent

� Ŝalt (t) performs often better than Ŝ(t) for small samples
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Example : Survival function for 6 HIV diagnosed patients

� Ordered observed times: 3*, 5*, 6, 12*, 22, 37*

� Only two contributions to KM and NA estimator :

Event time
6 22

Number of events d(j) 1 1

Number at risk R(j) 4 2

KM contribution 1− d(j)/R(j) 3/4 1/2

KM estimator Ŝ(y(j)) 3/4=0.75 3/8=0.375

NA contribution exp(−d(j)/R(j)) 0.7788 0.6065

NA estimator
∏

j:y(j)≤t exp(−d(j)/R(j)) 0.7788 0.4723
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Confidence intervals for the survival function

� From the asymptotic normality of Ŝ(t), a 100(1− α)%

confidence interval (CI) for S(t) (t fixed) is given by :

Ŝ(t)± zα/2

√
V̂As(Ŝ(t))

� However, this CI may contain points outside the [0,1]

interval
⇒ Use an appropriate transformation to determine the
CI on the transformed scale and then transform back
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� A popular transformation is log(− log S(t)), which takes
values between −∞ and∞.

� One can show that
log(− log Ŝ(t))− log(− log S(t))√

V̂As
(

log(− log Ŝ(t))
) d→ N(0,1),

where

V̂As
(

log(− log Ŝ(t))
)

=
1(

log Ŝ(t)
)2

∑
j:y(j)≤t

d(j)

R(j)(R(j) − d(j))

� Hence, CI for log(− log S(t)) is given by

log(− log Ŝ(t))± zα/2

√
V̂As

(
log(− log Ŝ(t))

)
� By transforming back, we get the following CI for S(t) :

Ŝ(t)
exp
[
±zα/2

√
V̂As

(
log(− log Ŝ(t))

)]
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Point estimate of the mean survival time

� Nonparametric estimator can be obtained using the
Kaplan-Meier estimator, since

µ = E(T ) =

∫ ∞
0

xf (x)dx =

∫ ∞
0

S(x)dx

⇒We can estimate µ by replacing S(x) by the KM
estimator Ŝ(x)

� But, Ŝ(t) is inconsistent in the right tail if the largest
observation (say yn) is censored

• Proposal 1 : assume yn experiences the event
immediately after the censoring time :

µ̂yn =

∫ yn

0
Ŝ(t)dt

• Proposal 2 : restrict integration to a predetermined
interval [0, tmax ] and consider Ŝ(t) = Ŝ(yn) for
yn ≤ t ≤ tmax :

µ̂tmax =

∫ tmax

0
Ŝ(t)dt
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� µ̂yn and µ̂tmax are inconsistent estimators of µ, but given
the lack of data in the right tail, we cannot do better (at
least not nonparametrically)

� Variance of µ̂τ (with τ either yn or tmax ) :

V̂As(µ̂τ ) =
r∑

j=1

(∫ τ

y(j)

Ŝ(t)dt

)2
d(j)

R(j)(R(j) − d(j))

� A 100(1− α)% CI for µ is given by :

µ̂τ ± zα/2

√
V̂As(µ̂τ )
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Point estimate of the median survival time
� Advantages of the median over the mean :

• As survival function is often skewed to the right, the
mean is often influenced by outliers, whereas the
median is not

• Median can be estimated in a consistent way (if
censoring is not too heavy)

� An estimator of the pth quantile xp is given by :

x̂p = inf
{

t | Ŝ(t) ≤ 1− p
}

⇒ An estimate of the median is given by x̂p=0.5

� Asymptotic variance of x̂p :

V̂As(x̂p) =
V̂As(Ŝ(xp))

f̂ 2(xp)
,

where f̂ is an estimator of the density f
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� Estimation of f involves smoothing techniques and the
choice of a bandwidth sequence
⇒We prefer not to use this variance estimator in the
construction of a CI

� Thanks to the asymptotic normality of Ŝ(xp) :

P
(
− zα/2 ≤

Ŝ(xp)− S(xp)√
V̂As(Ŝ(xp))

≤ zα/2

)
≈ 1− α,

with obviously S(xp) = 1− p.

⇒ A 100(1− α)% CI for xp is given byt : −zα/2 ≤
Ŝ(t)− (1− p)√

V̂As(Ŝ(t))
≤ zα/2


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Example : Schizophrenia patients

� Schizophrenia is one of the major mental illnesses
encountered in Ethiopia

→ disorganized and abnormal thinking, behavior and
language + emotionally unresponsive

→ higher mortality rates due to natural and unnatural
causes

� Project on schizophrenia in Butajira, Ethiopia

→ survey of the entire population (68491 individuals) in
the age group 15-49 years

⇒ 280 cases of schizophrenia identified and followed for 5
years (1997-2001)
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Table: Data on schizophrenia patients

Patid Time Censor Education Onset Marital Gender Age
1 1 1 1 37 3 1 44
2 3 1 3 15 2 2 23
3 4 1 6 26 1 1 33
4 5 1 12 25 1 1 31
5 5 0 5 29 3 1 33

. . .
278 1787 0 2 16 2 1 18
279 1792 0 2 23 1 1 25
280 1794 1 2 28 1 1 35
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� In R : survfit
schizo<-read.table("c://...//Schizophrenia.csv",
header=T,sep=";")
KM_schizo_l<-survfit(Surv(Time,Censor)∼1,data=schizo,
type="kaplan-meier", conf.type="log-log")
plot(KM_schizo_l, conf.int=T, xlab="Estimated survival",
ylab="Time", yscale=1)
mtext("Kaplan-Meier estimate of the survival function
for Schizophrenic patients", 3,-3)
mtext("(confidence interval based on log-log
transformation)", 3,-4)

� In SAS : proc lifetest
title1 ’Kaplan-Meier estimate of the survival function
for Schizophrenic patients’;
proc lifetest method=km width=0.5 data=schizo;
time Time*Censor(0);
run;
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> KM_schizo_l 
Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type = 
"kaplan-meier", conf.type = "log-log") 
 
      n  events  median 0.95LCL 0.95UCL  
    280     163     933     757    1099  
 
 
> summary(KM_schizo_l) 
Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type = 
"kaplan-meier", conf.type = "log-log") 
 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI 
    1    280       1    0.996 0.00357       0.9749        0.999 
    3    279       1    0.993 0.00503       0.9717        0.998 
    4    277       1    0.989 0.00616       0.9671        0.997 
… 
 1770     13       1    0.219 0.03998       0.1465        0.301 
 1773     12       1    0.201 0.04061       0.1283        0.285 
 1784      8       2    0.151 0.04329       0.0782        0.245 
 1785      6       2    0.100 0.04092       0.0387        0.197 
 1794      1       1    0.000      NA           NA           NA 
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> KM_schizo_g 
Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type = 
"kaplan-meier", conf.type = "plain") 
 
      n  events  median 0.95LCL 0.95UCL  
    280     163     933     766    1099  
 
> summary(KM_schizo_g) 
Call: survfit(formula = Surv(Time, Censor) ~ 1, dat a = schizo, type = 
"kaplan-meier", conf.type = "plain") 
 
 time n.risk n.event survival std.err lower 95% CI upper 95% CI 
    1    280       1    0.996 0.00357       0.9894        1.000 
    3    279       1    0.993 0.00503       0.9830        1.000 
    4    277       1    0.989 0.00616       0.9772        1.000 
 … 
 1770     13       1    0.219 0.03998       0.1409        0.298 
 1773     12       1    0.201 0.04061       0.1214        0.281 
 1784      8       2    0.151 0.04329       0.0659        0.236 
 1785      6       2    0.100 0.04092       0.0203        0.181 
 1794      1       1    0.000      NA           NA           NA 
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� Median survival time is estimated to be 933 days

� 95% CI for the median : [757, 1099]

� Survival at, e.g., 505 days is estimated to be 0.6897
with std error 0.0290

� 95% CI for S(505) : [0.6329, 0.7465] (without
transformation)

� 95% CI for S(505) : [0.6290, 0.7426] (using log-log
transformation)
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Estimation of the survival function for left truncated and right
censored data

� We need to redefine R(j) :

R(j) = number of individuals at risk at time y(j)

and under observation prior to time y(j)

= #{i : li ≤ y(j) ≤ yi},
where li is the truncation time.

