
APTS: Nonparametric smoothing

Active Session 1: Tuesday

For each “active session” you can choose whether you want work in the computer lab and implement spline
methods and use them to analyse data or whether you want to so some more theoretical pen-and-paper work.

The sessions do not depend on each other, so you can mix and match.

Pen-and-paper tasks

1. In this task we consider P-splines, which minimise the penalised least-squares criterion

n∑

i=1

(yi −m(xi))
2 + λ‖Dβ‖2 = ‖y − Bβ‖2 + λ‖Dβ‖2 = (y − Bβ)>(y − Bβ) + λβ>D>Dβ,

where B is the matrix of B-spline basis functions, D is the difference matrix used in the penalty, and
λ ≥ 0 is the smoothing parameter.

(a) Show, by taking the derivative with respect to β, that the minimiser of the penalised least-squares
criterion is given by

β = (B>B + λD>D)−1B>y.

(b) Explain why we can rewrite the objective function as
∥∥∥∥
(

B√
λD

)
β −

(
y
0

)∥∥∥∥
2

.

(c) (harder) How can we exploit this to estimate β using a QR decomposition, which is numerically
more stable than inverting the matrix B>B + λD>D?

2. In this task you will prove the optimality property of natural cubic splines.

(a) We start with proving the lemma from the notes, that natural cubic splines are optimal interpolators
in the sense that they minimise the integrated second derivative penalty.

Lemma. Amongst all functions on [a, b] which are twice continuously differentiable and which inter-
polate the set of points (xi, yi), a natural cubic spline with knots at the xi yields the smallest roughness
penalty ∫ b

a

m′′(x)2 dx.

Let m(·) be the natural cubic spline with knots at the xi, interpolating the data. Suppose there is
another function g(·), which is twice continuously differentiable and which also interpolates the data.
Denote by

h(x) = g(x)−m(x)

the difference between the two functions.
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h(x)=g(x) − m(x)

i. Explain why h(xi) = 0 for all observed xi.

ii. Explain why m′′(a) = m′′(b) = 0.

iii. Use integration by parts to show that
∫ b

a
m′′(x)h′′(x) dx = 0.

Hint: m(·) is a piecewise cubic polynomial, so for each segment m′′′(x) is constant.

iv. Show that
∫ b

a
g′′(x)2 dx =

∫ b

a
h′′(x)2 dx+

∫ b

a
m′′(x)2 dx.

Hint: Use g(x) = m(x) + h(x), i.e. g′′(x) = m′′(x) + h′′(x), expand the square and use the
result from part iii.

v. Use your result from part iv. to show that
∫ b

a

g′′(x)2 dx ≥
∫ b

a

m′′(x)2 dx, (1)

i.e. the roughness penalty is larger for g(·) that it would be for m(·).
vi. Show that equality in (1) only holds if g(·) is also a natural cubic spline on (a, b).

vii. The results above can be interpreted in terms of orthogonality, inner products and norms. Con-
sider the inner product

〈m,h〉 =
∫ b

a

m′′(x)h′′(x) dx

and the associated norm
‖g‖2 = 〈g, g〉 =

∫ b

a

g′′(x)2 dx.

Explain parts iii., iv. and v. in these terms.
Hint: You might find the figure below helpful.

g(·)

m(·)

h(·)Natural cubic splines
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(b) We will now use the lemma to show that the theorem.

Theorem. The minimiser of

n∑

i=1

(yi −m(xi))
2 + λ ·

∫ b

a

m′′(x)2 dx

amongst all twice continuously differentiable functions on [a, b] is given by a a natural cubic spline
with knots in the unique xi.

Assume that we have a candidate g(·) which we think is optimal. We will now construct a natural
cubic spline which we can prove will do better.

Define a natural cubic spline m(·) which generates exactly the same predictions at the observed
x1, . . . , xn, i.e. m(xi) = g(xi) for i = 1, . . . , n.

●

●

●
●

x1 x2 x3 x4

m(x)

g(x)

i. Explain why
∑n

i=1(yi − g(xi))
2 =

∑n
i=1(yi − m(xi))

2, i.e. both functions fit the data equally
well.

ii. We know from part (a) that, unless g(·) is itself a natural cubic spline,
∫ b

a
g′′(x)2 dx ≥

∫ b

a
m′′(x)2 dx.

Use this to complete the proof of the theorem.
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Computer tasks

1-D splines

In this section you can work with any of the following three datasets:

Divorces in the US

This data set (called divorces) contains the number of divorces per 10,000 women for most of the 20th
century. it has the following columns:

year Calendar year
divorces Number of divorce per 1,000 women (aged 15+) in that year (response)

Radiocarbon dating.

This is the data (called radiocarbon) used in the lectures.

cal.age True calendar age
rc.age Age predicted from the radiocarbon dating process (response)

Great barrier reef.

This is a univariate version of the data (called gbr) used in the lectures. Only two columns are retained:

longitude Longitude
score1 Principal component score summarising the catch (response)

The command
load(url(”http://www.stats.gla.ac.uk/~adrian/apts/splines-1.RData”))

will make all three datasets available in your workspace.

Now use your chosen dataset to undertake the following tasks.

