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1
Introduction

1.1 What this course is about

This APTS course will cover a variety of methods which enable data to be modelled in a flexible

manner. It will use and extend a variety of topics covered in earlier APTS courses, including

– linear models, including the Bayesian version;

– generalised linear models;

– R programming;

– Taylor series expansions and standard asymptotic methods.

The main emphasis will be on regression settings, because of the widespread use and appli-

cation of this kind of data structure. However, the material of the first chapter will include

the simple case of density estimation, also covered in the preliminary material, to introduce

some of the main ideas of nonparametric smoothing and to highlight some of the main issues

involved.

As with any statistical topic, a rounded treatment involves a variety of approaches, including

– clear understanding of the underlying concepts;

– technical understanding of methods, with an exploration of their properties;

– appreciation of the practical computational issues;

– some knowledge of the tools available to fit relevant models in R;

– understanding of how these models can bring insight into datasets and applications.

The aim is to reflect all of these aspects in the course, but to varying degrees in different

sections. There will not be time to cover all the material in the notes and some of the material

is intended to provide pointers to topics which it might be of interest to explore in the context

of your own research.
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1.2 Broad concepts and issues of smoothing

The simple case of density estimation highlights features and issues which are common to a

wide range of problems involving the estimation of functions, relationships or patterns which

are nonparametric but smooth. The term nonparametric is used in this context to mean that the

relationships or patterns of interest cannot be expressed in specific formulae which involved

a fixed number of unknown parameters. This means that the parameter space is the space of

functions, whose dimensionality is infinite. This takes us outside of the standard framework

for parametric models and the main theme of the course will be to discuss how we can do this

while producing tools which are highly effective for modelling and analysing data from a wide

variety of contexts and exhibiting a wide variety of structures.

On a side note, the term nonparametric is sometimes used in the narrower setting of simple

statistical methods based on the ranks of the data, rather than the original measurements. This

is not the sense in which it will be used here.

Further details on density estimation are given in Silverman (1986), Scott (1992), Wand

and Jones (1995) & Simonoff (1996).

The issues raised by our brief discussion of density estimation include

– how to construct estimators which match the type of data we are dealing with;

– how to find a suitable balance between being faithful to the observed data and incorporating

the underlying regularity or smoothness which we believe to be present;

– how to construct and make use of suitable inferential tools which will allow the models to

weigh the evidence for effects of interest, in a setting which takes us outside of standard

parametric methods.

These broad issues will be explored in a variety of contexts in the remainder of the course.

1.3 Nonparametric regression

Regression is one of the most widely used model paradigms and this will be the main focus

in the remainder of the course. Here is an example which will be used to illustrate the initial

discussion.

Example 1.1 (Great Barrier Reef data). A survey of the fauna on the sea bed lying between the

coast of northern Queensland and the Great Barrier Reef was carried out. The sampling region

covered a zone which was closed to commercial fishing, as well as neighbouring zones where

fishing was permitted. The variables are:
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Zone an indicator for the closed (1) and open (0) zones

Year an indicator of 1992 (0) or 1993 (1)

Latitude latitude of the sampling position

Longitude longitude of the sampling position

Depth bottom depth

Score1 catch score 1

Score2 catch score 2
The details of the survey and an analysis of the data are provided by Poiner et al. (1997), The

effects of prawn trawling in the far northern section of the Great Barrier Reef, CSIRO Division

of Marine Research, Queensland Dept. of Primary Industries. /

The relationship between catch score (Score1) and longitude is of particular interest be-

cause, at this geographical location, the coast runs roughly north-south and so longitude is a

proxy for distance offshore. We might therefore reasonably expect the abundance of marine life

to change with longitude. The left-hand panel of figure 1.1 summarises this in a simple linear

regression which captures much of this relationship. However, if we allow our regression model

to be more flexible then a more complex relationship is suggested in the right hand panel, with

a broadly similar mean level for some distance offshore followed by a marked decline, possibly

followed by some levelling off thereafter. This gives valuable informal and graphical insight

into the data but how can flexible regression models can be constructed and how can we use

them to evaluate whether there is really evidence of non-linear behaviour in the data?
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Figure 1.1.Linear model and smooth function fitted to the Great Barrier Reef data.
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1.3.1 A local fitting approach

A simple nonparametric model has the form

yi = m(xi) + εi,

where the data (xi, yi) are described by a smooth curve m plus independent errors εi. One

approach to fitting this is to take a model we know and fit it locally. For example, we can

construct a local linear regression. This involves solving the least squares problem

min
α,β

n∑
i=1

{yi − α− β(xi − x)}2w(xi − x ;h)

and taking as the estimate at x the value of α̂, as this defines the position of the local regression

line at the point x. This has an appealing simplicity and it can be generalised quite easily to

other situations. This was the approach used to produce the nonparametric regression of the

Reef data in the plot above.

There is a variety of other ways in which smooth curve estimates can be produced and a

further approach is outlined in the next section. It can sometimes reasonably be argued that the

precise mechanism usually isn’t too important and can be chosen for convenience.

1.3.2 Basis function approaches

Basis function approachaes are not based on local weights, but based on expanding the design

matrix used in linear regression. To fix notation, we quickly state the simple linear regression

model

E(Yi) = m(xi) = β0 + β1xi for i = 1, . . . , n,

or equivalently, in matrix-vector notation,

E(y) = Bβ with y = (Y1, . . . , Yn)
> and B =


1 x1

...
...

1 xn

.

Basis function approaches effectivly consist of introducing functions of x (other than just the

identity) into the design matrix B.

Basis approaches to function approximation have a very long history. One of the first was

Fourier series, which is based on the expansion

m(xi) ≈
a0
2

+
r∑

j=1

aj cos

(
2πjxi

P

)
+ bj sin

(
2πjxi

P

)
,

where xi ∈ (0, P ). This approximation corresponds to using the design matrix
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B =


1
2

cos
(
2πx1

P

)
sin
(
2πx1

P

)
. . . cos

(
2πrx1

P

)
sin
(
2πrx1

P

)
...

...
... . . . ...

...
1
2

cos
(
2πxn

P

)
sin
(
2πxn

P

)
. . . cos

(
2πrx1

P

)
sin
(
2πrx1

P

)


with β = (a0, a1, b1, . . . , ar, br).

Panel (a) in figure 1.2 shows the basis functions of a Fourier basis with r = 3.

Each basis function in a Fourier expansion has effects across the entire range of the data.

Another approach with this – as we will find out unfortunate – property is polynomial regres-

sion, which correponds to the expansion

m(xi) ≈ β0 + β1xi + . . .+ βrx
r
i ,

corresponding to the design matrix

B =


1 x1 . . . xr

1

...
... . . . ...

1 xn . . . xr
n

 .

With both of the aforementioned approaches each basis function acts “globally” rather than

“locally”, thus fitting data well in one part of the sample space can create artefacts elsewhere.

We will thus study more locally-acting bases in chapter 3, as the one shown in panel (c).

One key advatage of basis-expansion methods is that we can then estimate β using the same

techniques as used in multiple linear regression, i.e. the least-squares estimator is

β̂ = (B>B)−1B>y
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Figure 1.2.Examples of a Fourier basis, a polynomial basis consisting of monomials and a B-spline basis.
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1.4 Further illustrations of smoothing

This section gives a few brief illustrations of how the ideas outlined in simple settings can be

extended to much more complex situations and data structures. Some of these will be revisited

in greater detail later in the course.

1.4.1 Regression with more than one covariate

It is rare to have problems which involve only a single covariate. For the Reef data a natural

extension is to look at the relationship between the catch score and both latitude (x1) and

longitude (x2), in a model

yi = m(x1i, x2i) + εi.

the top left hand panel of the plot below shows the effect of this. The effect of longitude domi-

nates, as we see from the earlier nonparametric regression. However, a small effect of latitude

is also suggested. The methods by which surfaces of this type can be constructed will be dis-

cussed in the next two chapters.
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It would be unrealistic to generalise this much further, by modelling additional covariates

through functions of ever-increasing dimension. A very powerful approach is to construct ad-

ditive models of the form



Nonparametric Smoothing 1.4 Further illustrations of smoothing 7

yi = m1(x1i) +m2(x2i) + εi,

where the component functionsm1 andm2 describe the separate and additive effects of the two

covariates. Estimated additive model components, and their combined effects as an additive

surface, are displayed in the other panels of the figure above. Methods for fitting models of this

type will also be discussed later.

1.4.2 Areal data

Data quantifying population-level summaries of disease prevalence forn non-overlapping areal

units are available from both the English and Scottish Neighbourhood Statistics databases.

They are used in many different applications, including quantifying the effect of an exposure

on health, and identifying clusters of areal units that exhibit elevated risks of disease. The

health data are denoted by Y = (Y1, . . . , Yn) and E = (E1, . . . , En), which are the observed

and expected numbers of disease cases in each areal unit. The covariates are denoted by an

n × p matrix X = (x1, . . . ,xn), and could include environmental exposures or measures of

socio-economic deprivation.

One example concerns the prevalence of respiratory disease in Glasgow in 2010, where

interest focusses on the hospitalisation risk SIRk = Yk/Ek. The data are displayed in the plot

below.
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A suitable statistical model is

Yk ∼ Poisson(EkRk),

log(Rk) = xT
kβ + φk,

φk|φ−k, τ
2,W ∼ N

(∑n
i=1 wkiφi∑n
i=1wki

,
τ 2∑n

i=1 wki

)
,

where
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– Rk quantifies disease risk in area k.

– φ = (φ1, . . . , φn) are random effects that model residual spatial autocorrelation and improve

estimation of disease risk by smoothing the risks across neighbouring areas.

– Commonly, conditional autoregressive (CAR) models are used for this smoothing, where

W = (wki) is a binary n× n neighbourhood matrix.

Material kindly provided by Duncan Lee, University of Glasgow.

1.4.3 Network data

Models for spatial data often involve some form of smoothing, either implicitly or explicitly.

An interesting forms of spatial data arises from river networks, where models for the variation

in measurements should respect both the spatial pattern of the interconnecting water channels

as well as the mixing effect of confluence points where channels meet. The data below refer

to nitrate pollution in the River Tweed. The point measurements on the left can be used to

construct a spatial model for the whole network, whose predictions are shown in the panel on

the right.
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This example arises from joint work with Alastair Rushworth, David O’Donnell, Marian

Scott, Mark Hallard (SEPA).



2
Density estimation

2.1 Motivating example

A probability density function is a key concept through which variability can be expressed

precisely. In statistical modelling its role is often to capture variation sufficiently well, within a

model where the main interest lies in structural terms such as regression coefficients. However,

there are some situations where the shape of the density function itself is the focus of attention.

The example below illustrates this.

Example 2.1 (Aircraft data). These data record six characteristics of aircraft designs which ap-

peared during the twentieth century. The variables are:

Yr year of first manufacture

Period a code to indicate one of three broad time periods

Power total engine power (kW)

Span wing span (m)

Length length (m)

Weight maximum take-off weight (kg)

Speed maximum speed (km/h)

Range range (km)
A brief look at the data suggests that the six measurements on each aircraft should be ex-

pressed on the log scale to reduce skewness. Span is displayed on a log scale in figure 2.1, for

Period 3 which corresponds to the years after the second World War. /

The pattern of variability shown in both the histogram and the density estimate exhibits

some skewness. There is perhaps even a suggestion of a subsidiary mode at high values of log

span, although this is difficult to evaluate.
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Figure 2.1.Histogram and kernel density estimator for log span of the aircraft data.

2.2 Kernel density estimation

The histogram is a very familiar object. It can be written as

f̃(y) =
n∑

i=1

I(y − ỹi;h),

where {y1, . . . , yn} denote the observed data, ỹi denotes the centre of the interval in which yi

falls and I(z;h) is the indicator function of the interval [−h, h]. The form of the construction of

f̃ highlights some feature which are open to criticism if we view the histogram as an estimator

of the underlying density function. Firstly the histogram is not smooth, when we expect that the

underlying density usually will be. Secondly, some information is lost when we replace each

observation yi by the bin mid-point ỹi. Both of the issues can be addressed by using a density

estimator in the form

f̂(y) =
1

n

n∑
i=1

w(y − yi;h),

where w is a kernel function, whose variance is controlled by the smoothing parameter h.

We want to use the data close to y to estimate the density f(y) at y, thus we want the kernel

function to have the following properties:

– w(δ;h) should have a mode at δ = 0 and be symmetric w(δ;h) = w(−δ;h).

– w(δ;h) should decay as we move away from zero, i.e. δw(δ;h) → 0 for δ → ±∞.

We typically require the stronger property that w(·; k) has a finite second moment, i.e.∫ +∞
−∞ δ2w(δ;h) dδ < ∞.

– For convenience we want w(δ;h) to be a valid density in δ, i.e.
∫ +∞
−∞ w(δ;h) dδ = 1.