� We cannot estimate S(t), but only a conditional survival
function

Sl(t) = P(T ≥ t | T ≥ l)

for some fixed value l ≥ min(l1, . . . , ln)
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� The conditional survival function Sl(t) is estimated by

Ŝl(t) =

{
1 if t < l∏

j:l≤y(j)≤t

(
1− d(j)

R(j)

)
if t ≥ l

� Proposed and named after Lynden-Bell (1971), an
astronomer
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Estimation of the hazard function for right censored data

� Usually more informative about the underlying
population than the survival or the cumulative hazard
function

� Crude estimator : take the size of the jumps of the
cumulative hazard function

� Ex : Crude estimator of the hazard function for data on
schizophrenic patients
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� Smoothed estimator of h(t) : (weighted) average of the
crude estimator over all time points in the interval
[t − b, t + b] for a certain value b, called the bandwidth

� Uniform weight over interval [t − b, t + b] :

ĥ(t) = (2b)−1
r∑

j=1

I
(
−b ≤ t − y(j) ≤ b

)
∆Ĥ(y(j)),

where
- Ĥ(t) = Nelson-Aalen estimator
- ∆Ĥ(y(j)) = Ĥ(y(j))− Ĥ(y(j−1))

� General weight function :

ĥ(t) = b−1
r∑

j=1

K
(

t − y(j)

b

)
∆Ĥ(y(j)),

where K (·) is a density function, called the kernel
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� Example of kernels :

Name Density function Support
uniform K (x) = 1

2 −1 ≤ x ≤ 1
Epanechnikov K (x) = 3

4(1− x2) −1 ≤ x ≤ 1
biweight K (x) = 15

16(1− x2)2 −1 ≤ x ≤ 1

� Ex : Smoothed estimator of the hazard function for data
on schizophrenic patients
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� The choice of the kernel does not have a major impact
on the estimated hazard rate, but the choice of the
bandwidth does
⇒ It is important to choose the bandwidth in an
appropriate way, by e.g. plug-in, cross-validation,
bootstrap, ... techniques

� Variance of ĥ(t) can be estimated by

V̂As(ĥ(t)) = b−2
r∑

j=1

K
(

t − y(j)

b

)2

∆V̂As(Ĥ(y(j))),

where ∆V̂As(Ĥ(y(j))) = V̂As(Ĥ(y(j)))− V̂As(Ĥ(y(j−1)))
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Hypothesis testing in a
nonparametric setting
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Hypothesis testing in a nonparametric setting

� Hypotheses concerning the hazard function of one
population

� Hypotheses comparing the hazard function of two or
more populations

Note that

� It is important to consider overall differences over time

� We will develop tests that look at weighted differences
between observed and expected quantities (under H0)

� Weights allow to put more emphasis on certain part of
the data (e.g. early or late departure from H0)

� Particular cases : log-rank test, Breslow’s test, Cox
Mantel test, Peto and Peto test, ...
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Ex : Survival differences in leukemia patients :
chemotherapy vs. chemotherapy + autologous
transplantation
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Hypotheses for the hazard function of one population

� Test whether a censored sample of size n comes from
a population with a known hazard function h0(t) :

H0 : h(t) = h0(t) for all t ≤ y(r)

H1 : h(t) 6= h0(t) for some t ≤ y(r)

� Based on the NA estimator of the cumulative hazard
function, a crude estimator of the hazard function at
time y(j) is

d(j)

R(j)

� Under H0, the hazard function at time y(j) is h0(y(j))
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� Let w(t) be some weight function, with w(t) = 0 for
t > y(r)

� Test statistic :

Z =
r∑

j=1

w(y(j))
d(j)

R(j)
−
∫ y(r)

0
w(s)h0(s)ds

� Under H0 :

V (Z ) =

∫ y(r)

0
w2(s)

h0(s)

R(s)
ds

with R(s) corresponding to the number of subjects in
the risk set at time s

� For large samples :
Z√

V (Z )
≈ N(0,1)
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One sample log-rank test

� Weight function : w(t) = R(t)

� Test statistic :

Z =
r∑

j=1

d(j) −
∫ y(r)

0
R(s)h0(s)ds

=
r∑

j=1

d(j) −
n∑

i=1

∫ yi

0
h0(s)ds

=
r∑

j=1

d(j) −
n∑

i=1

H0(yi) = O − E

� Under H0 :

V (Z ) =

∫ y(r)

0
R(s)h0(s)ds = E

and
O − E√

E
≈ N(0,1)
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Example : Survival in patients with Paget disease

� Benign form of breast cancer
� Compare survival in a sample of patients to the survival

in the overall population
• Data : Finkelstein et al. (2003)
• Hazard function of the population : standardized

actuarial table

� Compute the expected number of deaths under H0
using

• follow-up information of the group of patients with Paget
disease

• relevant hazard function from standardized actuarial
table
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Paget disease data:

� age (in years) at diagnosis

� time to death or censoring (in years)

� censoring indicator

� gender (1=male, 2=female)

� race (1=Caucasian, 2=black)

Age Follow-up Status Gender Race
52 22 0 2 1
53 4 0 2 1
57 8 0 2 1
57 7 0 2 1
...
85 6 1 2 1
86 1 0 2 1
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Standardized actuarial table :

� age (in years)

� hazard (per 100 subjects) for respectively Caucasian
males, Caucasian females, black males, and black
females

Hazard function
Age Caucasian Caucasian black black

male female male female
50-54 0.6070 0.3608 1.3310 0.7156
55-59 0.9704 0.5942 1.9048 1.0558
60-64 1.5855 0.9632 2.8310 1.6048

...
80-84 9.3128 6.2880 10.4625 7.2523

85- 17.7671 14.6814 16.0835 13.7017
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� E.g. first patient : Caucasian female followed from 52
years on for 22 years :

(1) hazard for the 52th year = 0.3608
(2) hazard for the 53th year = 0.3608
... ... ...