1. Explore the data set you have chosen graphically.

2. Launch the function pspline.cartoon with the name of your dataset as argument i.e.

Divorces in the US. pspline.cartoon(divorces)

Radiocarbon dating. pspline.cartoon(radiocarbon)

Great barrier reef. pspline.cartoon(gbr)

The function fits a P-spline model to the data and shows the fitted model together with the basis function.
A P-spline uses a regular B-spline basis, but combines it with difference penalty for the coefficients
(typically based on second-order differences), i.e. it minimises the penalised least squares criterion

n∑

i=1

(yi −m(xi))
2 + λ

l+r−3∑

j=1

(βj − 2βj+1 + βj+2)
2
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Including the difference penalty allows using a “too large” number of basis functions, as the penalty
parameter λ, rather than the number of basis functions r, now controls the level of smoothness and the
bias-variance trade-off.

Experiment with the degree of the spline, the number of knots and the smoothing parameter λ.

3. Reproduce the results from pspline.cartoon by fitting a B-spline model (or even a P-spline model)
from first principles in R.

i. The function bbase, which constructs the B-spline basis, should be available in your workspace
(supplied in splines-1.RData). Use this function to create the matrix B of basis functions.
For example, you can create a B-spline basis of degree 3 with 10 knots using

B <- bbase(x, deg=3, n.knots=10)

Can you plot the basis functions?

ii. Compute the (penalised) least-squares coefficients β̂.

iii. Create a plot of the data together with the fitted spline function. Adjust the number of knots if
necessary.

Additive and related models

In tackling the questions below, you may find it helpful to have a brief indication of the gam function in the
mgcv package in R. This package, written by Simon Wood, is a powerful set of tools for fitting and analysing
generalised additive models. The book, Wood (2006), referenced in the lecture notes, makes extensive
reference to R and the mgcv package so this is a good way of learning both about additive models and how
to use them in practice. The principal function is gam which is called, for example, as

model <- gam(y ~ s(x1) + s(x2) + s(x3))

where the vector of responses y is modelled through a set of smooth functions in x1, x2 and x3. The s(x1)
notation identifies that a smooth function should be fitted. Linear terms can be fitted in the usual way simply
through the variable name. The syntax and operation of the gam function follows that of lm and glm as
closely as possible.

In the exercises below, scripts are provided to get you started on each problem, and in some cases to lead
you through. Of course, feel free to experiment. There should be someone to call on if you get stuck.

1. The Clyde data clyde.R

In one of the lectures we looked at the relationship of DO to Temperature, Salinity and Year at a single
sampling station in the River Clyde. Repeat this analysis at one or two other stations, to see whether
the same features are apparent at these locations.

2. The mackerel egg survey mackerel.R

This exercise also repeats one of the lecture examples. A multi-country survey of mackerel eggs was
carried out in the Eastern Atlantic in 1992. The aim was to estimate the total biomass of spawning
mackerel. However, a first step is to construct a model which describes the pattern of egg counts in
the water samples collected.

Use the script to try the following operations.

(a) Plot the sampling region

(b) Explore the (marginal) relationship between the egg density (log scale) and latitude, longitude,
depth (log scale) and temperature.
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(c) Fit and interpret a simple additive model

(d) Consider whether the Temperature variable is really needed.

Can you identify the preferred depth at which mackerel lay their eggs?

3. SO2 in the Czech Republic CZ03.R

Measurements of SO2 (on a log scale) from a monitoring station in the Czech Republic are available
in this dataset.

(a) Begin by fitting an additive model which relates textttSO2 to the covariates Year and Week.

(b) There is interest in whether having information on local meteorology will be important in es-
timating the effects of Year and Week. Add the variables Rain, Temp, Humidity and Flow as
further flexible terms in the additive model and interpret what you see.

4. Water quality in Loch Leven lochleven.R

Loch Leven is situated in lowland Scotland in the Perth and Kinross area. It is the largest shallow lake
in Great Britain with an area of 13.3km2, mean depth 3.9m and a maximum depth 25.5m. There are
approximately 150 variables measured at Loch Leven (chemical, physical, biological and meteorolog-
ical) and most of this monitoring is carried out by the Centre for Ecology & Hydrology in Edinburgh.

One of the features of interest is the water quality and hence the relationship between chlorophylla (as
an indicator of water quality) and Soluble Reactive Phosphorus (a nutrient) is very important. This
case study explores this relationship.

The data provided are the natural logarithm of the monthly means for chlorophylla (lchla) and SRP
(lsrp) from January 1988 to December 2007. Natural log transforms of the data are used to stabilize
the variance and there are some missing values. Columns of data for year and month are also provided.

The script contains commands to investigate the following questions.

(a) Plot the data to examine the relationship between lsrp and lchla.

(b) Is the relationship between lsrp and lchla affected by month?

(c) A possible model is a varying coefficient model. This fits a linear regression between the two
variables but allows the parameters of the regression to change smoothly with time of year. This
can be fitted by smoothing over month and lchla, with a very large smoothing parameter for
month to make this term linear.
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APTS: Nonparametric smoothing

Active Session 1: Tuesday—Model answers

Pen-and-paper tasks

1. (a) We have that

∂

∂β
(y − Bβ)>(y − Bβ) + λβ>D>Dβ

=
∂

∂β
y>y − 2β>B>y + β>B>Bβ + λβ>D>Dβ

= −2B>y + B>Bβ + λD>Dβ

Setting this derivative to zero yields the equation

(B>B + λD>D)β = B>y

which has
β̂ = (B>B + λD>D)−1B>y

as solution.