The two most popular choices for the kernel function are

– the Gaussian kernel, w(δ;h) = 1√
2π·h exp

(
− δ2

h2

)
, and
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– the Epanechnikov kernel, w(δ;h) =


3
4h

(
1− δ2

h2

)
for −h < δ < h

0 otherwise.
The Epanechnikov kernel can be shown to minimise the mean square error, however it leads

to a non-differentiable density estimate.

– The uniform kernel, w(δ;h) = 1
2h
21(−h;h)(δ), yields the histogram estimator from above.

Large changes in the value of the smoothing parameter h have large effects on the smooth-

ness of the resulting estimates, as figure 2.2 illustrates.
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Figure 2.2.Effect of the smoothing parameter h on the estimated density.

One advantage of density estimates is that it is a simple matter to superimpose these to

allow different groups to be compared. Figure 2.3 compares the distribution of the log-span

for the three different time periods. It is interesting that the ‘shoulder’ appears in all three time

periods.
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Figure 2.3.Estimated density of the log-span for the three time periods.
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2.2.1 Link to the characteristic function

We can understand the kernel density estimate as the density of the sum of two random vari-

ables. Denote by fn(y) the empirical probability mass function of the sample y1, . . . , yn, i.e.

fn(y) =
1

n
|{i : yi = y}|

The corresponding characteristic function1 is

φfn(t) = E(exp(ıtY )) =
1

n

n∑
i=1

exp(ıtyi) (2.1)

Assume that ε ∼ w(·;h) and then consider the convolution of these two distributions.2 The

convolution has density

(fn ∗ w)(y) =
n∑

i=1

w(y − yi;h) ·
1

n
,

which is exactly the formula for the kernel density estimate.

The characteristic function of the convolution (and thus of the kernel density estimate) is

φfn∗w(t) = φfn(t) · φw(t) =
1

n

n∑
i=1

exp(ıtyi)φw(t), (2.2)

Thus kernel density estimation can be viewed as estimating the characteristic function by mul-

tiplyting its empirical estimate by a dampening function φw(t), which makes the estimate more

stable for large t.

This link between kernel density estimation and characteristic functions is not just of theo-

retical interest. Computing the kernel density estimation can be slow for large sample sizes n.

For every point y at which we want to evaluate the kernel density estimate we have to evaluate

w(·;h) for n times.

If we would like to evaluate the kernel density estimate on a regular grid of 2m values for

some m ∈ N, then we can exploit (2.2). We can first use the fast Fourier transform to calculate

(a discrete approximation to) φfn(t) and φw(t). Then can simply multiply these together and

compute the inverse fast Fourier transform to obtain. This is significantly faster than using the

usual formula for the kernel density estimate and this is how the R function density calculates

the kernel density estimate

1 The characteristic function of a random variable X is φfX (t) = E(exp(ıtX)) is the Fourier transform of its probability
density function.

2 The convolution of two distributions is the distribution of the sum of two independent random variables with those two
distributions. The convolution of two continuous distributions with densities fX(·) and fY (·) is given by (fX ∗ fY )(z) =∫ +infty

−∞ fX(z − y)fY (y) dy. If X is continuous and Y is discrete with p.m.f. fY (y) then the distribution of their sum
has probability density function (fX ∗ pY )(z) =

∑
y ∈ RY fX(z − y)fY (y)
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2.2.2 Simple asymptotic properties

Without any real restriction, we can assume that the kernel function can be written in the simple

form w(y − yi;h) =
1
h
w
(
y−yi
h

)
. The preliminary material showed that the mean and variance

of a density estimator can then be expressed as

E
{
f̂(y)

}
= f(y) +

h2

2
σ2
w f ′′(y) + o(h2),

var
{
f̂(y)

}
=

1

nh
f(y)α(w) + o

(
1

nh

)
,

where we assume that the kernel function is symmetric so that
∫
uw(u)du = 0, and where σ2

w

denotes the variance of the kernel, namely
∫
u2w(u)du, and α(w) =

∫
w2(u)du.

These expressions capture the essential features of smoothing. In particular, bias is incurred

and we can see that this is controlled by f ′′, which means that where the density has peaks

and valleys the density estimate will underestimate and overestimate respectively. This makes

intuitive sense.

If we need it, a useful global measure of performance is the mean integrated squared error

(MISE) which balances squared bias and variance.

MISE(f̂) =
1

4
h4σ4

w

∫
f ′′(y)2dy +

1

nh
α(w) + o

(
h4 +

1

nh

)
.

2.2.3 Kernel density estimation in R

Kernel density estimation can be performed using the R function density

plot(density(log(aircraft$Span)))
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The bandwidth parameter is tuned automatically, but can can also be set manually using the
option bw.

plot(density(log(aircraft$Span), bw=0.1))
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Alternatively the function sm.density from the package sm can be used.

sm.density(log(aircraft$Span))
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sm uses a different rule from density for choosing the bandwidth. When adding the argu-

ment panel=TRUE one can tune the bandwidth using a slider.
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2.2.4 Extension to other sample spaces

The simple idea of density estimation is to place a kernel function, which in fact is itself a

density function, on top of each observation and average these functions. This extends very

naturally to a wide variety of other types of data and sample spaces.

For example, a two-dimensional density estimate can be constructed from bivariate data

{(y1i, y2i) : i = 1, . . . , n} by employing a two-dimensional kernel function in the form

f̂(y1, y2) =
1

n

n∑
i=1

w(y1 − y1i;h1)w(y1 − y2i;h2).

Notice that there are now two smoothing parameters, (h1, h2). A more general two-dimensional

kernel function could be used, but the simple product form is very convenient and usually very

effective.

Figure 2.4 shows an example which uses the scores from the first two principal components

of the aircraft data, again focussing on the third time period. The left hand scatterplot shows

the individual scores while the right hand plot shows a density estimate, from which suggests

three separate modes. This feature is not so easily seen from the raw scatterplot.

The lower two plots show alternative ways of presenting a two-dimensional estimate, using

a coloured image on the left and contour lines on the right. Notice that the contours on the

right have been chosen carefully to contain the quarters of the data with successively higher

density, in a manner which has some similarities with a box plot.

This principle extends to all kinds of other data structures and sample spaces by suitable

choice of an appropriate kernel function. However kernel density suffers especially badly from

the curse of dimensionality and is unlikely to work well even in medium dimensions.

2.2.5 Deciding how much to smooth

It is not too hard to show that the value of h which minimizes MISE in an asymptotic sense is

hopt =
{

γ(w)

β(f)n

}1/5

,

where γ(w) = α(w)/σ4
w, and β(f) =

∫
f ′′(y)2dy. Of course, this is of rather limited use

because it is a function of the unknown density. However, there are two practical approaches

which can be taken to deciding on a suitable smoothing parameter to use. One is to construct an

estimate of MISE and minimise this. Another is to estimate the optimal smoothing parameter.

These two approaches are outlined below.

Cross-validation
The integrated squared error (ISE) of a density estimate is∫

{f̂(y)− f(y)}2dy =

∫
f̂(y)2dy − 2

∫
f(y)f̂(y)dy +

∫
f(y)2dy.
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Figure 2.4.Bivariate kernel density estimate of the first two principal components of the aircraft data.
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Only the first two of these terms involve h and these terms can be estimated by

1

n

n∑
i=1

∫
f̂ 2
−i(y)dy −

2

n

n∑
i=1

f̂−i(yi),

where f̂−i(y) denotes the estimator constructed from the data without the observation yi. The

value of h which minimises this expression is known as the cross-validatory smoothing pa-

rameter.

Plug-in methods
By inserting suitable estimates of the unknown quantities in the formula for the optimal

smoothing parameter, a plug-in choice can be constructed. The difficult part is the estimation

of β(f) as this involves the second derivative of the density function. Sheather & Jones (JRSSB

53, 683–90) came up with a good, stable way of doing this. The Sheather-Jones method remains

one of the most effective strategies for choosing the smoothing parameter.

A very simple plug-in approach is to use the normal density function in the expression for

the optimal smoothing parameter. This yields the simple formula

h =

(
4

3n

)1/5

σ,

where σ denotes the standard deviation of the distribution. This is a surprisingly effective

means of smoothing data, in large part because it is very stable.

2.2.6 Some simple inferential tools

Once an estimate has been constructed, a natural next step is to find its standard error. The

earlier result on the variance of f̂ is a natural starting point, but this expression involves the

unknown density. A helpful route is to consider a ‘variance stabilising’ transformation. For any

transformation t(·), a Taylor series argument shows that

var
{
t(f̂(y))

}
≈ var

{
f̂(y)

}[
t′
(
E
{
f̂(y)

})]2
.

When t(·) is the square root transformation, the principal term of this expression becomes

var
{√

f̂(y)

}
≈ 1

4

1

nh
α(w),

which does not depend on the unknown density f . This forms the basis of a useful variability

band. We cannot easily produce proper confidence intervals because of the bias present in

the estimate. However, if the standard error is constructed and the intervals corresponding to

two s.e.’s on the square root scale are transformed back to the origin scale, then a very useful

indication of the variability of the density estimate can be produced. This is shown in figure

2.5 for the aircraft span data from period 3.
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Figure 2.5.Reference bands for the density estimate of log-span.

A useful variation on this arises when the true density function is assumed to be normal

with mean µ and variance σ2, and the kernel function w is also normal. If the standard normal

density function is denoted by φ, then the mean and variance of the density estimate at the

point y are then

E
{
f̂(y)

}
= φ

(
y − µ;

√
h2 + σ2

)
var
{
f̂(y)

}
=

1

n
φ
(
0;
√
2h
)
φ

(
y − µ;

√
σ2 +

1

2
h2

)
− 1

n
φ
(
y − µ;

√
σ2 + h2

)2
These expressions allow the likely range of values of the density estimate to be calculated,

under the assumption that the data are normally distributed. This can be expressed graphically

through a reference band.

Example 2.2 (Icelandic tephra layer). Data on the percentages of aluminium oxide found in sam-

ples from a tephra layer resulting from a volcanic eruption in Iceland around 3500 years ago

are available in the tephra dataset in the sm package. To deal with the percentage scale, apply

the logit transformation

logit <- log(tephra$Al2O3/(100-tephra$Al2O3)) .

Can the variation in the tephra data be adequately modelled by a normal distribution on this

scale? /

The density estimate shown in figure 2.6 does not fit comfortably within the reference band

at all points and this effect persists across a wide range of smoothing parameters. A global test



Nonparametric Smoothing 2.3 Density estimation using mixtures 19

−1.9 −1.8 −1.7 −1.6

0
2

4
6

8
10

logit

P
ro

ba
bi

lit
y 

de
ns

ity
 fu

nc
tio

n

Figure 2.6.Kernel density estimate of the percentage of aluminion oxide, together with reference bands for an informal visual
test of Gaussianity.

of normality could be developed but the graphical device of a reference band offers very useful

informal insight.

The preliminary material also discussed the role of the bootstrap in capturing the variability,

but not immediately the bias, of a density estimate.

2.3 Density estimation using mixtures

2.3.1 Introduction

Kernel density estimation is not the only way of estimating a density. When using a Gaus-

sian kernel for density estimation we have constructed the estimate by adding up n Gaussian

densities (where n is the sample size). When using mixtures we try to achieve the same using

fewer Gaussian densities. However, in order for this to work, we need to estimate the mean

and dispersion parameter of each Gaussian rather than considering Gaussian densities of the

same dispersion anchored at each observation. Mixture-based methods for density estimation

typically fare better than kernel-based methods for medium-dimensional data (none of the ap-

proaches work particularly well for high-dimensional data).

The key idea of mixture models is that whilst the density of interest might not necessarily

be of a simple form, we can split the data into groups such that within each group the density

has a simple form (e.g. Gaussian). This idea is illustrated by the example below.

Example 2.3 (Fisher’s iris data). Consider the measurements of the petal width in the iris dataset.

Figure 2.7 shows a plot of the (estimated) densities of the petal width for the three different
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species and a plot of the density for the whole dataset. The plots suggest that it is reasonable

to assume that the petal width in each group is from a Gaussian distribution. Denote with Yi

the petal width and with Si the species name of the i-th flower. Then Yi is (assumed to be)

Gaussian in each group and the mean and the variance can be estimated by the empirical mean

and variance in the different populations:
(Yi|Si = se) ∼ N(µse, σ

2
se) for iris setosa (estimates: µ̂se = 0.246, σ̂2

se = 0.01133)

(Yi|Si = ve) ∼ N(µve, σ
2
ve) for iris versicolor (estimates: µ̂ve = 1.326, σ̂2

ve = 0.03990)

(Yi|Si = vi) ∼ N(µvi, σ
2
vi) for iris virginica (estimates: µ̂vi = 2.026, σ̂2

vi = 0.07697)
The density of Y (species confounded) is then

f(y) = πsefµse,σ2
se
(y) + πvefµve,σ2

ve
(y) + πvifµvi,σ2

vi
(y)

The density of Y is thus a mixture of three normal distributions. The πse, πve and πvi denote

the probability that a randomly picked iris is of the corresponding species. These probabilities

are sometimes referred to as mixing weights.