(22) hazard for the 73th year = 2.3454
Total (cumulative hazard) = 25.637

⇒ for one particular patient (/100) = 0.25637

and do the same for all patients
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� Expected number of deaths under H0 : E = 9.55

� Observed number of deaths : O = 13

� Test statistic :
O − E√

E
=

13− 9.55√
9.55

= 1.116

� Two-sided hypothesis test :

2P(Z > 1.116) = 0.264

⇒We do not reject H0
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Other weight functions

Weight function proposed by Harrington and Fleming
(1982):

w(t) = R(t)Sp
0 (t)(1− S0(t))q p,q ≥ 0

� p = q = 0 : log-rank test

� p > q : more weight on early deviations from H0

� p < q : more weight on late deviations from H0

� p = q > 0 : more weight on deviations in the middle

� p = 1,q = 0 : generalization of the one-sample
Wilcoxon test to censored data
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Comparing the hazard functions of two populations

� Hypothesis test :

H0 : h1(t) = h2(t) for all t ≤ y(r)

H1 : h1(t) 6= h2(t) for some t ≤ y(r)

� Notations :
• y(1), y(2), . . . , y(r) : ordered event times in the pooled

sample
• d(j)k : number of events at time y(j) in sample k

(j = 1, . . . , r and k = 1,2)
• R(j)k : number of individuals at risk at time y(j) in sample

k
• d(j) =

∑2
k=1 d(j)k and R(j) =

∑2
k=1 R(j)k
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� Derive a 2× 2 contingency table for each event time
y(j) :

Group Event No Event Total
1 d(j)1 R(j)1 − d(j)1 R(j)1

2 d(j)2 R(j)2 − d(j)2 R(j)2

Total d(j) R(j) − d(j) R(j)

� Test the independence between the rows and the
columns, which corresponds to the assumption that the
hazard in the two groups at time y(j) is the same

� Test statistic with group 1 as reference group :

Oj − Ej = d(j)1 −
d(j)R(j)1

R(j)

with Oj = observed number of events in the first group
Ej = expected number of events in the first group

assuming that h1 ≡ h2
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� Test statistic : weighted average over the different event
times :

U =
r∑

j=1

w(y(j))(Oj − Ej)

=
r∑

j=1

w(y(j))
(

d(j)1 −
d(j)R(j)1

R(j)

)
Different weights can be used, but choice must be
made before looking at the data

� For large samples and under the null hypothesis :
U√

V (U)
≈ N(0,1)
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Variance of U :

� Can be obtained by observing that conditional on d(j),
R(j)1 and R(j), the statistic d(j)1 has a hypergeometric
distribution

� Hence,

V (U) =
r∑

j=1

w2(y(j))V (d(j)1)

=
r∑

j=1

w2(y(j))
d(j)

(
R(j)1
R(j)

)(
1− R(j)1

R(j)

)
(R(j) − d(j))

R(j) − 1
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Weights :
� w(y(j)) = 1

↪→ log-rank test
↪→ optimum power to detect alternatives when the hazard

rates in the two populations are proportional to each
other

� w(y(j)) = R(j)

↪→ generalization by Gehan (1965) of the two sample
Wilcoxon test

↪→ puts more emphasis on early departures from H0

↪→ weights depend heavily on the event times and the
censoring distribution
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� w(y(j)) = f (R(j))

↪→ Tarone and Ware (1977)
↪→ a suggested choice is f (R(j)) =

√
R(j)

↪→ puts more weight on early departures from H0

� w(y(j)) = Ŝ(y(j)) =
∏

y(k)≤y(j)

(
1− d(k)

R(k)+1

)
↪→ Peto and Peto (1972) and Kalbfleisch and Prentice

(1980)
↪→ based on an estimate of the common survival function

close to the pooled product limit estimate

� w(y(j)) =
(

Ŝ(y(j−1))
)p (

1− Ŝ(y(j−1))
)q

p ≥ 0,q ≥ 0

↪→ Fleming and Harrington (1981)
↪→ include weights of the log-rank as special case
↪→ q = 0,p > 0 : more weight is put on early differences
↪→ p = 0,q > 0 : more weight is put on late differences
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Example : Comparing survival for male and female
schizophrenic patients
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� Observed number of events in female group : 93

� Expected number of events under H0 : 62
� Log-rank weights :

• U/
√

V (U) = 4.099
• p-value (2-sided) = 0.000042

� Peto and Peto weights :
• U/

√
V (U) = 4.301

• p-value (2-sided) = 0.000017
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Comparing the hazard functions of more than 2 populations

� Hypothesis test :

H0 : h1(t) = h2(t) = . . . = hl(t) for all t ≤ y(r)

H1 : hi(t) 6= hj(t) for at least one pair (i , j)

for some t ≤ y(r)

� Notations : same as earlier but now k = 1, . . . , l

� Test statistic based on the l × 2 contingency tables for
the different event times y(j)

Group Event No Event Total
1 d(j)1 R(j)1 − d(j)1 R(j)1

2 d(j)2 R(j)2 − d(j)2 R(j)2

. . .
l d(j)l R(j)l − d(j)l R(j)l

Total d(j) R(j) − d(j) R(j)
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� The random vector d(j) = (d(j)1, . . . ,d(j)l)
t has a

multivariate hypergeometric distribution

� We can define analogues of the test statistic U defined
previously :

Uk =
r∑

j=1

w(y(j))
(

d(j)k −
d(j)R(j)k

R(j)

)
,

which is a weighted sum of the differences between the
observed and expected number of events under H0

� The components of the vector (U1, . . . ,Ul) are linearly
dependent because

∑l
k=1 Uk = 0

⇒ define U = (U1, . . . ,Ul−1)t

⇒ derive V (U), the variance-covariance matrix of U

� For large sample size and under H0 :

U tV (U)−1U ≈ χ2
l−1
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Example : Comparing survival for schizophrenic patients
according to their marital status
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� Observed number of events : 55 (single), 37 (married),
71 (alone again)

� Expected number of events under H0 : 67, 55, 41

� Test statistic : U tV (U)−1U = 31.44

� p-value = 1.5× 10−7 (based on a χ2
2)
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Test for trend

� Sometimes there exists a natural ordering in the hazard
functions

� If such an ordering exists, tests that take it into
consideration have more power to detect significant
effects

� Test for trend :

H0 : h1(t) = h2(t) = . . . = hl(t) for all t ≤ y(r)

H1 : h1(t) ≤ h2(t) ≤ . . . ≤ hl(t) for some t ≤ y(r) with

at least one strict inequality

(H1 implies that S1(t) ≥ S2(t) ≥ . . . ≥ Sl(t) for some
t ≤ y(r) with at least one strict inequality)
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� Test statistic for trend :

U =
l∑

k=1

wkUk ,

with
• Uk the summary statistic of the k th population
• wk the weight assigned to the k th population, e.g.

wk = k (corresponds to a linear trend in the groups)

� Variance of U :

V (U) =
l∑

k=1

l∑
k ′=1

wkwk ′Cov(Uk ,Uk ′)

� For large sample size and under H0 :
U√

V (U)
≈ N(0,1)

� If wk = k , we reject H0 for large values of U/
√

V (U)

(one-sided test)



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Example : Comparing survival for schizophrenic patients
according to their educational level

4 educational groups : none, low, medium, high
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� Observed number of events : 79 (none), 43 (low), 32
(medium), 9 (high)

� Expected number of events under H0 : 71.3, 51.6, 31.1,
9.0

� Consider H1 : h1(t) ≥ . . . ≥ h4(t)
� Using weights 0, 1, 2, 3 we have :

• U = −6.77 and V (U) = 134 so U/
√

V (U) = −0.58
• One-sided p-value :

P(Z < −0.58) = 0.28

� p-value for ‘global test’ : p = 0.49
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Stratified tests

� In some cases, subjects in a study can be grouped
according to particular characteristics, called strata
Ex : prognosis group (good, average, poor)

� It is often advisable to adjust for strata as it reduces
variance
⇒ Stratified test : obtain an overall assessment of the
difference, by combining information over the different
strata to gain power

� Hypothesis test :

H0 : h1b(t) = h2b(t) = . . . = hlb(t)

for all t ≤ y(r) and b = 1, . . . ,m,

where hkb(·) is the hazard of group k and stratum b
(k = 1, . . . , l ; b = 1, . . . ,m)
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� Test statistic :
• Ukb = summary statistic for population k (k = 1, . . . , l) in

stratum b (b = 1, . . . ,m)