(b) Using the formula that
(

A
B

)>(C
D

)
= A>C + B>D we have that

(y − Bβ)>(y − Bβ) + λβ>D>Dβ

= (y − Bβ)>(y − Bβ) + (0−
√
λDβ)>(0−

√
λDβ)

=

((
y
0

)
−
(

B√
λD

)
β

)>((y
0

)
−
(

B√
λD

)
β

)

=

∥∥∥∥
(

y
0

)
−
(

B√
λD

)
β

∥∥∥∥
2

(c) The QR decomposition of B̃ =

(
B√
λD

)
is B̃ =

(
Q1 Q2

)(R
0

)
= Q1R. Q =

(
Q1 Q2

)
is an

orthogonal matrix and R is upper triangular. With ỹ =

(
y
0

)
we have that

‖ỹ − B̃β‖2 = ‖ỹ − Q1Rβ‖2 = ‖Q>(ỹ − Q1Rβ‖2

=
∥∥∥
(

Q>
1 ỹ

Q>
2 ỹ

)
−
(

Rβ
0

)∥∥∥
2

= ‖Q>
1 y − Rβ‖2 + ‖Q>

2 y‖2

We have used that Q>
1 Q1 = I and Q>

1 Q2 = 0.

‖Q>
2 y‖2 does not depend on β and ‖Q>

1 y − Rβ‖2 can (if B̃ is of full column rank) be made exactly
zero by solving Rβ = Q>

1 ỹ, which can, due to R being upper-triagonal, be performed very efficiently.

2. In this task you will prove the optimality property of natural cubic splines.

(a) We start with proving the lemma from the notes, that natural cubic splines are optimal interpolators
in the sense that they minimise the integrated second derivative penalty.
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i. Both m(·) and g(·) interpolate the data, i.e. yi = m(xi) and yi = g(xi), and thus h(xi) =
g(xi)−m(xi) = yi − yi = 0 (for i = 1, . . . , n).

ii. m(·) is a natural cubic spline, so by definition m′′(a) = m′′(b) = 0.

iii. Using integration by parts we obtain that
∫ b

a

m′′(x)h′′(x) dx = [m′′(x)h′(x)]
b
x=a︸ ︷︷ ︸

=0 (as m′′(a) = m′′(b) = 0)

−
∫ b

a

m′′′(x)h′(x) dx

= −
n−1∑

i=1

∫ xi+1

xi

m′′′(x)h′(x) dx

= −
n−1∑

i=1

m′′′
(
xi + xi+1

2

)
·
∫ xi+1

xi

h′(x) dx

︸ ︷︷ ︸
=h(xi+1)︸ ︷︷ ︸

=0

−h(xi)︸ ︷︷ ︸
=0

=0

= 0

In the second line we have used that the natural cubic spline is piece-wise cubic polynomial, i.e.
between two knots xi and xi+1 the third derivative m′′′(x) is constant.

iv. Using g(x) = m(x) + h(x),
∫ b

a

g′′(x)2 dx =

∫ b

a

(h′′(x) +m′′(x))2 dx

=

∫ b

a

h′′(x)2 dx+ 2

∫ b

a

h′′(x)m′′(x) dx
︸ ︷︷ ︸

=0

+

∫ b

a

m′′(x)2 dx

=

∫ b

a

h′′(x)2 dx+

∫ b

a

m′′(x)2 dx

v. Thus,
∫ b

a

g′′(x)2 dx =

∫ b

a

≥0︷ ︸︸ ︷
h′′(x)2 dx

︸ ︷︷ ︸
≥0

+

∫ b

a

m′′(x)2 dx ≥
∫ b

a

m′′(x)2 dx

vi. In the above inequality equality holds if and only if
∫ b

a
h′′(x)2 dx = 0, which, given that h(xi) =

0, can only be the case if g(x) = m(x) for all x ∈ [a, b].

vii. The result from above that

〈m,h〉 =
∫ b

a

m′′(x)h′′(x) dx = 0,

means that m(·) and the “residual” h(·) are orthogonal, so by the Pythagoraean theorem ‖g‖2 =
‖m‖2 + ‖h‖2 , and thus

‖m‖2 =
∫ b

a

m′′(x)2 dx ≤
∫ b

a

g′′(x)2 dx = ‖g‖2

(in a right traingle, any other side cannot be longer than the hypothenuse).

The space of all twice continuously differentiable functions is a vector space, with the space of
natural cubic splines with a set of given knots being a subspace. m(·) is then the projection
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of g(·) into the space of natural cubic splines, and thus the norm (“length”) of m(·) cannot be
greater than the norm of g(·).

g(·)

m(·)

h(·)Natural cubic splines

(b) i. As m(·) interpolates the fitted values ŷi = g(xi), we also have ŷi = m(xi), thus the sum of
squared residuals is the same, i.e.