In the typical context of density estimation we would not have the grouping information pro-

vided by the species labels, i.e. we now assume we only know the petal widths. Nonetheless,

we can stick to our idea that the density of Y is a mixture of Gaussians. Thus we assume

f(y) = π1fµ1,σ2
1
(y) + π2fµ2,σ2

2
(y) + π3fµ3,σ2

3
(y).

Note that we had to replace the species names with indexes, because we don’t possess the

species information any more. This makes the estimation of the means µ1, µ2, µ3 and variances

σ2
1, σ

2
2, σ

2
3 far more difficult. The species name Si is now a latent variable, as we are unable

to observe it. Once estimated, the Si however provide potentially interesting information: they

show how the data can be clustered into three groups. /

2.3.2 Model

We will for now assume that the component densities are Gaussian distributions, as this is

by far the most common model. However any other distribution could be used. If we want

the mixture to be able to approximate an arbitrary distribution we would have to choose a

component density that can, in the limit, be reduced to a point mass (just like a Gaussian is

reduced to a point mass if σ2 → 0).

We assume that the data comes from K groups (“clusters”). For the moment K is assumed

to be fixed and known. We assume that the data in cluster k is from a (multivariate) Gaussian

distribution with mean µk and covariance matrix Σk. Thus the density of y in cluster k is

fµk,Σk
(y) =

1√
(2π)p · |Σk|

e−
1
2
(y−µk)

′Σ−1
k (y−µk).
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Figure 2.7.Estimated density of the petal width for all species confounded (above) and by species (below)

Often one assumes that all clusters have the same orientation and spread, i.e. Σk = Σ, or

that all clusters are spherical, i.e. Σ = σ2I. Another popular assumption is that the covariance

matrices are diagonal, i.e. Σk =


σ
(k)
1

2
· · · 0

... . . . ...

0 · · · σ
(k)
p

2

. In this case the clusters are ellipses

with axes parallel to to coordinate axes. Figure 2.8 visualises these different assumptions.

The density of y (all clusters confounded) is the mixture of the distributions in the clusters:

f(y) =
K∑
k=1

πkfµk,Σk
(y).

with πk ≥ 0 such that
∑K

k=1 πk = 1. This yields the likelihood

`(π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK) =
n∏

i=1

(
K∑
k=1

πkfµk,Σk
(yi)

)
. (2.3)

2.3.3 Inference

Estimating the parameters of the mixture model appears difficult at first sight. Each contribu-

tion to the likelihood (2.3) is a sum rather than a product, which is usually the case. Often the

loglikelihood is a simpler expression than the likelihood itself (think of a Gaussian), however
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Figure 2.8.Examples for the different assumptions on the covariance structure
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for mixtures this is not the case: each contribution to the loglikelihood is the logarithm of a

sum, which cannot be simplified any further.

The problem can be overcome by considering an EM algorithm, which introduces auxil-

iary variables Si which indicate the cluster allocation. The EM algorithm now consists of the

following iterative process.

For h = 1, 2, . . . iterate the E-Step and the M-Step:

E-Step Estimate the distribution of Si given the data and the previous values of the parameters

π̂
(h−1)
k , µ̂(h−1)

k and Σ̂
(h−1)

k (k = 1, . . . , K). This yields the “responsibilities” w(h)
ik :

w
(h)
ik :=

π
(h−1)
k f

µ̂
(h−1)
k ,Σ̂

(h−1)
k

(yi)∑K
ζ=1 π

(h−1)
ζ f

µ̂
(h−1)
ζ ,Σ̂

(h−1)
ζ

(yi)

M-Step Compute the updated π̂
(h)
k , µ̂(h)

k , and Σ̂
(h)

k (k = 1, . . . , K) by estimating them from

the data using the vector w(h)
k = (w

(h)
1k , . . . , w

(h)
nk ) of responsibilities as weights: This leads

to the updated estimators

π̂
(h)
k =

1

n

n∑
i=1

w
(h)
ik ,

µ̂
(h)
k :=

1∑n
i=1w

(h)
ik

n∑
i=1

w
(h)
ik yi,

and

Σ̂
(h)

k :=
1∑n

i=1 w
(h)
ik

n∑
i=1

w
(h)
ik (yi − µ̂

(h)
k )(yi − µ̂

(h)
k )>

for the covariances Σk (assuming different covariances in the classes).

Figure 2.9 visualises the flow of the algorithm for an easy toy example.

Derivation of the EM algorithm for mixtures

The EM algorithm is based on the likelihood that is obtained when assuming the class

labels Si are known. In this case the likelihood is
n∏

i=1

πSi
fµSi

,ΣSi
(y)

Note that the sum has now disappeared. This is due to the fact that we know the cluster labels

now, so we just multiply the densities of the distribution in the corresponding clusters instead

of multiplying the unpleasant mixture density. For simplification of the notation denote with

θ the whole parameter vector, i.e.

θ := (π1, . . . , πK ,µ1, . . . ,µK ,Σ1, . . . ,ΣK)

The log-likelihood is thus
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L(θ) =
n∑

i=1

(log πSi
+ log fµSi

,ΣSi
(y)) (2.4)

In reality however, the Si are unknown. So the EM-algorithm uses the trick of taking the

(conditional) expectation of the likelihood.

In the E-step we have to compute the conditional expectation of the log-likelihood (2.4)

given the data using the previous values of the parameters θ̂
(h−1)

. Thus we have to compute

the conditional distribution of Si (using the Bayes formula) yielding the responsibilities

w
(h)
ik := P

θ̂
(h−1)(Si = k) =

π̂
(h−1)
k f

µ̂
(h−1)
k ,Σ̂

(h−1)
k

(yi)∑K
ζ=1 π̂

(h−1)
ζ f

µ̂
(h−1)
ζ ,Σ̂

(h−1)
ζ

(yi)

The conditional expectation is thus

E
θ̂
(h−1) (L(θ)|y1, . . . ,yn) =

n∑
i=1

K∑
k=1

(w
(h)
ik log πk + w

(h)
ik log fµk,Σk

(y)). (2.5)

In the M-step we have to find θ̂
(h)

by maximising the conditional expectation (2.5) ober

θ. One can easily see that the updated parameter estimates π̂
(h)
k , µ̂(h)

k , and Σ
(h)
k maximise

(2.5).

2.3.4 Estimating the number of components

Estimating the number of components is, at least from a theoretical point of view, difficult. We

cannot use classical statistical tests for this. To illustrate this consider a mixture model with

two univariate Gaussian components

f(y) = πfµ1,σ2
1
(y) + (1− π)fµ2,σ2

2
(y).

If we want to test whether we need one or two components, we could test the null hypothesis

that π = 1. The first obvious issue is that π = 1 is on the boundary of the parameter space for

π, which is [0, 1], so standard approaches for likelihood ratio tests would fail. The even bigger

problem however is that if π = 1, the parameters µ2 and σ2
2 do not influence the likleihood

any more. In other words, the effective dimension of the problem collapses on the boundary,

which makes deriving theoretical results for likelihood ratio tests very challenging.

For this reason, it is common practice to use model selection criteria such as BIC to select

the number of components.

However, if our only intention is to estimate the density rather than interpret the clustering

identified, getting the number of components exactly right is less of an issue.
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Figure 2.9. First 6 iterations of the EM algorithm for fitting a Gaussian mixture model to a toy example. The colouring of the
data points corresponds to the responsibilities, the dotted lines show the isodensites of the Gaussians, and the arrow indicates
where the means of the clusters are moved.
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2.3.5 Example

Example 2.4 (Aircraft data (ctd.)). Figure 2.10 shows the results obtained when using mixtures of

Gaussians to estimate the density of the first two principal components of the aircrcraft data for

the third period. Due to the nature of the mixture model, the peaks are much more pronounced

and most importantly there is a very concentrated fourth peak that was not apparent in the

results obtained using kernel density estimation. Note that when using a mixture model there

would have been no need to compute principal components before estimating the density. We

could have used the raw data of six measurements per aircraft. The principal components were

used to allow better comparison to the results obtained using a kernel density estimate, which

would not be able to cope well with data of that dimension. /
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Figure 2.10. Estimated density using mixtures of normals for the first two principal components of aircraft data (using the R
package mclust)
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2.3.6 Mixtures of normals in R

Mixtures of normals can be fitted in R using the package mclust. mclust automatically

chooses an appropriate number of components and a suitable model for the variance struc-

ture.

logaircraft <- log(aircraft[,-(1:2)])

m <- Mclust(logaircraft)

plot(m, what="classification")
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3
Splines

3.1 Introduction

This chapter covers splines, which are one of the most popular tools for flexible modelling. This

section discusses a number of more philosophical concepts, some of which we have already

touched upon.

In parametric modelling (e.g. estimating the rate of a Poisson distribution, linear regression)

we assume we know the data generating process up to a finite number of parameters. In flexible

modelling we want to fit a function to data, without making such a strict parametric assumption.

All we are willing to assume is typically that the function of interest is sufficiently smooth.

More formally speaking, this corresponds to working with an infinite-dimensional parameter

space. This flexible approach has a number of advantages, most importantly it is less likely that

the model is mis-specified. However there is a price to pay. Estimation becomes more difficult.

Example 3.1. Figure 3.1 shows two smooth functions describing the relationship between the

response Yi and the covariate xi. In this example both functions yield the same fitted values

ŷi = m̂(xi). This also implies that the least-squares loss
∑n

i=1(yi − m̂(xi))
2 is the same for

both functions, i.e. the data alone does not tell us which function does a better job. There is no

global answer to this question.

Which of the two functions appears better suited to us depends on the context and also

to some extent our subjective choice. In most circumstances we would prefer the function in

the left-hand panel as it is the “simpler” function. However, if we expect the signal to have a

periodic component (say we are expecting a day-of-the-week effect) then we might prefer the

function shown in the right-hand panel. /
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Figure 3.1.Two possible smooth functions modelling the relationship between the response Yi and the covariate xi. Note that
both functions yield the same fitted values ŷi = m̂(xi) and thus the same least-squares loss

∑n
i=1(yi − m̂(xi))

2.

What we have seen in the example is simply that the family of smooth functions is so large

that observing a finite sample alone will not tell us enough to learn the function of interest

m(·).
We need to provide additional information, which can be of different types:

– We can assume that the function of interest m(·) comes from a more restricted family of

functions. We might even assume a rich class of parametric models. We will use this idea

when we are looking at splines based on truncated power series and B-splines in section

3.2.4.

– We express a preference for some functions over others (without looking at the data) and use

this in the model fitting procedure. Typically we prefer a smooth function to a more wiggly

function. In a frequentist setting, this leads to penalty-based approach, or can be viewed as

a Bayesian prior over the space of functions. We will discuss this in sections 3.2.3 and 3.3.

3.2 Univariate splines

3.2.1 Polynomial regression

We will start by revising polynomial regression. To fix notation, we quickly state the simple

linear regression model

E(Yi) = β0 + β1xi for i = 1, . . . , n,

or equivalently, in matrix-vector notation,
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E(y) = Bβ with y = (Y1, . . . , Yn)
> and B =


1 x1

...
...

1 xn

.

The simple linear regression model can be extended into a polynomial regression model by

including powers of the covariates xi in the design matrix. The polynomial regression model

E(Yi) = β0 + β1xi + . . .+ βrx
r
i for i = 1, . . . , n,

just corresponds to linear regression using the expanded design matrix

B =


1 x1 . . . xr

1

...
... . . . ...

1 xn . . . xr
n

 .

We can then estimate β using the same techniques as used in multiple linear regression, i.e.

the least-squares estimator is

β̂ = (B>B)−1B>y

Polynomial regression is a very simple example of a basis expansion technique. We have

simply replaced the design matrix of simple linear regression by an augmented design matrix.

In the case of polynomial regression we have simply added powers of the xi’s.

Many of the techniques covered in this chapter will be based in this idea of basis expansions.

Polynomial regression can be a useful tool if a polynomial of very low order yields a suffi-

cient fit to the data.

Example 3.2 (Glucose levels in potatoes). Figure 3.2 shows a quadratic regression model fitted

to a simple data set from an experiment in which the glucose level in potatoes was measured

over the course of several weeks. Given the small number of observations there is little need

to go beyond a simple quadratic regression model. /

However, polynomial regression is not very well suited for modelling more complex rela-

tionships, as the following example shows.

Example 3.3. Consider the data set simulated using the model

yi = 1− x3
i − 2 exp(−100x2

i ) + εi

with x = (−1,−0.98, . . . , 0.98, 1) and εi ∼ N(0, 0.12). Figure 3.3(a) shows the data together

with the fitted function obtained for a polynomial regression model of degree 10. The poly-

nomial model of degree 10 is not flexible enough to capture the sharp dip around 0. If we
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Figure 3.2.Glucose level in potatoes. The solid line is the fitted regression function obtained from quadratic regression.

increase the degree to 17 we can capture the dip better (panel (b)). However, the polynomial

fit of degree 17 shows strong oscillations which are not supported by the data. Panel (c) shows

the fitted regression function using a spline based model, which we will discuss later on in this

chapter. The spline-based approach can capture the sharp dip much better and without yielding

any oscillations.