• Stratified summary statistic for population k :
Uk. =

∑m
b=1 Ukb

• Define U. = (U1., . . . ,U(l−1).)
t

� Entries of the variance-covariance matrix V (U) of U. :

Cov(Uk .,Uk ′.) =
m∑

b=1

Cov(Ukb,Uk ′b)

� For large sample size and under H0 :

U t
.V (U)−1U. ≈ χ2

l−1

� If only two populations :∑m
b=1 Ub√∑m

b=1 V (Ub)
≈ N(0,1)



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Example : Comparing survival for schizophrenic patients
according to gender stratified by marital status
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� Log-rank test (weights=1) :

single married alone again
Ub 5.81 5.98 6.06

V (Ub) 9.77 4.12 15.71

�
∑3

b=1 Ub = 17.85 and
∑3

b=1 V (Ub) = 29.60

� Test statistic : ∑3
b=1 Ub√∑3

b=1 V (Ub)
=
√

10.76

� p-value (2-sided) = 0.00103
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Matched pairs test

� Particular case of the stratified test when each stratum
consists of only 2 subjects
� m matched pairs of censored data : (y1b, y2b, δ1b, δ2b)

for b = 1, . . . ,m, with
• 1st subject of the pair receiving treatment 1
• 2nd subject of the pair receiving treatment 2

� Hypothesis test :

H0 : h1b(t) = h2b(t) for all t ≤ y(r) and b = 1, . . . ,m
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� It can be shown that under H0 and for large m :

U.√
V (U.)

=
D1 − D2√
D1 + D2

≈ N(0,1),

where Dj = number of matched pairs in which the
individual from sample j dies first (j = 1,2)

⇒Weight function has no effect on final test statistic in
this case
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Proportional hazards models
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The semiparametric proportional hazards model

� Cox, 1972
� Stratified tests not always the optimal strategy to adjust

for covariates :
• Can be problematic if we need to adjust for several

covariates
• Do not provide information on the covariate(s) on which

we stratify
• Stratification on continuous covariates requires

categorization

� We will work with semiparametric proportional hazards
models, but there also exist parametric variations



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Simplest expression of the model

� Case of two treatment groups (Treated vs. Control) :

hT (t) = ψhC(t),

with hT (t) and hC(t) the hazard function of the treated
and control group
� Proportional hazards model :

• Ratio ψ = hT (t)/hC(t) is constant over time
• ψ < 1 (ψ > 1): hazard of the treated group is smaller

(larger) than the hazard of the control group at any time
• Survival curves of the 2 treatment groups can never

cross each other
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More generalizable expression of the model

� Consider a treatment covariate xi (0 = control, 1 =
treatment) and an exponential relationship between the
hazard and the covariate xi :

hi(t) = exp(βxi)h0(t),
with

• hi (t) : hazard function for subject i
• h0(t) : hazard function of the control group
• exp(β) = ψ : hazard ratio

� Other functional relationships can be used between the
hazard and the covariate
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More complex model

� Consider a set of covariates xi = (xi1, . . . , xip)t for
subject i :

hi(t) = h0(t) exp(βtxi),

with
• β : the p × 1 parameter vector
• h0(t) : the baseline hazard function (i.e. hazard for a

subject with xij = 0, j = 1, . . . ,p)

� Proportional hazards (PH) assumption : ratio of the
hazards of two subjects with covariates xi and xj is
constant over time :

hi(t)
hj(t)

=
exp(βtxi)

exp(βtxj)

� Semiparametric PH model : leave the form of h0(t)
completely unspecified and estimate the model in a
semiparametric way
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Fitting the semiparametric PH model

� Based on likelihood maximization

� As h0(t) is left unspecified, we maximize a so-called

partial likelihood instead of the full likelihood :

• Derive the partial likelihood for data without ties

• Extend to data with tied observations
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Partial likelihood for data without ties
� Can be derived as a profile likelihood :

First β is fixed, and the likelihood is maximized as a
function of h0(t) only to find estimators for the baseline
hazard in terms of β

� Notations :
• r observed event times (r = d as no ties)
• y(1), . . . , y(r) ordered event times
• x(1), . . . , x(r) corresponding covariate vectors

� Likelihood :
r∏

j=1

h0(j) exp
(

x t
(j)β
) n∏

i=1

exp
(
− H0(yi) exp(x t

i β)
)
,

with h0(j) = h0(y(j))
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� It can be seen that the likelihood is maximized when
H0(yi) takes the following form :

H0(yi) =
∑

y(j)≤yi

h0(y(j))

(i.e. h0(t) = 0 for t 6= y(1), . . . , y(r), which leads to the
largest contribution to the likelihood)

� With β fixed, the likelihood can be rewritten as

L(h0(1), . . . ,h0(r) | β)

=
r∏

j=1

h0(j)

r∏
j=1

exp
(
x t

(j)β
)

×
r∏

j=1

exp
(
− h0(j)

∑
k∈R(y(j))

exp
(
x t

kβ
))
,

where R(y(j)) is the risk set at time y(j)
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� Maximize the likelihood with respect to h0(j) by setting
the partial derivatives wrt h0(j) equal to 0 :

∂L
(
h0(1), . . . ,h0(r) | β

)
∂h0(1)

=
r∏

j=1

exp
(

x t
(j)β
) r∏

j=1

exp
(
−h0(j)bj

)
×
(
h0(2) . . . h0(r) − h0(1)h0(2) . . . h0(r)b1

)
= 0

⇐⇒ 1− h0(1)b1 = 0,

with bj =
∑

k∈R(y(j)) exp
(
x t

kβ
)
, and in general

h0(j) =
1
bj

=
1∑

k∈R(y(j)) exp
(
x t

kβ
)
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� Plug this solution into the likelihood, and ignore factors
not containing any of the parameters :

L (β) =
r∏

j=1

exp
(

x t
(j)β
)

∑
k∈R(y(j)) exp

(
x t

kβ
)

= partial likelihood

� This expression is used to estimate β through
maximization

� Logarithm of the partial likelihood :

` (β) =
r∑

j=1

x t
(j)β −

r∑
j=1

log
( ∑

k∈R(y(j))

exp
(
x t

kβ
) )
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� Maximization is often done via the Newton-Raphson
procedure, which is based on the following iterative
procedure :

β̂new = β̂old + I−1(β̂old )U(β̂old ),

with
• U(β̂old ) = vector of scores
• I−1(β̂old ) = inverse of the observed information matrix

⇒ convergence is reached when β̂old and β̂new are
sufficiently close together
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� Score function U(β) :

Uh(β) =
∂`(β)

∂βh

=
r∑

j=1

x(j)h −
r∑

j=1

∑
k∈R(y(j)) xkh exp

(
x t

kβ
)∑

k∈R(y(j)) exp
(
x t

kβ
)

� Observed information matrix I(β) :

Ihl(β) = − ∂
2`(β)

∂βh∂βl

=
r∑

j=1

∑
k∈R(y(j)) xkhxkl exp

(
x t

kβ
)∑

k∈R(y(j)) exp
(
x t

kβ
)

−
r∑

j=1

[∑
k∈R(y(j)) xkh exp

(
x t

kβ
)∑

k∈R(y(j)) exp
(
x t

kβ
) ]

×
r∑

j=1

[∑
k∈R(y(j)) xkl exp

(
x t

kβ
)∑

k∈R(y(j)) exp
(
x t

kβ
) ]
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Remarks :

� Variance-covariance matrix of β̂ can be approximated
by the inverse of the information matrix evaluated at β̂
→ V (β̂h) can be approximated by [I(β̂)]−1

hh

� Properties (consistency, asymptotic normality) of β̂ are
well established (Gill, 1984)