∑n
i=1(yi − g(xi))

2 =
∑n

i=1(yi −m(xi))
2.

ii. From part (a)
∫ b

a
g′′(x)2 dx ≥

∫ b

a
m′′(x)2 dx and thus

n∑

i=1

(yi − g(xi))
2

︸ ︷︷ ︸
=
∑n

i=1(yi−m(xi))2

+λ ·
∫ b

a

g′′(x)2 dx
︸ ︷︷ ︸
≥
∫ b
a m′′(x)2 dx

≥
n∑

i=1

(yi −m(xi))
2 + λ ·

∫ b

a

m′′(x)2 dx
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Computer tasks

Solutions to computer tasks

1-D splines

1. Graphical exploration. The plots for the three datasets are shown below.

plot(divorce ~ year, data = divorces)

plot(rc.age ~ cal.age, data = radiocarbon)

abline(0, 1)

plot(score1 ~ longitude, data = gbr)
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Divorces show a large spike at the end of the First World War and then a large and sustained increase
during the 1960’s, when the divorce law was changed.

The radiocarbon data shows a pattern which is not too far from the line of equality (displayed on the
plot) but with some marked fluctuations away from this. This is expected, due to the fact that the
natural background radioactivity has fluctuated over time.

The Reef data have been discussed in lectures. There is a strong downward trend as longitude increases,
but with a lot of variability in the measurements.

2. pspline.cartoon. Intuition on the effects of different parameters should be gained as participants play
with the buttons and sliders.

3. First principles. The code below does this for the divorces data. This will work in the same way for
the other datasets, simply by changing the construction of the x and y variables in the first two lines.

Firstly the ‘design’ matrix is computed and its columns are plotted to show the underlying b-spline
basis. Then the weights are estimated using the formula discussed in lectures. The fitted values are
then displayed.

y <- divorces$divorce

x <- divorces$year

B <- bbase(x, deg=3, n.knots=10)

matplot(B, type = ”l”)

betahat <- c(solve(crossprod(B))%*% t(B) %*% y)

fv <- c(B %*% betahat)

plot(x, y)

lines(x, fv)
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Additive and related models

1. Clyde data

The data can be subsetted, plotted, and a model fitted, as shown below. Setting Station to some other
even number up to 24 will change the station for which the data are selected. There is quite a lot to
learn about how things change along the river by viewing the results of models for different stations.

load(url(”http://www.stats.gla.ac.uk/~adrian/clyde.rda”))

clyde.subset <- subset(clyde, Station == 2)

pairs(clyde.subset)

library(mgcv)

model <- gam(DO ~ s(Temperature) + s(Salinity) + s(Year),

data = clyde.subset)

plot(model)
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2. The mackerel egg survey

A pairs plot bears a lot of inspection. The fitted modelshows a quadratic effect of log(depth), a small
effect of temperature, and a complex effect of remaining spatial variation.

library(sm)

pairs(mackerel)

library(mgcv)

model1 <- gam(log(Density) ~ s(log(mack.depth)) + s(Temperature)

+ s(mack.lat, mack.long), data = mackerel)

plot(model1, select = 1, se = TRUE, shade = TRUE, residuals = TRUE)

plot(model1, select = 2, se = TRUE, shade = TRUE, residuals = TRUE)

vis.gam(model1, c(”mack.lat”, ”mack.long”),

ticktype = ”detailed”, theta = 45)

anova(model1)
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Approximate significance of smooth terms:
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edf Ref.df F p-value

s(log(mack.depth)) 2.815 3.538 18.055 9.55e-12

s(Temperature) 2.316 2.904 3.872 0.0147

s(mack.lat,mack.long) 20.197 24.788 5.060 1.03e-12

3. SO2 in the Czech Republic

The code in the script plots the data and fits a simple additive model. There is clear downward trend
over the years and, as expected a strong seasonal effect.

CZ03 <- read.table(url(”http://www.stats.gla.ac.uk/~adrian/apts/CZ03.dat”))

names(CZ03) <- c(”SO2”, ”Year”, ”Week”, ”Rain”, ”Temp”, ”Humidity”, ”Flow”)

library(mgcv)

model <- gam(SO2 ~ s(Year) + s(Week), data = CZ03)

plot(model)
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If the model
model1 <- gam(SO2 ∼ s(Year)+s(Week)+s(Rain)+s(Temp)+s(Humidity) + s(Flow), data

= CZ03)

is fitted the results are shown below. The estimate of trend over the years is very similar. The seasonal
effect largely disappears, simply because temperature is now present and this has a seasonal pattern.
The only other variable which shows some effect is Flow. An analysis of variance confirms this view.

model1 <- gam(SO2 ~ s(Year) + s(Week) + s(Rain) + s(Temp) +

s(Humidity) + s(Flow), data = CZ03)

par(mfrow = c(2, 3))

plot(model1)

par(mfrow = c(1, 1))

anova(model1)
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Approximate significance of smooth terms:

edf Ref.df F p-value

s(Year) 6.305 7.445 136.774 <2e-16

s(Week) 4.450 5.567 2.333 0.0359

s(Rain) 4.666 5.733 1.145 0.2832

s(Temp) 5.511 6.717 19.970 <2e-16

s(Humidity) 2.172 2.784 0.944 0.4748

s(Flow) 5.072 6.178 16.661 <2e-16

4. Water quality in Loch Leven

After using the script to read the data, the suggested sm.regression command does not show any
(marginal) relationship between lsrp and lchla.
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variates lsrp and month.
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A little more insight comes from a lattice plot which separates out the months. This suggests a linear
relationship whose slope changes with month. When we fit a linear model with lsrp as a covariate
which interacts with month the residual plots suggest this fits well.
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Use of sm.regression with a very large smoothing parameter for lsrp shows a model where the
linear slope varies smoothly with month. This describes the data well and has a clear biological
interpretation.
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APTS: Nonparametric smoothing

Active Session 2: Wednesday

Pen-and-paper tasks

1. Consider the Bayesian linear model with

y|β ∼ N(Xβ, σ2 · I)
β ∼ N(0, τ 2 · I).