Figure 3.4 allows some insight into why the polynomial model struggles. It shows image

plots of the hat matrix S = B(B>B)−1B> for the three models under consideration. The hat

matrix maps the observed response to the fitted response, i.e.

ŷ = Bβ̂ = B(B>B)−1B>y = Sy

When performing flexible regression we would expect the prediction at xi to almost only de-

pend on observations close to xi, i.e. we would expect the hat matrix S to be largely band-

diagonal with a rather narrow band width. However, polynomials are not “local”. As one can

see from a Taylor series expansion, the coefficients of the polynomial can be learnt from higher

order derivatives observed at a single point. The problem is that sharp dip provides more in-

formation than the data on either side of it, yielding to a poor fit on both sides. This is known

as Runge’s phenomenon in Numerical Analysis.

Figure 3.3(a) and figure 3.3(b) shows another drawback of polynomial regression. As x →
±∞ the polynomial must go to ±∞ as well. This often leads to very high curvature at both

ends of the range, which is typically not supported by the data.

Yet another reason for avoiding polynomial regression is that it is highly likely to be nu-

merically unstable. Due to the large correlations between the powers of the xi, which make

up the columns of the design matrix, the design matrix B and the matrix of cross-products
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(a) Polynomial regression of degree 10
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(b) Polynomial regression of degree 17
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(c) Quadratic-spline-based regression

Figure 3.3.Data and fitted function for the simulated data from example 3.3 for polynomial regression of degrees 10 and 17
as well as for a spline-based model.
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(c) Quadratic-spline-based regression

Figure 3.4.Hat matrix S = B(B>B)−1B> for polynomial regression of degrees 10 and 17 as well as for splines applied to
the simulated data from example 3.3.
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B>B is very likely to be ill-conditioned. The condition number1 of B>B for the polynomial

regression model of degree 17 is 1.56 × 1012, i.e. B>B is barely invertible. For comparison,

the corresponding condition number for the spline-based model is 32.49.

Instead of using monomials it would be numerically more stale to use so-called Tchebychev

polynomials (as produced for example by the R function poly). Both sets of basis functions

are equivalent, i.e. they span the same linear subspace and thus yield identical predictions.

Though numerically more stable, Tchebychev polynomials suffer from all the other problems

just as much as monomials. /

As we have seen in the example above, polynomial regression is, unless modelling very

simple relationships, not a suitable tool for flexible regression. In the next section we will

consider piecewise polynomial models, which are better suited for flexible regression. These

are based on the idea of splitting the input domain and fitting low-order polynomials in each

interval. As we can see from figure 3.5(a) fitting polynomials independently of each other

does not yield satisfactory results. We will thus introduce additional constraints which make

the function continuous and (potentially) differentiable (cf. panel (b)).
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(a) Discontinuous piecewise polynomials
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(b) Piecewise polynomials which form a continuously differ-
entiable function (derivatives at knots shown as dashed lines)

Figure 3.5. Piece-wise polynomials fitted to the data from example 3.3 with an without smoothness constraints. The back
triangles show the positions of the knots.

1 The condition number of a matrix is defined as the ratio of the largest singular value divided by the smallest singular
value. For a symmetric positive-definite matrix this is the same as the ratio of the largest over the smallest eigenvalue. The
condition number is of measure of how numerically unstable matrix operations like taking the inverse will be.
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3.2.2 Polynomial splines

In this section we will introduce polynomial splines which are piecewise polynomials, which

“glued together” at the knots so that the resulting function is r-times continuously differen-

tiable.

Definition 3.1 (Polynomial spline). Given a set of knots a = κ1 < κ2 < . . . < κl = b, a

function m : [a, b] → R is called a (polynomial) spline of degree r if

– m(·) is a polynomial of degree r on each interval (κj, κj+1) (j = 1, . . . , l − 1).

– m(·) is r − 1 times continuously differentiable.2

Historically, a spline was an elastic ruler used to draw technical designs, notably in ship-

building and the early days of aircraft engineering. Figure 3.6 shows such a spline.3

Figure 3.6.A spline.

Choice of degree r. The degree r of the spline controls the smoothness in the sense of con-

trolling its differentiability. For r = 0 the spline is a discontinuous step function. For r = 1

the spline is a polygonal line. For larger values of r the spline is increasingly smooth, but

also behaves more and more like one global polynomial. It is worth noting that assuming too

smooth a function can have significant detrimental effects on the fitted regression function (e.g.

oscillations, ballooning). In practice it is rarely necessary to go beyond r = 3.

Example 3.4 (Radiocarbon dating). In a scientific experiment high-precision measurements of

radiocarbon were performed on Irish oak. To construct a calibration curve we need to learn the

2 For a spline of degree 0 the function m(·) does not need to be continuous. For a spline of degree 1 the function m(·) needs
to be continuous, but does not need to be differentiable.

3 See http://pages.cs.wisc.edu/˜deboor/draftspline.html for a picture (probably from the 1960’s) of a Boeing
engineer using a spline.
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relationship between the radiocarbon age and the calendar age. Figure 3.7 shows spline fits to

the data using splines of different degrees. /
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(a) Degree r = 0 (discontinuous).
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(b) Degree r = 1 (continuous).
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(c) Degree r = 2 (continuous first derivative).
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(d) Degree r = 3 (continuous second derivative).

Figure 3.7.Splines of degree r ∈ {0, 1, 2, 3} fitted to the radiocarbon data.

Choice of the number of knots l. In an (unpenalised) spline the number of knots acts as a

smoothing parameter. The more knots are used, the more flexible the regression function can

become. A more flexible regression function has a lower bias, but a higher variance.

Example 3.5 (Radiocarbon dating (continued)). Figure 3.8 shows a cubic spline fitted to the ra-

diocarbon data using an increasing number of knots. Too few knots lead to an underfit to the
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(a) l = 3 knots.
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(b) l = 9 knots.
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(c) l = 15 knots.
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(d) l = 31 knots.

Figure 3.8.Cubic spline with different number of knots l ∈ {3, 9, 15, 31} fitted to the radiocarbon data.
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data: the fitted function does not fully represent the relationship between radiocarbon age and

calendar age. Too many knots on the other hand lead to an overfit: the spline does not only pick

up the signal, but also adapts to artefacts in the noise. /

Especially when the number of knots is small, the positioning of the knots can be important.

The simplest strategy consist of using a set of equally spaced knots; this is computationally the

simplest. Alternatively, we can place the knots according to the quantiles of the covariate. This

makes the spline more flexible in regions with more data (and thus potentially more informa-

tion) and less flexible in areas with less data (and potentially less information). A third strategy

consists of trying to find an optimal placement of the knots. This usually is computationally

very demanding.

Yet another approach consists of using “too many” knots — one knot per observation in

the most extreme case — and use a penalty term to control for the smoothness. This avoid the

need to select the number of knots altogether. We will study two such approaches in sections

3.2.3 and 3.3.

Splines as a vector space. For a given set of l knots and given degree r, the space of polynomial

splines is a vector space, i.e. the sum of two splines as well as a scalar multiples of each spline

are again splines. To find the dimension of the vector space have to find the number of “free

parameters”.

– Each polynomial has r+1 parameters and there are l−1 polynomials. Thus the spline model

has (r + 1) · (l − 1) parameters. However we cannot choose all these parameters freely, as

the resulting function needs to be r − 1 times continuously differentiable.

– At the l−2 inside knots we have to guarantee that m(·) is r−1 times continuously differen-

tiable. This corresponds to r constraints (r−1 constraints for each derivative and one form(·)
to be continuous). Thus there are r · (l− 2) constraints (which are all linearly independent).

Thus there are (r+1) · (l− 1)− r · (l− 2) = r+ l− 1 free parameters. Thus the vector space

of polynomial splines of degree r with l knots is r + l − 1.

In section 3.2.4 we will explore different ways of constructing a basis for this space. The

dimension will come in handy when proving that a given set of basis functions is indeed a

basis of this space, as we only need to show that the basis functions are independent and that

we use the correct number of basis functions.

Natural cubic splines. Finally, we will introduce the concept of a natural cubic spline. It is based

on the idea that it is “safer” (or more “natural”) to assume that the curvature of the spline at

the first and last knot is zero. If we were to extrapolate, we would then extrapolate linearly.
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Definition 3.2 (Natural cubic spline). A polynomial spline m : [a, b] → R of degree 3 is called

a natural cubic spline if m′′(a) = m′′(b) = 0.

Given a set of l knots the vector space of all cubic splines has dimension l + 2. Natural

cubic splines introduce two additional constraints, thus they form a vector space of dimension

l. This makes natural cubic splines perfectly suited for interpolation.

Proposition 3.3. A set of l points (xi, yi) can be exactly interpolated using a natural cubic

spline with the x1 < . . . < xl as knots. The interpolating natural cubic spline is unique.

Proof. The space of natural cubic splines with knots at x1, . . . , xl is vector space of dimension l.

Introducing l additional constraints (yi = m(xi) for i = 1, . . . , l) yields a system of l equations

and l free parameters, which yields a unique solution.4 �

Natural cubic splines can be generated using the function ns in R.

In the next section we will show that natural cubic spline have an important optimality

property.

3.2.3 Optimality of splines

This section provides a theoretical justification for the choice of splines for flexible regression.

In this section we will ask a rather general question. Given a data set (xi, yi)with a ≤ xi ≤ b

we try to find, amongst all twice continuously differentiable functions, the function which

“best” models the relationship between response yi and covariate xi.

First of all, we need to specify what we mean by “best”. We could look for the function

m(·) which yields the smallest least-squares criterion

n∑
i=1

(yi −m(xi))
2

This is however not a good idea. Any function which interpolates all the observations (xi, yi)

would be optimal in this sense, yet such a function would typically not describe the relationship

between xi and yi but rather model the artefacts of the random noise. Thus we will consider a

so-called penalised (or regularised) criterion which tries to balance out two aspects which are

important to us:

4 Strictly speaking, we would need to show that the system of equations cannot be rank-deficient, which could cause the
solution to be either non-unique or non-existing.
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Fit to the data. We want m(·) to follow the data closely.

Simplicity/smoothness. We want the function m(·) not to be too complicated so that it gener-

alises well to future unseen data.

We will thus the following penalised fitting criterion

n∑
i=1

(yi −m(xi))
2

︸ ︷︷ ︸
Fit to the data

+λ

∫ b

a

m′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

, (3.1)

where λ > 0 is a tuning parameter which controls the trade off between following the data and

preventing m(·) from being too rough.

We will now establish that the minimiser of (3.2) over all twice continuously differentiable

functions has to be a natural cubic spline, i.e. natural cubic splines with knots at each of the

unique xi are in this sense the optimal class functions.

We will start by stating that natural cubic splines are optimal interpolators, in the sense that

they minimise the roughness penalty
∫ b

a
m′′(x)2 dx.

Lemma 3.4. Amongst all functions on [a, b] which are twice continuously differentiable and

which interpolate the set of points (xi, yi), a natural cubic spline with knots at the xi yields the

smallest roughness penalty ∫ b

a

m′′(x)2 dx.

Spline-based interpolation is implemented in the Rfunctions spline and splinefun.

We will now generalise the result about interpolation to the case of smoothing.

n∑
i=1

(yi −m(xi))
2

︸ ︷︷ ︸
Model fit

+λ

∫ b

a

m′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

, (3.2)

where λ is a tuning parameter which controls the trade off between following the data and

preventing m(·) from being too rough.

Theorem 3.5. The minimiser of

n∑
i=1

(yi −m(xi))
2 + λ ·

∫ b

a

m′′(x)2 dx

amongst all twice continuously differentiable functions on [a, b] is given by a a natural cubic

spline with knots in the unique xi.
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This is an extremely powerful theorem. Even though we consider the entire infinite-dimensional

vector space of all twice continuously differentiable functions, we only need to consider the

finite-dimensional vector space of natural cubic splines. We have thus reduced the complexity

of the optimisation problem to the comparatively simple problem of finding the optimal coeffi-

cients of the natural cubic spline. This can be done using least-squares. Note that the proof did

not make use of the fact that we have used the least-squares loss function. In fact, the theorem

holds for any pointwise loss function.

The technique of smoothing splines is based on this theoretical result and finds the natu-

ral cubic spline minimising (3.2), and, due to the theorem, the optimal function amongst all

twice continuously differentiable functions. This approach is implemented in the Rfunction

smooth.spline.

smsp <- with(radiocarbon, {
plot(cal.age, rc.age)

smooth.spline(cal.age, rc.age)

})
smsp

## Call:

## smooth.spline(x = cal.age, y = rc.age)

##

## Smoothing Parameter spar= 0.3734837 lambda= 3.249006e-06 (15 iterations)

## Equivalent Degrees of Freedom (Df): 23.07235

## Penalized Criterion (RSS): 0.0105881

## GCV: 0.00077177

lines(smsp)
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We will revisit the idea of regularisaton in more detail in section 3.3.
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3.2.4 Constructing splines

In this section we will studies two ways of constructing a basis for the vector space of poly-

nomial splines: the truncated power basis and the B-spline basis. We will only cover the case

of generic polynomial splines. However one can modify these bases to only span the space of

natural cubic splines.