� A 100(1-α)% confidence interval for βh is given by

β̂h ± zα/2

√
V (β̂h)

and for the hazard ratio ψh = exp(βh) :

exp
(
β̂h ± zα/2

√
V (β̂h)

)
,

or alternatively via the Delta method
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Example : Active antiretroviral treatment cohort study

� CD4 cells protect the body from infections and other
types of disease
→ if count decreases beyond a certain threshold the
patients will die

� As HIV infection progresses, most people experience a
gradual decrease in CD4 count
� Highly Active AntiRetroviral Therapy (HAART)

• AntiRetroviral Therapy (ART) + 3 or more drugs
• Not a cure for AIDS but greatly improves the health of

HIV/AIDS patients
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� After introduction of ART, death of HIV patients
decreased tremendously
→ investigate now how HIV patients evolve after
HAART
� Data from a study conducted in Ethiopia :

• 100 individuals older than 18 years and placed under
HAART for the last 4 years

• only use data collected for the first 2 years
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Table: Data of HAART Study

Pat Time Censo- Gen- Age Weight Func. Clin. CD4 ART
ID ring der Status Status
1 699 0 1 42 37 2 4 3 1
2 455 1 2 30 50 1 3 111 1
3 705 0 1 32 57 0 3 165 1
4 694 0 2 50 40 1 3 95 1
5 86 0 2 35 37 0 4 34 1

. . .
97 101 0 1 39 37 2 . . 1
98 709 0 2 35 66 2 3 103 1
99 464 0 1 27 37 . . . 2
100 537 1 2 30 76 1 4 1 1
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How is survival influenced by gender and age ?

� Define agecat = 1 if age < 40 years
= 2 if age ≥ 40 years

� Define gender = 1 if male
= 2 if female

� Fit a semiparametric PH model including gender and
agecat as covariates :

• β̂agecat = 0.226 (HR=1.25)
• β̂gender = 1.120 (HR=3.06)
• Inverse of the observed information matrix :

I−1(β̂) =

[
0.4645 0.1476
0.1476 0.4638

]
• 95% CI for β̂agecat : [-1.11, 1.56]

95% CI for HR of old vs. young : [0.33, 4.77]
• 95% CI for β̂gender : [-0.21, 2.45]

95% CI for HR of female vs. male : [0.81, 11.64]
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Partial likelihood for data with tied observations

� Events are typically observed on a discrete time scale
⇒ Censoring and event times can be tied

� If ties between censoring time(s) and an event time
⇒ we assume that

• the censoring time(s) fall just after the event time
⇒ they are still in the risk set of the event time

� If ties between event times of two or more subjects :
Kalbfleish and Prentice (1980) proposed an appropriate
likelihood function, but

• rarely used due to its complexity
• different approximations have been proposed
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Approximation proposed by Breslow (1974) :

L(β) =
r∏

j=1

∏
l:yl =y(j),δl =1 exp

(
x t

l β
)

[∑
k :yk≥y(j)

exp
(
x t

kβ
)]d(j)

Approximation proposed by Efron (1977) :

L(β) =
r∏

j=1

∏
l:yl =y(j),δl =1 exp

(
x t

l β
)

Vj(β)

where

Vj(β) =

d(j)∏
h=1

( ∑
k :yk≥y(j)

exp
(
x t

kβ
)

−h − 1
d(j)

∑
l:yl =y(j),δl =1

exp
(
x t

l β
) )
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Approximation proposed by Cox (1972) :

L(β) =
r∏

j=1

∏
l:yl =y(j),δl =1 exp

(
x t

l β
)∑

q∈Qj

∑
h∈q exp

(
x t

hβ
) ,

with Qj the set of all possible combinations of d(j) subjects
from the risk set R(y(j))
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Example : Effect of gender on survival of schizophrenic
patients

� Fit a semiparametric PH model including gender as
covariate :

Approx. Max(partial likel.) β̂ s.e.(β̂)

Breslow -776.11 0.661 0.164
Efron -775.67 0.661 0.164
Cox -761.36 0.665 0.165

� HR for female vs. male: 1.94

� 95% CI : [1.41; 2.69]
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� Contribution to the partial likelihood at time 1096 days
• males : 68 at risk, 2 events
• females : 12 at risk, no event
• Breslow :

exp(2× 0)

(68 + 12 expβ)2 = 0.000120

• Efron :

exp(2× 0)

(68 + 12 expβ) (67 + 12 expβ)
= 0.000121

• Cox :

exp(2× 0)[
exp(2β)

(12
2

)
+ exp(β)

(12
1

)(68
1

)
+
(68

2

)] = 0.000243
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Testing hypotheses in the framework of the semiparametric
PH model

� Global tests :
• hypothesis tests regarding the whole vector β

� More specific tests :
• hypothesis tests regarding a subvector of β
• hypothesis tests for contrasts and sets of contrasts
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Global hypothesis tests

� Hypotheses regarding the p-dimensional vector β :

H0 : β = β0

H1 : β 6= β0

� Wald test statistic :

U2
W =

(
β̂ − β0

)t I
(
β̂
)(
β̂ − β0

)
with

• β̂ = maximum likelihood estimator
• I
(
β̂
)

= observed information matrix

⇒ Under H0, and for large sample size : U2
W ≈ χ2

p
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� Likelihood ratio test statistic :

U2
LR = 2

(
`
(
β̂
)
− `
(
β0
))

with
• `
(
β̂
)

= log likelihood evaluated at β̂
• `
(
β0
)

= log likelihood evaluated at β0

⇒ Under H0, and for large sample size : U2
LR ≈ χ2

p

� Score test statistic :

U2
SC = U

(
β0
)t I−1(β0

)
U
(
β0
)

with
• U

(
β0
)

= score vector evaluated at β0

⇒ Under H0, and for large sample size : U2
SC ≈ χ

2
p
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Example : Effect of age and marital status on survival of
schizophrenic patients

� Model the survival as a function of age and marital
status :

H0 : β =

 βage

βmarried

βalone again

 = 0

(βsingle = 0 to avoid overparametrization)

� U2
W = 31.6; p-value : P(χ2

3 > 31.6) = 6× 10−7

U2
LR = 30.6

U2
SC = 33.5
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Local hypothesis tests

� Let β = (βt
1, β

t
2)t , where β2 contains the ‘nuisance’

parameters

� Hypotheses regarding the q-dimensional vector β1 :

H0 : β1 = β10

H1 : β1 6= β10

� Partition the information matrix as

I =

[
I11 I12

I21 I22

]
with I11 = matrix of partial derivatives of order 2 with
respect to the components of β1

⇒ I−1 =

[
I11 I12

I21 I22

]
� Note that the complete information matrix is required to

obtain I11, except when β̂1 is independent of β̂2
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� Define

β̂1 = maximum likelihood estimator

of β1

β̂2(β10) = maximum likelihood estimator

of β2 with β1 put equal to β10

U1
(
β10, β̂2(β10)

)
= score subvector evaluated

at β10 and β̂2(β10)

I11(β10, β̂2(β10)
)

= matrix I11 for β1 evaluated

at β10 and β̂2(β10)
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� Wald test :

U2
W =

(
β̂1 − β10

)t(I11(β̂)
)−1(

β̂1 − β10
)
≈ χ2

q

� Likelihood ratio test :

U2
LR = 2

(
`(β̂)− `

(
β10, β̂2(β10)

))
≈ χ2

q

� Score test :

U2
SC = U1

(
β10, β̂2(β10)

)t
I11
(
β10, β̂2(β10)