Show that in this model

E(y) = 0 Var(y) = τ 2XX> + σ2I,

and thus the marginal distribution of y is given by

y ∼ N(0, τ 2XX> + σ2I),

i.e. the Bayesian linear model is a special case of a Gaussian process with kernel/covariance matrix
K = τ 2XX>.

2. Consider ridge regression, which minimises the objective function

‖y − Xβ‖2 + λ‖β‖2.

In this task we will show that we can retrieve the predicted values from ridge regression also from a
Gaussian process with the kernel/covariance from question 1.

(a) Explain why the prediction at a newly observed x0 is given by ŷ0 = x>
0 (X>X + λI)−1X>y.

(b) Show that
(X>X + λI)X> = X>(XX> + λI)

and deduce from it that
X>(XX> + λI)−1 = (X>X + λI)−1X>.

(c) Using the formula from part (b) show that an alternative formula for ŷ0 is given by

ŷ0 = x>
0 X>(XX> + λI)−1y.

If X is a n × p matrix, then this formula is based on the inverse of a n × n matrix, whereas the
formula from part (a) is based on the inverse of a p× p matrix.
Also, the formula involving XX> depends on the data only through inner products, which then
allows us to apply the kernel trick to ridge regression.

(d) Suppose we assume that the data come from a Gaussian process with K = τ 2XX> and k0 = τ 2Xx0.
State the predictive mean for y0 for this choice of kernel/covariance matrix and compare it to the
result from part (c).
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3. In this task you will show that the mean of the posterior predictive distribution of a Gaussian process can
also be obtained without making any assumption of Gaussianity, just in the same way as the estimated
regression coefficient in the normal linear model can also be found only resorting to the principle of least
squares (and then the estimate can be shown to be best linear unbiased estimate).

Like in the lectures we will consider simple case of a process with mean zero (“simple kriging”).

Consider a stochastic process for which observations y1 = y(x1), …, yn = y(xn) at ‘locations’ x1, . . . , xn

are available.

Assume that the process has zero mean, i.e. E(yi) = 0 and Cov(yi, yj) = k(xi, xj) (for i 6= j) and
Var(yi) = k(xi, xi) + σ2. Using the notation from the lectures,

Var(y) =




Var(y1) . . . Cov(y1, yn)
... . . . ...

Cov(y1, yn) . . . Var(yn)


 =



k(x1, x1) + σ2 . . . k(x1, xn)

... . . . ...
k(xn, x1) . . . k(xn, xn) + σ2


 = K + σ2I.

Suppose that we want to construct an estimate of y0 = y(x0) at a new location x0.

Using the notation from the lectures,

Cov(y, y0) =




Cov(y1, y0)
...

Cov(yn, y0)


 =



k(x1, x0)

...
k(xn, x0)


 = k0

Var(y0) = k(x0, x0) + σ2 = k00 + σ2

We now want to construct a linear estimate of y0 = y(x0), i.e. we want to construct an estimate of the
form

ŷ0 =
n∑

i=1

wiyi

In this task we will address the question what the optimal choice for w =
[
w1, . . . , wn

]> would be.

(a) Show that for any fixed choice of w, E(ŷ0) = 0, thus ŷ0 is an unbiased estimate of y0.

(b) Explain why

Var
([

y
y0

])
=

[
K + σ2I k0

k>
0 k00 + σ2

]
.

(c) Show that the variance of the predictive error is given by

Var(ŷ0 − y0) = w>(K + σ2I)w − 2k>
0 w + k00 + σ2.

Hint: Write ŷ0 − y0 =

[
w
−1

]> [ y
y0

]
and use the formula for the covariance of linear combinations.

(d) Show that the optimal choice of w minimising the variance of the predictive error is given by

w = (K + σ2I)−1k0

and thus the best linear (unbiased) prediction (BLUP) is given by

ŷ0 = w>y = k>
0 (K + σ2I)−1y,

which is the mean of the posterior predictive distribution of a Gaussian process.
Hint: Take the derivative of the expression from part (c) with respect to w.
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Computer tasks

Gaussian processes and Kriging

The command
load(url(”http://www.stats.gla.ac.uk/~levers/apts2.RData”))

will make all datasets and illustrations need for this session available in your workspace.

1. (a) Launch the function gp.prior.cartoon(). It shows a plot with three panels. The first panel shows
the corvariance function, the second shows the covariance/kernel matrix for a set of equally-spaced
observations and the third panel shows a few draws from that prior.
Explore what effect changing the different parameters of the Matérn kernel has.