Truncated power basis. The simplest basis for polynomial splines is the truncated power basis.

Definition 3.6 (Truncated power basis). Given a set of knots a = κ1 < . . . < κl = b the

truncated power basis of degree r is given by(
1, x, . . . , xr−1, (x− κ1)

r
+, (x− κ2)

r
+, . . . , (x− κl−1)

r
+

)
,

where (z)r+ =

{
zr for z > 0

0 otherwise.

The truncated power basis has r+ l−1 basis functions. It is easy to see that they are linearly

independent. Thus the truncated power basis is indeed a basis of the vector space of polynomial

splines. Figure 3.9 shows the truncated power series basis of degree 3 for six equally spaced

knots.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

B
j(x

)

(a) Truncated power series
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(b) B-splines

Figure 3.9.Basis functionsBj(x) of the cubic truncated power series basis (left panel) and B-splines (right panel). The vertical
lines indicate the location of the knots.

To fit a polynomial spline to data we can exploit the fact the truncated power basis is a basis

of the vector space of polynomial splines of the given degree and with the given set of knots.
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Thus we can write any spline m(·) as a linear combination of the basis functions, i.e.

m(x) = β0 + β1x+ . . .+ βr−1x
r−1 + βr(x− κ1)

r
+ + . . .+ βr+l−2(x− κl−1)

r
+

We can thus find the optimal splinem(·) by just finding the optimal set of coefficients βj , which

is nothing other than a linear regression problem with design matrix

B =


1 x1 . . . xr−1

1 (x1 − κ1)
r
+ . . . (x1 − κl−1)

r
+

...
... . . . ...

... . . . ...

1 xn . . . xr−1
n (xn − κ1)

r
+ . . . (xn − κl−1)

r
+


We can use the design matrix B in exactly the same way as we would use the design matrix of

a classical linear model.

We can interpret the truncated power series as a regression model in which the leading coef-

ficient changes at each knot. At each knot, the remaining coefficients change as well. However

they are fully constrained by the condition that the spline has to be r − 1 times continuously

differentiable at each knot.

Example 3.6 (Radiocarbon data (continued)). Figure 3.10 illustrates the use of a truncated power

series basis for fitting a spline-based flexible regression model for the radiocarbon data.

As one can see from the middle panel of figure 3.10 and from figure 3.11, some of the

estimated coefficients are very large: some of the basis functions are scaled up by a factor of

more than 1000, with “neighbouring” basis functions having opposite signs. The reason for

this is the high correlation between the columns of the design matrix of the truncated power

series. The largest correlation between columns is 0.99921, which is very close to 1.

Figure 3.12 shows a scree plot of the singular values of the design matrix B. The condition

number of the matrixB is 225333.0, with the condition number ofB>B being 5, 857, 413, 839,

i.e. B>B is close to being numerically singular. This suggests that finding the least-squares

estimate of the coefficients is close to being numerically unstable. /

We can generate a truncated power basis in R as follows.

tpower <- function(x, t, p)

(x - t) ˆ p * (x > t)

tbase <- function(x, xl = min(x), xr = max(x), n.knots = 10, deg = 3) {
nseg <- n.knots - 1

dx <- (xr - xl) / nseg

knots <- seq(xl, xr, len=n.knots)

B <- cbind(outer(x-xl,0:(deg-1),"ˆ"),

outer(x,knots[-length(knots)],function(x,y) pmax(x-y,0))ˆdeg)

B

}
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Figure 3.10. Illustration of flexible regression using the truncated power series basis of degree 3 applied to the radiocarbon
data. The top panel shows the unscaled basis functions Bj(x). The middle panel shows the scaled basis functions β̂jBj(x).
The bottom panel shows a scatter plot of the data together with the fitted function m̂(x) =

∑
j β̂jBj(x).
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Figure 3.11.Bar plot of the coefficients β̂ estimated using the truncated power series regression model shown in figure 3.10.
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Figure 3.12. Scree plot of the singular values of the design matrix B (square root of the eigenvalues of the cross-product
matrix B′B) for the truncated power series regression model shown in figure 3.10.

B <- tbase(radiocarbon$cal.age, n.knots=10)

y <- radiocarbon$rc.age

beta <- qr.coef(qr(B), y)

y.hat <- B%*%beta

with(radiocarbon, {
plot(cal.age, rc.age)

lines(cal.age, y.hat)

})
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As we have seen in the above example the truncated power basis can easily lead to numerical

instability. Thus we will turn to an alternative basis, the so-called B-spline basis.
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B-splines. B-splines form a numerically more stable basis. They also make the definition of

meaningful penalty matrices easier, which we will exploit in section 3.3.
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(c) One basis function of de-
gree r = 2
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(d) One basis function of de-
gree r = 3

Figure 3.13.One basis function of a B-spline basis with degree r ∈ {0, 1, 2, 3} using r + 1 knots.

The key idea of B-splines is to use basis functions which are local, i.e. only non-zero for a

“small” proportion of the range of the covariate and which are bounded above. We can think of

B-splines as a sequence of “bumps”. Figure 3.13 shows a B-spline basis function for degrees

r ∈ {0, 1, 2, 3}. We will define B splines recursively.

Definition 3.7 (B-spline basis). (a) Given a set of l knots the B-spline basis of degree 0 is given

by the functions (B0
1(x), . . . , B

0
l−1) with

B0
j (x) =

{
1 for κj ≤ x < κj+1

0 otherwise.

(b) Given a set of l knots the B-spline basis of degree r > 0 is given by the functions

(Br
1(x), . . . , B

r
l+r−1) with

Br
j (x) =

x− κj−r

κj − κj−r

Br−1
j−1(x) +

κj+1 − x

κj+1 − κj+1−r

Br−1
j (x).

In order to be able to construct the splines recursively we have to introduce additional out-

side knots to the left of κ1 and to the right of κl. In order to be able to construct a basis of

degree r we need r additional outside knots on each side. Figure 3.15 illustrates this idea.

These outside knots are just used to construct the basis.

From their recursive definition one can derive that B-splines have the following properties.

These can also be seen in figure 3.15.

– A B-spline basis function of degree r is made up of r + 1 polynomials of degree r. Outside

these r + 1 intervals, the basis function is zero. This makes the basis functions local.

– At every x ∈ (a, b) only r + 1 basis functions are non-zero.

– The basis functions sum to 1 for all x ∈ [a, b]. This implies that we do not need to include

an intercept in the design matrix.



48 3. Splines Nonparametric Smoothing

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

B
j(x

)

(a) Degree r = 1

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
2

0.
4

0.
6

x

B
j(x

)

(b) Degree r = 2

−0.5 0.0 0.5 1.0 1.5

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

x

B
j(x

)

(c) Degree r = 3

Figure 3.14.B spline bases for degrees r ∈ {1, 2, 3}.
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– One can show (homework exercise) that the derivative of a B-spline of degree r is a B-spline

of degree r − 1.

We can fit a B-spline model to data by using the design matrix

B =


Br

1(x1) . . . Br
l+r−1(x1)

... . . . ...

Br
1(xn) . . . Br

l+r−1(xn)

 .

Example 3.7 (Radiocarbon data (continued)). Figure 3.15 illustrates the use of a B-spline basis

for fitting a spline-based flexible regression model for the radiocarbon data.

The B-spline basis is numerically much better behaved. The coefficient values (cf. figure

3.16) are not too large and the columns of the design matrix B are much less correlated than

the columns of the truncated power basis; the maximum correlation is 0.8309. The condition

number of B is 25.664 (cf. figure 3.17) and the condition number of B>B is 358.263. /

The R function bs from the package splines can generate a B-spline basis and can be

used inside lm. The number of basis functions needs to be chosen manually when using bs.

model <- lm(rc.age˜bs(cal.age, df=10), data=radiocarbon)

with(radiocarbon, {
plot(cal.age, rc.age)

lines(cal.age, predict(model))

})
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However, in terms of scaling and properties on the boundary, the basis returned by bs differs
slightly from the defintions above. The function given below (based on a function written by
Paul Eilers) generates a B spline basis which looks exactly like the ones shown above.

bbase <- function(x, xl = min(x), xr = max(x), n.knots = 10, deg = 3) {
# Construct B-spline basis (based on a function written by Paul Eilers)
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Figure 3.15. Illustration of flexible regression using the B-spline basis applied to the radiocarbon data. The top panel shows
the unscaled basis functions Bj(x). The middle panel shows the scaled basis functions β̂jBj(x). The bottom panel shows a
scatter plot of the data together with the fitted function f̂(x) =

∑
j β̂jBj(x).
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Figure 3.16.Bar plot of the coefficients β̂ estimated using the B-spline regression model shown in figure 3.15.
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Figure 3.17.Scree plot of the singular values of the design matrix B (square root of the eigenvalues of the cross-product matrix
B′B) for the B-spline regression model shown in figure 3.15. The condition number of B′B is 395.661.

nseg <- n.knots-1

dx <- (xr - xl) / nseg

knots <- seq(xl - deg * dx, xr + deg * dx, len = n.knots + 2*deg )

P <- outer(x, knots, tpower, deg)

n <- dim(P)[2]

D <- diff(diag(n), diff = deg + 1) / (gamma(deg + 1) * dx ˆ deg)

B <- (-1) ˆ (deg + 1) * P %*% t(D)

B

}

The function bbase can be used in the same way as the function tbase.

3.3 Penalised splines (P-splines)

A reminder of ridge regression

Ridge regression solves the penalised (or regularised) least-squares criterion

‖y −Bβ‖2 + λ‖β‖2,

where B is the matrix of covariates. The solution of this problem is given by

β̂ridge = (B>B+ λIp)
−1B>y

To compute β̂ridge it is numerically more stable to use a QR decomposition to minimise

the augmented system
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∥∥∥∥∥
(

y

0

)
−

(
B
√
λI

)
β

∥∥∥∥∥
2

When using splines the positioning of the knots can have a large influence on the fitted

function, especially if a comparatively small number of basis functions is used. One way of

avoiding this problem is to use penalised splines. They are based on the idea of not using the

number of basis functions to control the smoothness of the estimate, but to use a roughness

penalty to this end. This is similar in spirit to the approach discussed in section 3.2.3, though in

most cases it is not necessary to use one basis function per observation. Around 20 to 30 basis

functions should be sufficient. Without including a penalty in the fitting criterion this would

most likely lead to an overfit to the data. Thus we need to consider a penalised criterion which,

just like in section 3.2.3, contains a roughness penalty. In this section we will use ‖Dβ‖2 as

roughness penalty, i.e. we choose the regression coefficients β by minimising
n∑

i=1

(yi −m(xi))
2 + λ‖Dβ‖2. (3.3)

This objective function is, with the exception of the inclusion of the matrix D, the objective

function of ridge regression. As before, λ controls the trade-off between following the data

(small λ) and obtaining a strongly regularised curve (large λ). In analogy with ridge regression

one can show that the optimal β is given by

β = (B>B+ λD>D)−1B>y,

where B is the design matrix corresponding to the B-spline basis used for m(·). Numerically,

it is more advantageous to represent the penalty term λ‖Dβ‖2 by including it into an expanded

design matrix, i.e. to solve ∥∥∥∥∥
(

y

0

)
−

(
B
√
λD

)
β

∥∥∥∥∥
2

using a QR decomposition.

There are (at least) two possible approaches for choosing D. We can choose D to be a

difference matrix, or we can choose D such that ‖Dβ‖2 =
∫ b

a
m′′(x)2 dx. The former is both

conceptually and computationally simpler; the latter is closer to what the theory suggests as

optimal.

3.3.1 Difference penalties

The simplest choice of D is to use a difference penalty. Using the identity matrix for D, as

we would in ridge regression, is usually not appropriate: it shrinks all coefficients to zero,

i.e. it shrinks the regression function m(·) to zero as well, which rarely desirable (cf. figure
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3.18(a)). As we can see from the middle panel of figure 3.15, we obtain a smooth function

when neighbouring βj’s are similar.

This can be achieved by using one of the following choices. We assume that we are using

equally-spaced knots.

First-order differences. We can set

D1 =


1 −1 . . . 0
... . . . . . . 0

0 . . . 1 −1

 .

This calculates the roughness penalty as the sum of the squared first-order differences be-

tween the neighbouring βj , i.e.

‖D1β‖2 =
l+r−2∑
j=1

(βj+1 − βj)
2

This penalty shrinks the coefficients towards a common constant (cf. figure 3.18(b)) and

thus shrinks the regression function m(·) towards a constant function. Adding a constant

to m(·) does thus not change the penalty.