)
×U1

(
β10, β̂2(β10)

)
≈ χ2

q
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Testing more specific hypotheses

� Consider a p × 1 vector of coefficients c

� Hypothesis test :

H0 : ctβ = 0

� Wald test statistic :

U2
W =

(
ct β̂
)t(ct I−1(β̂)c

)−1(ct β̂
)

Under H0 and for large sample size :

U2
W ≈ χ2

1

� Likelihood ratio test and score test can be obtained in a
similar way
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� If different linear combinations of the parameters are of
interest, define

C =

 ct
1
...

ct
q


with q ≤ p and assume that the matrix C has full rank

� Hypothesis test :

H0 : Cβ = 0

� Wald test statistic :

U2
W =

(
Cβ̂
)t(CI−1(β̂)Ct)−1(Cβ̂)

Under H0 and for large sample size : U2
W ≈ χ2

q

� Likelihood ratio test and score test can be obtained in a
similar way
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Example : Effect of age and marital status on survival of
schizophrenic patients

� H0 : βmarried = 0

→ ct = (0,1,0)

→ Wald test statistic : 1.18; p-value: P(χ2
1 > 1.18) = 0.179

� H0 : βmarried = βalone again = 0

→ C =

(
0 1 0
0 0 1

)
→ Test statistics : U2

W = 31.6; U2
LR = 30.6; U2

SC = 33.5

→ p-value (Wald) : P(χ2
2 > 31.6) = 1× 10−7
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Building multivariable semiparametric models

� including a continuous covariate

� including a categorical covariate

� including different types of covariates

� interactions between covariates

� time-varying covariates
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Including a continuous covariate in the semiparametric PH
model

� For a single continuous covariate xi :

hi(t) = h0(t) exp(βxi)

where
• h0(t) = baseline hazard (refers to a subject with xi = 0)

• exp(β) =
hazard of a subject i with covar. xi

hazard of a subject j with covar. xj = xi − 1
and is independent of the covariate xi and of t

• exp(rβ) = hazard ratio of two subjects with a difference
of r covariate units

⇒ β̂ = increase in log-hazard corresponding to a one unit
increase of the continuous covariate
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Example : Impact of age on survival of schizophrenic
patients

� Introduce age as a continuous covariate in the
semiparametric PH model :

hi(t) = h0(t) exp(βageagei)

� βage = 0.00119 (s.e. = 0.00952).

� HR =
hazard for a subject of age i (in years)

hazard for a subject of age i − 1 = 1.001

95% CI : [0.983, 1.020]

� Other quantities can be calculated, e.g.
hazard for a subject of age 40
hazard for a subject of age 30
= exp(10× 0.00119) = 1.012
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Including a categorical covariate in the semiparametric PH
model

� For a single categorical covariate xi with l levels :

hi(t) = h0(t) exp(βtxi),

where
• β = (β1, . . . , βl )

• xi is the covariate for subject i

� This model is overparametrized⇒ restrictions :
• Set β1 = 0 so that h0(t) corresponds to the hazard of a

subject with the first level of the covariate
• exp(βj) = HR of a subject at level j relative to a subject

at level 1
• exp(βj − βj′) = HR between level j and j ′

(note that V (β̂j − β̂j′) = V (β̂j) + V (β̂j′)− 2Cov(β̂j , β̂j′))

• Other choices of restrictions are possible
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Example : Impact of marital status on survival of
schizophrenic patients

� Introduce marital status as a categorical covariate in
the semiparametric PH model

hi(t) = h0(t) exp(βmarriedxi2 + βalone againxi3),

where
• xi2 = 1 if patient is married, 0 otherwise
• xi3 = 1 if patient is alone again, 0 otherwise

� Married vs single :
• β̂married = −0.206 (s.e. = 0.214)
• HR = 0.814 (95%CI : [0.534,1.240]), p = 0.34

� Alone again vs single :
• β̂alone again = 0.794 (s.e. = 0.185)
• HR = 2.213 (95%CI : [1.540,3.180]), p = 1.7× 10−5
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� Married vs alone again :
• exp(β̂married − β̂alone again) = 0.368

• Variance-covariance matrix :

V

(
β̂married

β̂alone again

)
=

(
0.0460 0.0183
0.0183 0.0342

)
• V (β̂married − β̂alone again) = 0.0436

• 95% CI : [0.244, 0.553]
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Including different covariates in the semiparametric PH
model

• Estimates for a particular parameter will then be
adjusted for the other parameters in the model

• Estimates for this particular parameter will be different
from the estimate obtained in a univariate model
(except when the covariates are orthogonal)

Example : Impact of marital status and age on survival of
schizophrenic patients

hi(t) = h0(t) exp(βageagei + βmarriedxi2 + βalone againxi3)

Covariate β̂ s.e.(β̂) HR 95% CI
age -0.0154 0.0104 0.99 [0.97,1.01]
married -0.3009 0.2238 0.74 [0.48,1.15]
alone again 0.8195 0.1857 2.269 [1.58,3.27]
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Interaction between covariates

� Interaction : the effect of one covariate depends on the
level of another covariate

� Continuous / categorical (j levels) : different hazard
ratios are required for the continuous covariate at each
level of the categorical covariate

⇒ add j − 1 parameters

� Categorical (j levels) / categorical (k levels) : for each
level of one covariate, different HR between the levels
of the other covariate with the reference are required

⇒ add (j − 1)× (k − 1) parameters
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Example : Impact of marital status and age on survival of
schizophrenic patients

hi(t) = h0(t) exp( βmarried × xi2 + βalone again × xi3

+βage × agei + βage | married × xi2 × agei

+βage | alone again × xi3 × agei)

Covariate β̂ s.e.(β̂) HR 95% CI
age -0.0238 0.0172 0.977 [0.94,1.01]

married -0.6811 0.8579 0.506 [0.09,2.72]
alone again 0.3979 0.7475 1.489 [0.34,6.44]
age|married 0.0129 0.0299 1.013 [0.96,1.07]

age|alone again 0.0133 0.0228 1.013 [0.97,1.06]
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� Effect of age in the reference group (single) :

exp(β̂age) = exp(−0.0238) = 0.977

� Effect of age in the married group :

exp(β̂age + β̂age|married) = exp(−0.0238 + 0.0129)

= 0.989

� Effect of age in the alone again group :

exp(β̂age + β̂age|alone again) = exp(−0.0238 + 0.0133)

= 0.990

� Likelihood ratio test for the interaction :

U2
LR = 0.76

P(χ2
2 > 0.76) = 0.684
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� HRmarried = exp(β̂married) = 0.506
= HR of a married subject relative to a

single subject at the age of 0 year

⇒ more relevant to express the age as the difference
between a particular age of interest (e.g. 30 years)

⇒ has impact on parameter estimates of differences
between groups, but not on parameter estimates
related to age

Covariate β̂ s.e.(β̂) HR 95% CI
age -0.0238 0.0172 0.977 [0.94,1.01]

married -0.2928 0.2378 0.746 [0.47,1.19]
alone again 0.7971 0.1911 2.219 [1.53,3.23]
age|married 0.0129 0.0299 1.013 [0.96,1.07]

age|alone again 0.0133 0.0228 1.013 [0.97,1.06]



Basic
concepts

Nonparametric
estimation

Hypothesis
testing in a
nonparametric
setting

Proportional
hazards
models

Parametric
survival
models

Example : Impact of marital status and gender on survival of
schizophrenic patients

hi(t) = h0(t) exp(βmarried × xi2 + βalone again × xi3

+βfemale × genderi

+βfemale|married × xi2 × genderi

+βfemale|alone again × xi3 × genderi)