(b) Launch the function gp.post.cartoon(). It shows a plot of draws from the posterior distribution of
a Gaussian process for a toy example using the chosen values of the hyperparameters of the Matèrn
kernel.
Explore what effect changing the different parameters of the Matérn kernel has.

2. In this task you will fit a Gaussian process to the univariate data from the first computer lab. For example,
to use the radiocarbon data,
x <- radiocarbon$cal.age

y <- radiocarbon$rc.age

For the sake of simplicity, we will work with a square exponential kernel

k(xi, xj) = τ 2 exp(−ρ · (xi − xj)
2).

(a) Plot the data.

(b) You can create the matrix K using the code
tau2 <- 10

sigma2 <- 0.1

rho <- 30

K <- tau2 * exp(-rho*outer(x, x, ”-”)^2)

The values of the hyperparameters are at this stage arbitrary, but will influence the quality of the fit.

(c) The predictions at the observed values (”fitted valued”) are given by

ŷ = K(K + σ2I)−1y.

Calculate the predictions and add them to the plot from part (a). You might have to change the
hyperparameters to obtain a good fit.

(d) You can estimate the hyperparameters for example using the package mlegp (the hyperparameters
are tuned as part of the fitting process).
library(mlegp)

fit <- mlegp(x , y, nugget=TRUE)

yhat <- predict(fit)

Add the fitted values from mlegp to your plot.

3. In this task you will use the R package geoR to perform kriging, i.e. to fit a Gaussian process model to a
spatial data set.
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In this task we will use the data set mackerel. It records the abundance of mackerel eggs off the coast of
north-western Europe, from a multi-country survey in 1992. In this task we will only use the following
columns

Density egg density
mack.lat latitude of sampling position
mack.long longitude of sampling position

The data can be loaded into R using the code
library(sm)

data(mackerel)

# Make the longitude go the right way round

mackerel <- transform(mackerel, mack.long=-mack.long)

(a) Plot the sampling locations.

(b) Augment your plot from part (a) so that it also shows the observed egg densities.

(c) To be able to use the data in geoR we need to convert the data set to an object of the class geodata.
library(geoR)

data <- as.geodata(mackerel[-c(214,224,228,231),

c(”mack.long”,”mack.lat”,”Density”)])

We have also deleted four records, such that we only have one record for each location.

(d) It is best to estimate the hyperparameters using (restricted) maximum likelihood or using a Bayesian
approach. The REML estimation can be performed using
reml.est <- likfit(data, ini.cov.pars=c(10,2), lik.method = ”RML”)

Historically, parameters of the covariance function (kernel) were estimated by constructing an em-
pirical variogram and then fitting the covariance function to that variogram. This is best avoided,
but for illustration the code below plots the empirical variogram and overlays the covariance function
with the parameters estimated in part (d).
# Estimate variogram empirically

vario <- variog(data)

plot(vario)

# Plot variogram corresponding to parameter estimated from above

lines(reml.est, col=”blue”)

(e) With the hyperparameters estimated, we can now perform kriging. We first need to create a grid on
which we want to predict.
# Create grid of locations for predictions

long=seq(min(mackerel$mack.long), max(mackerel$mack.long), len=50)

lat=seq(min(mackerel$mack.lat),max(mackerel$mack.lat), len=50)

new.locations <- expand.grid(long=long, lat=lat)

# Perform the kriging

kc <- krige.conv(data, loc = new.locations,

krige = krige.control(obj.m = reml.est))

# Show image of estimated densities

image(kc, loc = new.locations)

(f) Can you repeat the analysis, but now using local smoothing and/or splines rather than kriging for the
estimation of the spatial effects?
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APTS: Nonparametric smoothing

Active Session 2: Wednesday—Model answers

## Error in eval(expr, envir, enclos): object ’opts_chunk’ not found

Pen-and-paper tasks

1. Using the law of the iterated conditional expectation and variance,

E(y) = Eβ

(
Ey|β (y)

)
= Eβ (Xβ) = XEβ(β) = 0

Var(y) = Varβ
(
Ey|β (y)

)
+ Eβ

(
Vary|β (y)

)

= Varβ (Xβ) + Eβ

(
σ2I
)
= XVarβ(β)X> + σ2I

= τ 2XX> + σ2I

2. (a) In ridge regression,

β̂ = (X>X + λI)−1X>y
ŷ0 = x>

0 β̂ = x>
0 (X>X + λI)−1X>y

(b) Using

(X>X + λI)X> = X>XX> + λX> = X>(XX> + λI)

and multiplying from the left by (X>X + λI)−1 and from the right by (XX> + λI)−1 we obtain

X>(XX> + λI)−1 = (X>X + λI)−1X>

(c) From part (a),

ŷ0 = x>
0 (X>X + λI)−1X>
︸ ︷︷ ︸

=X>(XX>+λI)−1

y

= x>
0 X>(XX> + λI)−1y

(d) The predictive mean is given by

k>
0 (K + σ2I)−1y = τ 2x>

0 X>(τ 2XX> + σ2I)−1y

= x>
0 X>

(
XX> +

σ2

τ 2
I
)−1

y,

which is, if we set λ = σ2

τ2
, the same as the expression obtained in the previous part.