This penalty is the natural choice if B-splines of order 2 are used.

Second-order differences. We can set

D2 =


1 −2 1 . . . 0
... . . . . . . . . . 0

0 . . . 1 −2 1

 .

This calculates the roughness penalty as the sum of the squared second-order differences

between the neighbouring βj , i.e.

‖D2β‖2 =
l+r−3∑
j=1

(βj+2 − 2βj+1 + βj)
2

This penalty shrinks the coefficients towards a linear sequence (cf. figure 3.18(c)) and thus

shrinks the regression function m(·) towards a linear function. Adding a linear function to

m(·) does thus not change the penalty.

This penalty is the natural choice if B-splines of order 3 are used.

Higher-order differences. Higher-order difference matrices can be constructed using the re-

cursive formula Dr = D1Dr−1 where Dr denotes the penalty matrix of order r.

Example 3.8 (Radiocarbon dating (continued)). Figure 3.19 shows the model fit obtained when

fitting a P-spline model with different values of the smoothing parameter λ. The smaller λ the

closer the fitted function m̂(·) is to the data, which leads for very small values of λ to an overfit

to the data. /
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Penalty interpretation: Only an all-
zero coefficient vector incurs no
penalty.
Bayesian interpretation: Independent
zero-mean Gaussian prior.

0 ● ●

β1 β2

(a) Illustration of a 0-th order penalty
(ridge regression).

Penalty interpretation: Only an all
constant coefficient vector incurs no
penalty.
Bayesian interpretation: Conditional
distribution of β2 given β1 is Gaus-
sian with mean β1.
(First-order random walk)

0

● ●

β1 β2

(b) Illustration of a first-order penalty.

Penalty interpretation: Only a coeffi-
cient vector which forms a linear se-
quence incurs no penalty.
Bayesian interpretation: Conditional
distribution of β3 given β1 and β2 is
Gaussian with mean 2 · β2 − β1.
(Second-order random walk)

0

●

●

●

β1 β2 β3

(c) Illustration of a second-order
penalty.

Figure 3.18. Illustration of difference penalties of order 0 to 2.

3.3.2 Other penalties

Difference penalties are not the only choice of penalty matrix. An alternative choice consists

of choosing D such that ‖Dβ‖2 =
∫ b

a
m′′(x)2 dx, which is the roughness penalty we have

used in section 3.2.3.

Using that m′′(x) =
∑l+r−1

j=1 βjB
′′
j (x) we have that

∫ b

a

m′′(x)2 dx =
l+r−1∑
j=1

l+r−1∑
k=1

βjβk

∫ b

a

B′′
j (x)B

′′
k(x) dx

= β>


∫ b

a
B′′

1 (x)B
′′
1 (x) dx . . .

∫ b

a
B′′

1 (x)B
′′
l+r−1(x) dx

... . . . ...∫ b

a
B′′

1 (x)B
′′
l+r−1(x) dx . . .

∫ b

a
B′′

l+r−1(x)B
′′
l+r−1(x) dx

β

Thus we just need to choose D such that

D>D =


∫ b

a
B′′

1 (x)B
′′
1 (x) dx . . .

∫ b

a
B′′

1 (x)B
′′
l+r−1(x) dx

... . . . ...∫ b

a
B′′

1 (x)B
′′
l+r−1(x) dx . . .

∫ b

a
B′′

l+r−1(x)B
′′
l+r−1(x) dx

 .

3.3.3 Effective degrees of freedom

Finally we introduce the notion of effective degrees of freedom, also sometimes called the

effective number of parameters. In an un-penalised regression problem, the number of param-

eters provides us with information about the complexity of the model. More complex models

have more parameters than simpler models. For penalised regression problems counting the
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(a) λ = 0.0001.
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(b) λ = 0.01.

●
●

●
● ● ●

●

●

●
●

●

●
● ●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

2.0 2.2 2.4 2.6 2.8 3.0

2.
2

2.
4

2.
6

2.
8

Calibrated age (1000s)

R
ad

io
ca

rb
on

 a
ge

 (
10

00
s)

(c) λ = 1.
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(d) λ = 10.

Figure 3.19.P-spline with different values of the smoothing parameter λ fitted to the radiocarbon data.
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parameters is however not meaningful. Due to the roughness penalty not all parameters are

“free”. Recall that in linear regression the hat matrix S = B(B>B)−1B> is a projection matrix

and thus the trace tr(S) equals the number of parameters. We can generalise this to penalised

models and define the effective degrees of freedom as

edf(λ) = tr(Sλ),

where Sλ = B(B>B+ λD>D)−1B>.

3.3.4 Random effects interpretation

Random effect models – Likelihood

In the random effects model

y = Xα+ Zγ + ε

with error term ε ∼ N(0, σ2I) and random effect γ ∼ N(0, τ 2I) twice the loglikelihood is

(ignoring the variance parameters) given by

− 1

σ2

n∑
i=1

(yi − x>
i α− z>i γ)

2 − 1

τ 2

q∑
j=1

γ2
j

Comparing the penalised least squares criterion (3.3) to the loglikelihood suggests that we

can interpret the penalised regression model as a random effects model with no fixed effect

and random effect β. However the problem is that, at least for difference matrices, D>D is

not of full rank, thus we cannot take its inverse matrix square root. In order to obtain a proper

random-effects representation we need to “split” β into an (unpenalised) fixed effect and a

(penalised) random effect.

In the following we will only consider the case of a difference penalty of order 1 or 2. In the

case of a first-order difference penalty we define G = (1, . . . , 1). For a second-order difference

penalty we define G =

(
1 1 . . . 1

1 2 . . . l + r − 1

)
. The rows in G are parameter sequences

which do not incur a penalty, i.e. GD = 0. We also define H = D>(DD>)−1. We can now

write

β = Gα+Hγ

Because DD> is of full rank we have that DH = DD>(DD>)−1 = I. Plugging this into the

objective function (3.3) gives



Nonparametric Smoothing 3.3 Penalised splines (P-splines) 57

‖y −BGα−BHγ‖2 + λ
(
αG>D>DGα︸ ︷︷ ︸

=0

+2αG>D>DHγ︸ ︷︷ ︸
=0

+γ>H>D>DH︸ ︷︷ ︸
=I

γ
)

= ‖y −BGα−BHγ‖2 + λ‖γ‖2

Defining X = BG and Z = BH and denoting rows of X and Z by xi and zi respectively, this

is equivalent to
n∑

i=1

(yi − x>
i α− z>i γ)

2 + λ

q∑
j=1

γ2
j ,

which is −σ2 times the loglikelihood of a random-effects model, which we have stated above.

Hereby we have used λ = σ2/τ 2.

Thus the penalised regression model is nothing other than a random effects effect and we

can use standard mixed model software to fit these models. Most importantly we can estimate

the variances σ2 and τ 2 is a mixed model (using (restricted) maximum likelihood, which gives

us a way of estimating the otherwise rather elusive smoothing parameter λ̂ = σ̂2/τ̂ 2.

3.3.5 Bayesian interpretation

Rather than interpreting the penalised fitting criterion as a random effects model we can treat

the penalised regression model as a fully Bayesian model with the following prior and data

model.

Dβ|τ 2 ∼ N(0, τ 2I)

y|β, σ2 ∼ N(Bβ, σ2I)

The prior distribution of β is improper if D is not of full rank, which is the case for all differ-

ence penalties. However in the case of difference penalties the prior distribution of β can be

expressed in terms of random walks (cf. figure 3.18).

First-order random walk The first-order penalty corresponds to an improper flat prior on β1

and βj|βj−1 ∼ N(βj−1|τ 2) (for j ≥ 2).

Second-order random walk The second-order penalty corresponds to an improper flat prior on

β1 and β2 and βj|βj−1, βj−2 ∼ N(2βj−1 − βj−2|τ 2) (for j ≥ 3).

It seems natural to complement the model with priors for σ2 and τ 2

σ2 ∼ IG(aσ2 , bσ2)

τ 2 ∼ IG(aτ2 , bτ2)

Inference can then be carried out efficiently using a Gibbs sampler. This model and many other

Bayesian smoothing models are implemented in the software BayesX.



58 3. Splines Nonparametric Smoothing

Rather than placing a independent inverse-gamma prior on τ 2 we can set τ 2 = σ2/λ and

place a prior of our choice on λ. In this model the posterior distribution distribution of λ does

not follow a known distribution, but can be evaluated efficiently, as all the other parameters

can be integrated out in closed form. The drawback is that the integration over λ would need to

be carried out numerically, which suggests that this approach is better suited for an empirical

Bayes strategy for estimating λ.

3.3.6 Penalised splines in R

We can fit a penalised spline from “first principles” in R as follows.

B <- bbase(radiocarbon$cal.age, n.knots=25)

D <- diff(diag(ncol(B)), diff=2)

y <- radiocarbon$rc.age

lambda <- 1

beta <- qr.coef(qr(rbind(B, lambda*D)), c(y, rep(0, nrow(D))))

y.hat <- B%*%beta

with(radiocarbon, {
plot(cal.age, rc.age)

lines(cal.age, y.hat)

})
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The parameter λ would need to be tuned manually.

It is however simpler to use the function gam from the package mgcv, which automatically

tunes the smoothing parameters (though these can also be set manually, if needed).

model <- gam(rc.age˜s(cal.age), data=radiocarbon)

model

##

## Family: gaussian

## Link function: identity

##

## Formula:
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## rc.age ˜ s(cal.age)

##

## Estimated degrees of freedom:

## 7.5 total = 8.5

##

## GCV score: 0.001497071

plot(model, residuals=TRUE)
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The function s uses by default a penalty based on the integrated squared second derivative,

but can be set to use a difference penalty by using the additional argument bs=’ps’,

We can also use BayesX to estimate a penalised spline model in Bayesian framework (using

the package R2BayesX).

model <- bayesx(rc.age ˜ sx(cal.age), data = radiocarbon)

model

## Call:

## bayesx(formula = rc.age ˜ sx(cal.age), data = radiocarbon)

## Summary:

## N = 49 burnin = 2000 DIC = 70.3954 pd = 15.9458

## family = gaussian iterations = 12000 step = 10

plot(model)
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3.4 Splines in more than one dimension

3.4.1 Tensor-product splines

So far we have only covered the construction of spline bases in one dimension. In this section

we will see how we can turn a one-dimensional spline basis into a spline basis of any dimension.

To keep things simple we shall start with the bivariate case.

Suppose we have two covariates and want to fit a regression model of the form

E(Yi) = m(xi1, xi2),

where m(·, ·) is a bivariate surface.

We start by placing a basis on each dimension separately. Denote byB(1)
1 (x1), . . . , B

(1)
l1+r−1(x)

the basis functions placed on the first covariate and byB(2)
1 (x1), . . . , B

(2)
l2+r−1(x) the basis func-

tions placed on the second covariate. We now define a set of basis functions

Bjk(x1, x2) = B
(1)
j (x1) ·B(2)

k (x2)

for j ∈ 1, . . . , l1 + r− 1 and k ∈ 1, . . . , l2 + r− 1. Figure 3.20 shows how one such bivariate

basis function looks like for different degrees of the underlying univariate B-spline. Figure

3.21 shows all 36 bivariate basis functions resulting from two B-spline bases with six basis

functions each.

We will now use the basis expansion

m(xi1, xi2) =

l1+r−1∑
j=1

βjkBjk(x1, x2)

which corresponds to the design matrix
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(a) Basis of degree 0 (b) Basis of degree 1

(c) Basis of degree 2 (d) Basis of degree 3

Figure 3.20. Illustration of the construction of a single bivariate B-spline basis function Bjk(x1, x2) = Bj(x1) ·Bk(x2) for
B-spline bases of different degree.

Figure 3.21. Illustration of the construction of a bivariate B-spline basis created from a univariate B-spline basis.



62 3. Splines Nonparametric Smoothing

B =

(
B11(x11, x12) . . . Bl1+r−1,1(x11, x12) B12(x11, x12) . . . Bl1+r−1,2(x11, x12) . . . Bl1+r−1,l+2+r−1(x11, x12)

.

.

.
. . .

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

B11(xn1, xn2) . . . Bl1+r−1,1(xn1, xn1) B12(xn1, xn2) . . . Bl1+r−1,2(xn1, xn2) . . . Bl1+r−1,l+2+r−1(xn1, xn2)

)
and coefficient vector β = (β11, . . . , βl1+r−1,1, β12, . . . , βl2+r−1,2, . . . , βl1+r−1,l2+r−1)

>.

We can generalise this principle of constructing a basis to dimension p by multiplying all

combinations of basis functions of the p covariates.

Finally, we need to explain how a penalty matrix can be constructed for this bivariate spline

basis. We will explain the basic idea using figure 3.21. A simple way of constructing a rough-

ness penalty consist of applying the univariate roughness penalties to the rows and columns of

the basis functions. More mathematically, this corresponds to taking Kronecker products, i.e.

using the difference matrix

D =

(
D(2) ⊗ Il1+r−1

Il2+r−1 ⊗D(1)

)
,

where D(1) is the univariate difference matrix used for the first dimension and D(2) is the

univariate difference matrix used for the second dimension.