Covariate β̂ s.e.(β̂) HR 95% CI
female 0.520 0.286 1.681 [0.96, 2.95]
married -0.253 0.26 0.776 [0.47, 1.29]

alone again 0.807 0.236 2.242 [1.41, 3.56]
female|married 0.389 0.46 1.476 [0.60, 3.64]

female|alone again -0.146 0.372 0.865 [0.42, 1.79]

↪→ Likelihood ratio test for the interaction :
U2

LR = 1.94; P(χ2
2 > 1.94) = 0.23
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Time varying covariates

� In some applications, covariates of interest change with
time

� Extension of the Cox model :

hi(t) = h0(t) exp(βtxi(t))

⇒ Hazards are no longer proportional
� Estimation of β :

• Let xk (y) be the covariate vector for subject k at time y
• Define the partial likelihood :

L (β) =
n∏

i=1

[
exp

(
xi (yi )

tβ
)∑

k∈R(yi )
exp (xk (yi )tβ)

]δi

• Let
β̂ = argmaxβL(β)
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Example : Time varying covariates in data on the first time
to insemination for cows
� Aim : find constituent in milk that is predictive for the

hazard of first insemination
• one possible predictor is the ureum concentration
• milk ureum concentration changes over time

� Information for an individual cow i (i = 1, . . . ,n) :(
yi , δi , xi (ti1) , . . . , xi

(
tiki

))
Covariate is determined only once a month
⇒ Value at time t is determined by linear interpolation
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� Ureum concentration is introduced as a time-varying
covariate in the semiparametric PH model :

hi(t) = h0(t) exp(βxi(t)),

where
• hi (t) = hazard of first insemination at time t for cow i

having at time t ureum concentration equal to xi (t)
• β = linear effect of the ureum concentration on the

log-hazard of first insemination

� β̂ = −0.0273 (s.e. = 0.0162)
HR = exp(−0.0273) = 0.973
95% CI = [0.943,1.005]

p-value = 0.094
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Model building strategies for the semiparametric PH model

� Often not clear what criteria should be used to decide
which covariates should be included

� Should be based first on meaningful interpretation and
biological knowledge
� Different strategies exist :

• Forward selection
• Backward selection
• Forward stepwise selection
• Backward stepwise selection
• AIC selection
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� Forward procedure :
• First, include the covariate with the smallest p-value
• Next, consider all possible models containing the

selected covariate and one additional covariate, and
include the covariate with the smallest p-value

• Continue doing this until all remaining non-selected
covariates are non-significant

� Backward procedure :
• First, start from the full model that includes all

covariates
• Next, consider all possible models containing all

covariates except one, and remove the covariate with
the largest p-value

• Continue doing this until all remaining covariates in the
model are significant
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� Forward / backward stepwise procedure :
Start as in the forward / backward procedure, but an
included / removed covariate can be excluded /
included at a later stage, if it is no longer significant /
non-significant with other covariates in the model

� Note that the above p-values can be based on either
the Wald, likelihood ratio or score test

� Akaike’s information criterion (AIC) : instead of
including / removing covariates based on their p-value,
we look at the AIC :

AIC = −2 log(L) + kp
where

• p = number of parameters in the model
• L = likelihood
• k = constant (often 2)
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Example : Model building in the schizophrenic patients
dataset

� Univariate models :

Marital status p = 6.7× 10−7

Gender p = 9.7× 10−5

Educational status p = 0.663
Age p = 0.9

� Forward procedure :
• Start with a model containing marital status
• Fit model containing marital status and one of the three

remaining covariates
⇒ Gender has smallest p-value

• Fit model containing marital status, gender and one of
the two remaining covariates
⇒ None of the remaining covariates (educational status
and age) is significant
⇒ Final model contains marital status and gender
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Survival function estimation in the semiparametric model

� Survival function for subject with covariate xi :

Si(t) = exp(−Hi(t))

= exp(−H0(t) exp(βtxi))

= (S0(t))exp(βt xi )

with S0(t) = exp(−H0(t)) and H0(t) =
∫ t

0 h0(s)ds

� Estimate the baseline cumulative hazard H0(t) by

Ĥ0(t) =
∑

j:y(j)≤t

ĥ0(j),

where

ĥ0(j) =
d(j)∑

k∈R(y(j)) exp
(

x t
k β̂
)

extends the Breslow estimator to the case of tied
observations
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� Define

Ŝi(t) =
(

Ŝ0(t)
)exp(β̂t xi )

,

with Ŝ0(t) = exp(−Ĥ0(t))

� It can be shown that

Ŝi(t)− Si(t)

V 1/2(Ŝi(t))

d→ N(0,1)
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Example : Survival function estimates for marital status
groups in the schizophrenic patients data
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Consider e.g. survival at 505 days :

Single group : 0.755 95% CI : [0.690, 0.827]
Married group : 0.796 95% CI : [0.730, 0.867]
Alone again group : 0.537 95% CI : [0.453, 0.636]
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Stratified semiparametric PH model

� The assumption that h0(t) is the same for all subjects
might be too strong in practice
⇒ Possible solution : consider groups (strata) of
subjects with the same baseline hazard

� Stratified PH model : the hazard of subject j
(j = 1, . . . ,ni ) in stratum i (i = 1, . . . , s) is given by

hij(t) = hi0(t) exp
(
x t

ijβ)

� Extension of the partial likelihood :

L(β) =
s∏

i=1

ni∏
j=1

 exp(x t
ijβ)∑

l∈Ri (yij )

exp(x t
ilβ)


δij

⇒ Risk set for a subject contains only the subjects still
at risk within the same stratum
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Example : Stratified PH model for the time to first
insemination dataset

� Cows are coming from different farms
⇒ baseline hazard might differ considerably between
farms (even if the effect of the ureum concentration is
similar)

� Consider the effect of the ureum concentration in milk
on the time to first insemination, stratifying on the
farms :

β̂ = −0.0588 (s.e. = 0.0198)

HR = 0.943 95% CI = [0.907,0.980]

⇒ By stratifying on the farms, ureum concentration
becomes significant
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Checking the proportional hazards assumption

� PH assumption : HR between two subjects with
different covariates is constant over time

� Formal tests and diagnostic plots have been developed
to check this assumption
� Formal test :

• Add βlxi × t to the PH model :
hi (t) = h0(t) exp(βxi + βlxi × t)

• If βl 6= 0, the PH assumption does not hold
• Instead of adding βlxi × t , one can also add βlxi × g(t)

for some function g
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� Diagnostic plots :
• Consider for simplicity the case of a covariate with r

levels
• Estimate the cumulative hazard function for each level

of the covariate by means of the Nelson-Aalen estimator
⇒ Ĥ1(t), Ĥ2(t), . . . , Ĥr (t) should be constant multiples
of each other :

Plot PH assumption holds if

log(Ĥ1(t)), ..., log(Ĥr (t)) vs t parallel curves

log(Ĥj (t))− log(Ĥ1(t)) vs t constant lines

Ĥj (t) vs Ĥ1(t) straight lines through origin
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Example : PH assumption for the gender effect in the
schizophrenic patients dataset
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Parametric survival models
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Some common parametric distributions

Exponential distribution :

� Characterized by one parameter λ > 0 :

S0(t) = exp(−λt)

f0(t) = λexp(−λt)

h0(t) = λ

→ leads to a constant hazard function

� Empirical check : plot of the log of the survival estimate
versus time
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Hazard and survival function for the exponential distribution
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Weibull distribution :

� Characterized by a scale parameter λ > 0 and a shape
parameter ρ > 0 :