3. (a) For any fixed choice of w,

E(ŷ0) = E

(
n∑

i=1

wiyi

)
=

n∑

i=1

wiE(yi)︸ ︷︷ ︸
=0

= 0
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(b) We have

Var
([

y
y0

])
=

[
Var(y) Cov(y, y0)

Cov(y0, y) Var(y0)

]
=

[
K + σ2I k0

k>
0 k00 + σ2

]
.

(c) We have

Var(ŷ0 − y0) = Var
([

w
−1

] [
y
y0

])
=

[
w
−1

]>
Var

([
y
y0

])[
w
−1

]

=

[
w
−1

]> [ Var(y) Cov(y, y0)
Cov(y0, y0) Var(y0)

] [
w
−1

]

= w>(K + σ2I)w − 2k>
0 w + k00 + σ2

(d) We first find the derivative of this variance with respect to w and set it to 0.

∂

∂w
w>(K + σ2I)w − 2k>

0 w + k00 + σ2 = 2(K + σ2I)w − 2k0 = 0,

which gives

2(K + σ2I)w = 2k0

w = (K + σ2I)−1k0

and thus

ŷ0 = w>y = k>
0 (K + σ2I)−1y.
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Computer tasks

1. …
2. (a) x <- radiocarbon$cal.age

y <- radiocarbon$rc.age

plot(x, y)
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(b) tau2 <- 10

sigma2 <- 0.1

rho <- 30

K <- tau2 * exp(-rho*abs(outer(x, x, ”-”))^2)

(c) yhat <- K%*%solve(K+sigma2*diag(nrow(K)), y)

plot(x, y)

lines(x, yhat)

3



●
●

●
● ● ●

●

●

●
●

●

●
● ●

●

●

●

●
●

●
●

● ●

●

●
●

●

●
●

●

●

●
● ● ●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

2.0 2.2 2.4 2.6 2.8 3.0

2.
2

2.
4

2.
6

2.
8

x

y

(d) library(mlegp)

fit <- mlegp(x , y, nugget=TRUE)

##

## ========== FITTING GP # 1 ==============================

## intial_scaled nugget is 18.128134

## running simplex # 1...

## ...done

## ...simplex #1 complete, loglike = 78.349945 (convergence)

## running simplex # 2...

## ...done

## ...simplex #2 complete, loglike = 78.349945 (convergence)

## running simplex # 3...

## ...done

## ...simplex #3 complete, loglike = 78.349945 (convergence)

## running simplex # 4...

## ...done

## ...simplex #4 complete, loglike = 78.349945 (convergence)

## running simplex # 5...
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## ...done

## ...simplex #5 complete, loglike = 78.349945 (convergence)

##

## using L-BFGS method from simplex #4...

## iteration: 1,loglike = 78.349945

## ...L-BFGS method complete

##

## Maximum likelihood estimates found, log like = 78.349945

## addNuggets...

## creating gp object......done

yhat <- predict(fit)

plot(x, y)

lines(x, yhat, col=”blue”)

# You can add confidence bands using ...

yhat <- predict(fit, se.fit=TRUE)

lines(x, yhat$fit+1.96*yhat$se.fit, col=”blue”, lty=2)

lines(x, yhat$fit-1.96*yhat$se.fit, col=”blue”, lty=2)
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3. (a) library(sm)

## Package ’sm’, version 2.2-5.4: type help(sm) for summary information

data(mackerel)

# Make the longitude go the right way round

mackerel <- transform(mackerel, mack.long=-mack.long)

(b) library(ggmap)

## Loading required package: ggplot2

map <- get_map(location=c(lon=mean(mackerel$mack.long),

lat=mean(mackerel$mack.lat)), zoom=5)

## Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=50.590681,-

9.977993&zoom=5&size=640x640&scale=2&maptype=terrain&language=en-EN&sensor=false

ggmap(map) + geom_point(aes(x=mack.long, y=mack.lat),

data=mackerel)
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(c) ggmap(map) + geom_point(aes(x=mack.long, y=mack.lat, colour=Density),

data=mackerel) +

scale_color_gradientn(colours = heat.colors(5))

●●●●●●●●●●●●●

● ● ●●●●●●●●●●●●●● ● ● ● ● ●

●●●●●●●●●●●●●●●●●●●

● ● ● ●●●●●●●●●●●● ●

●●●●●●●●●●●●●

● ● ●●●●●●● ● ● ●

●●●●●●●●●●●●●

● ●●●●●●●●●●●●●● ●

●●●●●●●●

● ● ● ● ● ● ● ● ● ●

●●●●●●●●●

● ● ● ● ● ● ● ●

●●●●●●●●

● ● ● ● ● ● ● ● ●

●

●

●●●●●

● ● ● ● ● ●

●●●●●

● ● ● ● ●

●●●●

● ● ●

●●●

● ● ● ●

●

●●●●●●●●●●●●●●●●●●●

● ● ● ● ● ●● ●● ● ● ● ● ●

●●●●●●●●●●●

● ● ● ● ●● ●● ●● ●● ●● ●●

●●●●

● ●

45

50

55

−20 −15 −10 −5 0

lon

la
t

100

200

300

400

500

600
Density

(d) library(geoR)

## ————————————————————–

## Analysis of Geostatistical Data

## For an Introduction to geoR go to http://www.leg.ufpr.br/geoR

## geoR version 1.7-5.2 (built on 2016-05-02) is now loaded

## ————————————————————–

data <- as.geodata(mackerel[-c(214,224,228,231),

c(”mack.long”,”mack.lat”,”Density”)])

(e) reml.est <- likfit(data, ini.cov.pars=c(10,2), lik.method = ”RML”)

## ---------------------------------------------------------------

## likfit: likelihood maximisation using the function optim.

## likfit: Use control() to pass additional
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## arguments for the maximisation function.