Example 3.9 (Great Barrier Reef (continued)). Figure 3.22 shows the result of fitting a tensor-

product-spline model to the data from example 4.1. The objective is to model a score which

represents the composition of the catch as a function of longitude and latitude. /

In principle, Tensor-product spline bases can be constructed for any dimension, however

the number of basis functions scales exponentially in the dimension, so

Tensor-product splines do not scale well as the dimension is increased. The number of basis

function increases exponentially in the dimension. Thus they cannot be used for dimensions

beyond three (and in some cases even two).

The R code below illustrates how tensor product P-splines can be fit from first principles.

3.4.2 Thin-plate splines

In this section we generalise natural cubic splines to the bivariate case, which provides an

alternative way of bivariate spline smoothing. In section 3.2.3 we have seen that the minimiser

of
n∑

i=1

(yi −m(xi))
2

︸ ︷︷ ︸
Fit to the data

+λ

∫ b

a

m′′(x)2 dx︸ ︷︷ ︸
Roughness penalty

,

has to be a natural cubic spline.
Generalising this variational problem to the bivariate case leads to the objective function

n∑
i=1

(yi −m(xi1, xi2))
2

︸ ︷︷ ︸
Fit to the data

+λ

∫ ∫ (
∂2

∂x2
1

m(x1, x2) + 2
∂2

∂x1∂x2
m(x1, x2) +

∂2

∂x2
2

m(x1, x2)

)2

dx2 dx1︸ ︷︷ ︸
Roughness penalty

,
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Figure 3.22.Predicted score obtained from a tensor-product-spline model fitted to the Great Barrier Reef data.

The roughness penalty can be interpreted as the bending energy of thin plate of metal. One

can show that the solution to his problem has to be a so-called thin-plate spline of the form

m(ξ1, ξ2) = β0 + β1ξ1 + β2ξ2 +
n∑

i=1

β2+iK ((ξ1, ξ2) , (xi1, xi2)) ,

where K ((ξ1, ξ2) , (ζ1, ζ2)) =
1
2
((ζ1 − ξ1)

2 + (ζ2 − ξ2)
2) · log ((ζ1 − ξ1)

2 + (ζ2 − ξ2)
2).

Similar to what we have discussed in section 3.3 we can estimate the coefficients βj using

a penalised least squares criterion. In fact, we need to minimise the objective function

n∑
i=1

(yi −m(xi1, xi2))
2 + λβ′Pβ

subject to the constraints that
∑n

i=1 β2+i =
∑n

i=1 xi1β2+i =
∑n

i=1 xi2β2+i = 0, where

P =



0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 0 . . . 0

0 0 0 K ((x11, x12) , (x11, x12)) . . . K ((x11, x12) , (xn1, xn2))
...

...
...

... . . . ...

0 0 0 K ((xn1, xn2) , (x11, x12)) . . . K ((xn1, xn2) , (xn1, xn2))
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Thin-plate splines scale much better in dimensionality, however they do not scale as well

as tensor-product splines in the number of data points. Thin-plate splines are the default in

mgcv’s function gam.

model <- gam(Score1˜s(Latitude, Longitude), data=trawl)

vis.gam(model, plot.type="contour")
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4
Flexible regression in more than one dimen-

sion

In this chapter, methods of extending flexible regression to more than one covariate will be ex-

plored. For one covariate, spline methods have been discussed in some detail in earlier chapters

while a local fitting approach was outlined in the preliminary material. We will revisit the local

linear approach and see how that can be extended, before returning to splines. A more general

approach known as additive modeling will then be described. First of all there is a reminder of

the example which was used earlier.

Example 4.1 (Great Barrier Reef data). A survey of the fauna on the sea bed lying between the

coast of northern Queensland and the Great Barrier Reef was carried out. The sampling region

covered a zone which was closed to commercial fishing, as well as neighbouring zones where

fishing was permitted. The variables are:
Zone an indicator for the closed (1) and open (0) zones

Year an indicator of 1992 (0) or 1993 (1)

Latitude latitude of the sampling position

Longitude longitude of the sampling position

Depth bottom depth

Score1 catch score 1

Score2 catch score 2
The details of the survey and an analysis of the data are provided by Poiner et al. (1997), The

effects of prawn trawling in the far northern section of the Great Barrier Reef, CSIRO Division

of Marine Research, Queensland Dept. of Primary Industries. /
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4.1 The local fitting approach with a single covariate

We will briefly rehearse the idea of local fitting in the context of regression data on a response

variable y and a single covariate x. A simple nonparametric model has the form

yi = m(xi) + εi,

where the data (xi, yi) are described by a smooth curve m plus independent errors εi. One

approach to estimating m is to use a model we know and fit it locally. For example, we can

construct a local linear regression. This involves solving the least squares problem

min
α,β

n∑
i=1

{yi − α− β(xi − x)}2w(xi − x ;h)

and taking as the estimate at x the value of α̂, as this defines the position of the local regression

line at the point x. An even simpler approach is to fit a local mean. Specifically, at any point

of interest x, we choose our estimator of the curve there as the value of µ which minimises
n∑

i=1

{yi − µ}2w(xi − x;h)

and this is easily shown to produce the ‘running mean’

m̂(x) =

∑n
i=1 w(xi − x;h) yi∑n
i=1w(xi − x;h)

.

If we do the algebra to minimise the sum-of-squares in the local linear approach, then an ex-

plicit formula for the local estimator can be derived as

m̂(x) =
1

n

n∑
i=1

{s2(x;h)− s1(x;h)(xi − x)}w(xi − x;h)yi
s2(x;h)s0(x;h)− s1(x;h)2

,

where sr(x;h) = {
∑

(xi − x)rw(xi − x;h)}/n.

In both the local mean and the local linear cases, the estimator is seen to be of the form∑
i κiyi, where the weights κi sum to 1. There is a broad sense then in which even the lo-

cal linear method is ‘locally averaging’ the data. In fact, many other forms of nonparametric

regression can also be formulated in a similar way.

The preliminary material explored the properties of these estimators and showed that the

local linear approach has some advantages. Some useful descriptions of the behaviour of the

local linear approach is that

E{m̂(x)} ≈ m(x) +
h2

2
m′′(x),

var{m̂(x)} ≈ 1

nh

{∫
w(u)2du

}
σ2 1

f(x)
,

where σ2 denotes the variance of the error terms εi.
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It is helpful to express the fitted values of the nonparametric regression as

m̂ = Sy,

where m̂ denotes the vector of fitted values, S denotes a smoothing matrix whose rows consist

of the weights appropriate to estimation at each evaluation point, and y denotes the observed

responses in vector form. This linear structure applies with both local fitting and spline ap-

proaches and it is very helpful.

For example, it gives us a route to defining degrees of freedom by analogy with what happens

with the usual linear model, where the number of parameters is the trace of the projection

matrix. An approximate version of these can be constructed for nonparametric models as

df = tr {S} .

Similarly, we can construct an estimate of the error variance σ2 through the residual sum-of-

squares, which in a nonparametric setting is simply RSS =
∑

{yi − m̂(xi)}2. This leads to

the estimator of the error variance σ̂2 = RSS/df. The linear structure of the fitted values also

makes it very easy to produce standard errors which quantify the variability of the estimate at

any value of x.

library(sm)

sm.regression(trawl$Longitude, trawl$Score1, se = TRUE)
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Figure 4.1.A flexible regression curve for the Reef data, with variability bands indicated.

Unfortunately, we can’t easily produce confidence intervals for the curve because of the bias

mentioned above. However, by adding and subtracting two standard errors at each point on the

curve we can produce variability bands which express the variation in the curve estimate. In

fact, we don’t need to rely on the asymptotic formula for variance. If m̂ denotes the estimated

values of m at a set of evaluation points then
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var{m̂} = var{Sy} = SSTσ2

and so, by plugging in σ̂2 and taking the square root of the diagonal elements, the standard

errors at each evaluation point are easily constructed. The plot below illustrates this on the

Reef data.

4.2 Local fitting with more than one covariate

It is rare to have problems which involve only a single covariate. For the Reef data a natural

extension is to look at the relationship between the catch score and both latitude (x1) and

longitude (x2), in a model

yi = m(x1i, x2i) + εi.

The local linear approach is particularly easy to extend to this setting. If the observed data are

denoted by {x1i, x2i, yi; i = 1, . . . , n}, then for estimation at the point (x1, x2) the weighted

least squares formulation is

min
α,β,γ

n∑
i=1

{yi − α− β(x1i − x1)− γ(x2i − x2)}2w(x1i − x1;h1)w(x2i − x2;h2).

The value of the fitted surface at (x1, x2) is simply α̂. With careful thought, the computation

can be performed efficiently.

This is illustrated below with one year of Reef data. The effect of longitude dominates, as

we see from the earlier nonparametric regression. However, a small effect of latitude is also

suggested.

Notice that two smoothing parameters, h1 and h2, are now required - one for each covariate.

4.3 Splines with more than one covariate

As we have seen earlier, a b-spline basis provides a set of building blocks for a flexible regres-

sion function. The basic idea is to use the combination of a set of overlapping functions and a

set of weights for each component to control the shape of the surface created. If we have two

covariates then these basis functions need to be functions of both covariates.

y =

p∑
i=1

p∑
j=1

βijbij(x1, x2) + ε.

A very simple way of achieving this is to create the basis functions from pairwise products of

functions of a single covariate. Specifically,

bij(x1, x2) = bi(x1)bj(x2).
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trawl1 <- subset(trawl, Year == 0)

sm.regression(trawl1[ , c("Longitude", "Latitude")], trawl1$Score1, theta = 120)
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Figure 4.2.Reef data with two covariates for one year.

Figure 4.3.A graphical illustration of b-spline basis functions in the two-dimensional case.
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The graphics in Figure 4.3 try to illustrate what is going on in terms of the basis functions.

In terms of a matrix formulation, a b-spline representation for a flexible function of x1 is

y = B1α1 + ε, where y now represents the vector of observed responses, x1 represents a

vector of observed covariate values, B1 is a matrix with columns which evaluate each basis

function at all the values of x1, and ε represents a vector of errors. Similarly y = B2α2 + ε is

a model for a flexible regression based on x2. A simple way of combining both covariates is

as y = B12α12 + ε, where the columns of the matrix B12 are constructed from all the pairwise

products of the columns of B1 and B2 and α12 is the corresponding set of parameters. In fact,

the parameters in α12 could be annotated as αij , where i and j correspond to the rows and

columns of the layout of basis functions. That notation makes it easier to consider suitable

penalty functions, if we wish to employ them. A simple option for a penalty function is

λ1

p∑
i=2

p∑
j=1

(αij − αi−1,j)
2 + λ2

p∑
i=1

p∑
j=2

(αij − αi,j−1)
2.

This is based on first differences but clearly second differences could also be used. The first term

penalises roughness down the ‘columns’ while the second term penalises roughness across the

‘rows’.

Notice again that two penalty parameters, λ1 and λ2, are required - one for each covariate.

4.4 How much to smooth

One of the key questions with nonparametric models is how much smoothing to apply to the

data. For exploratory work, it can often be helpful simply to experiment with different degrees

of smoothing. One appealing way to do that is to specify how many degrees of freedom (see

discussion above) you would like to have. This puts things on a natural scale.

However, in more complicated situations that can be difficult and it is helpful to have an

automatic way of producing a suitable level of smoothing. There are several ways to do this,

some of which are carefully tailored to particular models. Here we will outline a method called

cross-validation which, although it has some difficulties, has the advantage that the generality

of its definition allows it to be applied to quite a wide variety of settings. In the present setting,

the idea is to choose the smoothing parameter h (possibly a vector) to minimise

CV:
n∑

i=1

{yi − m̂−i(xi)}2.

The subscript −i denotes that the estimate of the smooth curve at xi is constructed from the

remainder of the data, excluding xi. The aim then is to evaluate the level of smoothing through

the extent to which each observation is predicted from the smooth curve produced by the rest of

the data. The value of h which minimises the expression above should provide a suitable level
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of smoothing. The linearity of smoothing operations allows the computations to be performed

in a very efficient manner.

It is often convenient to use an approximation known as generalised cross-validation (GCV)

which has the efficient computational form

GCV: nRSS/{tr {I − S}2}.

Altering the smoothing parameters changes the entries of S, which in turns affects the value

of gcv.

The degree of smoothing can also be selected automatically by minimising a quantity based

on Akaike’s information criterion, namely

AIC:
RSS
n

+ 1 +
2(ν + 1)

(n− ν − 2)
,

where ν denotes the degrees of freedom.