S0(t) = exp(−λtρ)

f0(t) = ρλtρ−1 exp(−λtρ)

h0(t) = ρλtρ−1

→ hazard decreases if ρ < 1

→ hazard increases if ρ > 1

→ hazard is constant if ρ = 1 (exponential case)

� Empirical check : plot log cumulative hazard versus log
time
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Hazard and survival function for the Weibull distribution
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Log-logistic distribution :

� A random variable T has a log-logistic distribution if
logT has a logistic distribution

� Characterized by two parameters λ and κ > 0 :

S0(t) =
1

1 + (tλ)κ

f0(t) =
κtκ−1λκ

[1 + (tλ)κ]2

h0(t) =
κtκ−1λκ

1 + (tλ)κ

� The median event time is only a function of the
parameter λ :

M(T ) = exp(1/λ)
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Hazard and survival function for the log-logistic distribution
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Log-normal distribution :

� Resembles the log-logistic distribution but is
mathematically less tractable

� A random variable T has a log-normal distribution if
logT has a normal distribution

� Characterized by two parameters µ and γ > 0 :

S0(t) = 1− FN

(
log(t)− µ
√
γ

)
f0(t) =

1
t
√

2πγ
exp

[
− 1

2γ
(log(t)− µ)2

]
� The median event time is only a function of the

parameter µ :

M(T ) = exp(µ)
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Hazard and survival function for the log-normal distribution
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Parametric survival models

The parametric models considered here have two
representations :

� Accelerated failure time model (AFT) :

Si(t) = S0(exp(θtxi)t),
where

• θ = (θ1, . . . , θp)t = vector of regression coefficients
• exp(θtxi ) = acceleration factor
• S0 belongs to a parametric family of distributions

Hence,

hi(t) = exp
(
θtxi
)
h0
(

exp(θtxi)t
)
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and

Mi = exp(−θtxi)M0

where Mi = median of Si , since

S0(M0) =
1
2

= Si(Mi) = S0
(

exp(θtxi)Mi
)

Ex : For one binary variable (say treatment (T) and
control (C)), we have MT = exp(−θ)MC :
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� Linear model :

log ti = µ+ γtxi + σwi ,

where
• µ = intercept
• γ = (γ1, . . . , γp)t = vector of regression coefficients
• σ = scale parameter
• W has known distribution

� These two models are equivalent, if we choose
• S0 = survival function of exp(µ+ σW )

• θ = −γ
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Indeed,

Si(t) = P(ti > t)

= P(log ti > log t)

= P(µ+ σwi > log t − γtxi)

= S0
(

exp(log t − γtxi)
)

= S0
(
t exp(θtxi)

)
⇒ The two models are equivalent
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Weibull distribution

� Consider the accelerated failure time model

Si(t) = S0
(

exp(θtxi)t
)
,

where S0(t) = exp(−λtα) is Weibull

⇒ Si(t) = exp
(
− λexp(βtxi)tα) with β = αθ

⇒ fi(t) = λαtα−1 exp(βtxi) exp
(
− λexp(βtxi)tα)

⇒ hi(t) = αλtα−1 exp(βtxi)= h0(t) exp(βtxi),

with h0(t) = αλtα−1 the hazard of a Weibull

⇒We also have a Cox PH model
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� The above model is also equivalent to the following
linear model :

log ti = µ+ γtxi + σwi ,

where W has a standard extreme value distribution, i.e.
SW (w) = exp(−ew ). Indeed,

P(W > w) = P
(

exp(µ+ σW ) > exp(µ+ σw)
)

= S0
(

exp(µ+ σw)
)

= exp
(
− λexp(αµ+ ασw)

)
Since W has a known distribution, it follows that
λexp(αµ) = 1 and ασ = 1, and hence

P(W > w) = exp(−ew )
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� It follows that

Weibull accelerated failure time model

= Cox PH model with Weibull baseline hazard

= Linear model with standard extreme value error

distribution
and

• θ = −γ = β/α

• α = 1/σ
• λ = exp(−µ/σ)

� Note that the Weibull distribution is the only continuous
distribution that can be written as an AFT model and as
a PH model
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Log-logistic distribution

� Consider the accelerated failure time model

Si(t) = S0
(

exp(θtxi)t
)
,

where S0(t) = 1/[1 + λtα] is log-logistic

⇒ Si(t) =
1

1 + λexp(βtxi)tα
with β = αθ

⇒ Si(t)
1− Si(t)

=
1

λexp(βtxi)tα

= exp(−βtxi)
S0(t)

1− S0(t)

⇒We also have a so-called proportional odds model
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� The above model is also equivalent to the following
linear model :

log ti = µ+ γtxi + σwi ,

where W has a standard logistic distribution, i.e.
SW (w) = 1/[1 + exp(w)]. Indeed,

P(W > w) = P
(

exp(µ+ σW ) > exp(µ+ σw)
)

= S0
(

exp(µ+ σw)
)

= 1/
[
1 + λexp(αµ+ ασw)]

Since W has a known distribution, it follows that
λexp(αµ) = 1 and ασ = 1, and hence

P(W > w) =
1

1 + exp(w)
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� It follows that

Log-logistic accelerated failure time model

= Proportional odds model with log-logistic baseline

survival

= Linear model with standard logistic error

distribution
and

• θ = −γ = β/α

• α = 1/σ
• λ = exp(−µ/σ)

� Note that the log-logistic distribution is the only
continuous distribution that can be written as an AFT
model and as a proportional odds model
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Other distributions

� Log-normal :

Log-normal accelerated failure time model
= Linear model with standard normal error

distribution

� Generalized gamma :
ti follows a generalized gamma distribution if

log ti = µ+ γtxi + σwi ,

where wi has the following density :

fW (w) =
|θ|
(
θ−2 exp(θw)

)1/θ2
exp

(
− θ−2 exp(θw)

)
Γ(1/θ2)

If θ = 1⇒Weibull model
If θ = 1 and σ = 1⇒ exponential model
If θ → 0⇒ log-normal model
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Estimation

� It suffices to estimate the model parameters in one of
the equivalent model representations. Consider e.g. the
linear model :

log ti = µ+ γtxi + σwi

� The likelihood function for right censored data equals

L(µ, γ, σ) =
n∏

i=1

fi(yi)
δi Si(yi)

1−δi

=
n∏

i=1

[ 1
σyi

fW
( log yi − µ− γtxi

σ

)]δi

×
[
SW

( log yi − µ− γtxi

σ

)]1−δi

Since W has a known distribution, this likelihood can
be maximized w.r.t. its parameters µ, γ, σ
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� Let

(µ̂, γ̂, σ̂) = argmaxµ,γ,σL(µ, γ, σ)

� It can be shown that
• (µ̂, γ̂, σ̂) is asymptotically unbiased and normal

• The estimators of the accelerated failure time model (or
any other equivalent model) and their asymptotic
distribution can be obtained from the Delta-method
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Model selection

To select the best parametric model, we present two
methods

� Selection of nested models :
Consider the generalized gamma model as the ‘full’
model, and test whether

• θ = 1⇒Weibull model
• θ = 1 and σ = 1⇒ exponential model
• θ = 0⇒ log-normal model

The test can be done using the Wald, likelihood ratio or
score test statistic derived from the likelihood for
censored data
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� AIC selection :

AIC = −2 log L + 2(p + 1 + k),

where
• p + 1 = dimension of (µ, γ)

• k = 0 for the exponential model
• k = 1 for the Weibull, log-logistic, log-normal model
• k = 2 for the generalized gamma model

and minimize the AIC among all candidate parametric
models
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The End
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