## For further details see documentation for optim.

## likfit: It is highly advisable to run this function several

## times with different initial values for the parameters.

## likfit: WARNING: This step can be time demanding!

## ---------------------------------------------------------------

## likfit: end of numerical maximisation.

vario <- variog(data)

## variog: computing omnidirectional variogram

plot(vario)

lines(reml.est, col=”blue”)
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(f) long=seq(min(mackerel$mack.long), max(mackerel$mack.long), len=50)

lat=seq(min(mackerel$mack.lat),max(mackerel$mack.lat), len=50)

new.locations <- expand.grid(mack.long=long, mack.lat=lat)

# Perform the kriging

kc <- krige.conv(data, loc = new.locations,
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krige = krige.control(obj.m = reml.est))

## krige.conv: model with constant mean

## krige.conv: Kriging performed using global neighbourhood

# Show image of estimated densities

ggmap(map) + geom_tile(aes(x=mack.long, y=mack.lat, fill=kc$predict),

data=new.locations, alpha=0.25) +

scale_fill_gradientn(colours = heat.colors(5))

45

50

55

−20 −15 −10 −5 0

lon

la
t

50

100

150

200

kc$predict

(g) library(mgcv)

## Loading required package: nlme

## This is mgcv 1.8-18. For overview type ’help(”mgcv-package”)’.

model <- gam(Density~s(mack.long, mack.lat), data=mackerel)

pred <- predict(model, new.locations)

ggmap(map) + geom_tile(aes(x=mack.long, y=mack.lat, fill=pred),

data=new.locations, alpha=0.25) +

scale_fill_gradientn(colours = heat.colors(5))
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APTS: Nonparametric smoothing

Active Session 3: Thursday

There are no pen-and-paper tasks for this session.

Computer tasks

The code for this session is available at
http://www.stats.gla.ac.uk/~adrian/apts/case-studies.R

1. Simulating Gaussian processes

Some insight on the nature of Gaussian processes can be gained by generating simulations with different
parameter settings. The function rp.geosim() in the rpanel package for R can do this for you, using
buttons and sliders.

(a) Try changing the range parameter in particular.

(b) Set up a sampling grid and add a nugget effect. Now remove the surface from the display, leaving
only the sampled points. Look at the sample variogram and see to what extent this is able to identify
the features of the underlying process.

Spatiotemporal models

2. Simulating spatiotemporal Gaussian processes

If the file spatiotemporal.R is sourced, this will launch a display of simulated spatiotemporal data.
Use the slides to see the persistence over time of the random spatial patterns this produces.

3. SO2 over Europe

In the 1970’s and 1980’s there was considerable concern about SO2 air pollution. This was emitted by
power stations and other installations and the material rises high in the atmosphere and can travel long
distances, causing pollution problems in neighbouring countries. The SO2 dataset documents values
of SO2, on a log scale, from monitoring stations across Europe from 1990 to 2001. The aim of the
monitoring stations was to assess whether increasing European regulatory control of SO2 emissions
was effective.

The data were collected through the European monitoring and evaluation programme (EMEP) and
they are available at www.emep.int. The data recorded here have been organised into a convenient
form for analysis. The data file consists of six variables:

site a site code for the monitoring station
longitude longitude of the monitoring station
latitude latitude of the monitoring station
year year of measurement
month month of measurement
logSO2 SO2 measurement on a log scale

Here are some things for you to consider.
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(a) The script gives commands which organise and plot the data over space and time. See whether
you can identify spatial and temporal patterns from this.

(b) One of the roles of a model is to clarify the nature and size of different effects. The script shows
how to fit and plot a model which is additive in space and time. What do the results show?

(c) A more realistic model would allow space-time interaction. A command is given to fit this (which
may take a little time). Use the earlier code to plot this new model and consider the difference it
makes.

Analysis of these data is reported in Spatiotemporal smoothing and sulphur dioxide trends over Europe,
A. W. Bowman, M. Giannitrapani and E. M. Scott; Applied Statistics, 58 (2009), 737–752.

Non-Gaussian models

4. The mackerel egg survey (again)

We considered this dataset in an earlier session, where an additive model was used to describe the
pattern of egg counts in the water samples collected. However, the data collected by Spanish vessels
differs from that of most other countries, in that it is largely in the form of presence or absence of eggs
in each water sample. The script will lead you through some plots of this. Also use the script to try
the following operations.

(a) Explore the (marginal) effect of depth and temperature. In particular, is there any difference from
the earlier dataset in the indication of preferred depth at which mackerel lay their eggs?

(b) Fit and interpret an additive model
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