4.5 A simple additive model

It would be unrealistic to generalise this much further, by modelling additional covariates

through functions of ever-increasing dimension. However, now that we have tools available

to estimate smooth curves and surfaces, linear regression models can be extended to additive

models as

yi = β0 +m1(x1i) + . . .+mp(xpi) + εi, i = 1, . . . , n,

where themi are functions whose shapes are unrestricted, apart from an assumption of smooth-

ness. This gives a very flexible set of modelling tools. To see how these models can be fitted,

consider the case of only two covariates,

yi = β0 +m1(x1i) +m2(x2i) + εi, i = 1, . . . , n,

A rearrangement of this as yi − β0 − m2(x2i) = m1(x1i) + εi suggests that an estimate of

component m1 can then be obtained by smoothing the residuals of the data after fitting m̂2,

m̂1 = S1(y − ȳ − m̂2)

and that, similarly, subsequent estimates of m2 can be obtained as

m̂2 = S2(y − ȳ − m̂1).

Repetition of these steps gives a simple form of the backfitting algorithm. The same idea ap-

plies when we have more than two components on the model. At each step we smooth over

a particular variable using as response the y variable with the current estimates of the other

components subtracted.
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If a spline basis is used, then the backfitting algorithm is not required as we have a form of

linear model with a penalty term. This can be written as

yi = Bα + εi

where, as usual, the columns of the matrix B evaluate the basis functions at each observation.

This timeB is constructed by stacking together the columns of a basis matrix for each covariate.

The model is fitted by choosing the vector of weights α to minimise

(y −Bα)T (y −Bα) + αTPα, (4.1)

where the penalty matrix P is of block-diagonal form, constructed from the penalties from the

individual model components, with the jth component λjD
T
j Dj , where Dj is a differencing

matrix. This leads to the direct solution

α̂ =
(
BTB + P

)−1
BTy.

The terms of an additive model are unidentifiable without imposing some constraint, as a

constant can be added and subtracted from the individual components without changing the

resulting value. A simple solution is to require that
∑

i mj(xij) = 0 for each component j.

A simple example of an additive model for the Reef data is shown below.

4.6 More general additive models

A more general formulation of an additive model is:

yi = α +m1(x1i) + . . .+mp(xpi) + εi.

Further generality can be achieved by the use of a link function to create a generalised additive

model or gam for short. At the moment we will consider additive models, with link functions

deferred to a later session, but it is convenient to use the terminology gam in this case too.

A simple extension of the steps outlined for two covariates gives a form of the backfitting

algorithm. In order to ensure identifiability, we assume that
∑

i mj(xji) = 0, for each j. At

each step we smooth over a particular variable using as response the y variable with the current

estimates of the other components subtracted.

The backfitting algorithm can be expressed as:

m̂
(r+1)
j = Sj

(
y − α̂1 −

∑
k<j

m̂
(r+1)
k −

∑
k>j

m̂
(r)
k

)
.

We can also express these in terms of projection matrices.
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Figure 4.4.The top left hand plot shows a two-dimensional smooth estimate of the combined effects of latitude and longitude
on the catch score for the Reef data. The lower plots show the estimated components from a gam model. The top right hand
plot shows the surface produced by the combination of the two gam components.
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P
(l)
j = (In − P0)Sj(In −

∑
k<j

P
(l)
k −

∑
k>j

P
(l−1)
k ),

ŷ = Py = (P0 +

p∑
j=1

Pj)y

If a regression splines or p-splines model is adopted, the each of the functions mi(x) is

represented by a linear expression and so the model itself remains linear. It can then be fitted

by standard linear regression, incorporating a set of penalties in the p-splines case. This has the

advantage of direct, rather than iterative, fitting but it has the potential disadvantage of needing

to invert very large matrices if the model has many terms.

The plots below show data from a survey of dissolved oxygen (DO) in the River Clyde at

a single sampling station, related to potential explanatory variables of interest. The additive

terms usefully capture the underlying trends.
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Figure 4.5. The top row of plots show DO against three covariates. The bottom row of plots show the fitted components, and
partial residuals, of a gam model.

As ever, a method of determining the level of smoothing in an additive model is required.

There are several potential approaches and some of these will be discussed later. For the mo-

ment, cross-validation provides a convenient option. The mgcv package for R has efficient

algorithms for identifying the optimal smoothing parameters.
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4.7 Comparing additive models

While models of this type provide very flexible and visually informative descriptions of the

data, it is also necessary to consider how models can be compared and inferences drawn. Hastie

& Tibshirani (1990) recommend the use of residual sums-of-squares and their associated ap-

proximate degrees of freedom to provide guidance for model comparisons.

For an additive model, the residual sum-of-squares can easily be defined as

RSS =
n∑

i=1

(yi − ŷi)
2,

where ŷi denotes the fitted value, produced by evaluating the additive model at the observation

xi. We can write the residual sum-of-squares as

RSS =
n∑

i=1

(yi − ŷi)
2 = y>(I − P )>(I − P )y,

where P denotes the projection matrix discussed earlier. The approximate degrees of freedom

for error can be defined as

df = tr
{
(I − P )>(I − P )

}
.

In an obvious notation, comparisons of two models can expressed quantitatively in

F =
(RSS2 − RSS1)/(df2 − df1)

RSS1/df1
,

by analogy with theF -statistic used to compare linear models. Unfortunately, this analogy does

not extend to distributional calculations and no general expression for the distribution of this

test statistic is available. However, Hastie and Tibshirani (1990, sections 3.9 and 6.8) suggest

that at least some approximate guidance can be given by referring the observed nonparametric

F -statistic to an F distribution with (df2 − df1) and df1 degrees of freedom.

There are corresponding analogies for the Wald approach to testing, using quadratic forms

associated with individual terms in an additive model to assess their significance. Wood (2006)

describes the details in the context of testing whether relevant spline coefficients might be 0.

The reef data provide a simple illustration of how model comparisons may be made, us-

ing the mgcv package. The table below indicates that the evidence for a latitude effect is not

compelling.

## anova(model2)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(latitude) 4.329 5.284 2.131 0.0822

s(longitude) 4.763 5.791 29.386 <2e-16
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4.8 Further examples of additive models

4.8.1 Mackerel eggs in the Eastern Atlantic
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Figure 4.6.Locations of mackerel egg samples.

A further example uses data from a multi-country survey of mackerel eggs in the Eastern

Atlantic. Figure 4.6 shows the locations at which samples were taken. An additive model for

egg density might reasonably contain terms for depth and temperature, plus a joint term for

latitude and longitude, to reflect spatial position. This leads to the model

y = β0 +m12(x1, x2) +m3(x3) +m4(x4) + ε,

where m12 represents a smooth two-dimensional function of latitude (x1) and longitude (x2),

and m3 and m4 represent additive terms of the usual type for depth (x3) and temperature (x4).

Two-dimensional terms require restrictions to define the functions uniquely, as in the one-

dimensional case. A simple convention is
∑n

i=1m12(x1i, x2i) = 0.

Figure 4.7 gives the details of a fitted gam model for the mackerel data.

4.8.2 Interactions in gam models

What does an interaction mean in a gam model? A broad interpretation of an interaction be-

tween two covariates is that the effect of one depends on the setting of the other. For a gam,
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model1 <- gam(log(Density) ˜ s(log(mack.depth)) + s(Temperature)

+ s(mack.lat, mack.long), data = mackerel)

par(mfrow=c(1,3), mar = c(3, 3, 1, 1), mgp = c(1.2, 0.2, 0), tcl = -0.2)

plot.gam(model1, se = TRUE, shade = TRUE, residuals = TRUE)
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anova(model1)

Family: gaussian

Link function: identity

Formula:

log(Density) ˜ s(log(mack.depth)) + s(Temperature) + s(mack.lat,

mack.long)

Approximate significance of smooth terms:

edf Ref.df F p-value

s(log(mack.depth)) 2.815 3.538 18.055 9.55e-12

s(Temperature) 2.316 2.904 3.872 0.0147

s(mack.lat,mack.long) 20.197 24.788 5.060 1.03e-12

Figure 4.7.A gam model for the density of mackerel eggs. The right hand plot uses contours to indicate the spatial effect, with
coloured contours to indicate variability.
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this means that we need a smooth surface to describe the combined effects of the two covari-

ates (just as we used for the spatial term in the mackerel data above). Two one-dimensional

functions to capture the effects of the separate (marginal) covariates is no longer enough.

A model for the dissolved oxygen in the River Clyde illustrates this, expressed here in R

syntax:

DO ˜ s(lSalinity, Station) + s(Temperature, Station) + s(Year, Station)

This builds a model for the whole river, using data at many sampling stations. (Some care has

to be taken here because of the repeated measures nature of the data. We will ignore this com-

plication for the moment.) We might reasonably expect that the effects of salinity, temperature

and year will be different at different locations on the river. The interaction terms are shown in

the surface plots.
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Figure 4.8.The top row of plots show DO against four covariates. The lower row of plots show interaction terms from a fitted
gam model.

4.8.3 Bayesian additive models

The penalised spline approach to fitting flexible regression curves and surfaces, and additive

models, is strongly suggestive of a Bayesian approach. Expression (4.1) can be viewed as the

combination of a log-likelihood (quantifying how well the model fits the data) and a prior for

the parameters α (expressing correlation between neighbouring values). This can be developed

into a fully Bayesian approach, including priors for the unknown hyperparameter λ. Some

aspects of this will be discussed later in the course. However, for the moment we will use the

BayesX package (see www.bayesx.org) to experiment with this approach. Figure 4.9 shows
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two models for the Reef data which are (reassuringly) very similar to the models produced

earlier.
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library(R2BayesX)

model1 <- bayesx(Score1 ˜ sx(Longitude), data = trawl)
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model2 <- bayesx(Score1 ˜ sx(Longitude) + sx(Latitude), data = trawl)
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Figure 4.9.Flexible regression models for the Reef data, using a fully Bayesian approach implemented in the BayesX package.
The upper plot shows a model for longitude alone, while the lower plots show the components of an additive model for
longitude and latitude.



5
Bayesian nonparametrics and Kernel meth-

ods

In this section we will introduce two Bayesian nonparametric methods, Gaussian processes

and Dirichlet processes. Gaussian processes are a Bayesian model for function estimation and

Dirichlet processes are a Bayesian model for density estimation. They have in common that

the object for which we want to perform inference is an infinite-dimensional object rather than

a finite-dimensional vector of parameters.

5.1 Gaussian Processes

5.1.1 Bayesian Linear Model

In this section we will quickly revise the Bayesian Linear Model, i.e. we assume the linear

regression model

yi|β ∼ N(x>
i β, σ

2) i.i.d.

or equivalently,

y|β ∼ N(Xβ, σ2 · I) (5.1)

Rather than using the usual normal-inverse-gamma prior jointly placed on (β, Σ2), we will for

the moment assume that σ2 is known and just place a Gaussian prior on β, i.e.

β ∼ N(0, τ 2 · I). (5.2)

We can write the p.d.f. of the posterior distribution of β as
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f(β|y1, . . . , yn) ∝

(
n∏

i=1

f(yi|β)

)
︸ ︷︷ ︸

Likelihood

· f(β)︸︷︷︸
prior

=

(
n∏

i=1

1√
2πσ2

exp

(
−(yi − x>

i β)
2

2σ2

))
·
(

1√
2πτ 2

)p

exp

(
−
∑p

j=1 β
2
j

2τ 2

)
Collecting terms, taking logs and keeping only terms involving β yields the log-posterior den-

sity

log f(β|y1, . . . , yn) = const− 1

2σ2

n∑
i=1

(yi − x>
i β)

2 − 1

2τ 2

p∑
j=1

β2
j ,

which is, up to a multiplicative constant, the objective function used in ridge regression with

λ = σ2

τ2
.

One can show (by completing the square) that the posterior distribution of β is

β|y1, . . . , yn ∼ N

((
X>X+

σ2

τ 2
I

)−1

X>y,

(
X>X+

σ2

τ 2
I

)−1
)

Thus the ridge regression estimate β̂
ridge

= (X>X+ λI)−1X>y is the Bayesian maximum-a-

posteriori (MAP) estimate of β.
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(a) Samples from the prior distribution.
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(b) Data and samples from the posterior distribution.

Figure 5.1.Draws from the prior distribution and the posterior distribution of a Bayesian linear model. The bold line corre-
sponds to the mean, the shaded area corresponds to pointwise 95% credible intervals.

Figure 5.1 illustrates this idea of Bayesian inference for a linear model with design matrix

X =


1 x1

...
...

1 xn

. Panel (a) shows ten draws from the prior distribution, whereas panel (b)

shows draws from the posterior distribution given the data.

So far we have stated the model structure of the Bayesian linear model in terms of the mean,

i.e. E(y|β) = Xβ. We will now explain that we can rewrite this, such that exactly the same

model structure can be expressed in terms of covariances.
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To achieve this, we try to re-express the model without reference to β, i.e. we suppose

that we are not interested in the regression coefficients β, but only in predictions for future

observations. Essentially we have to combine (5.1) and (5.2) to find the marginal distribution

of y. The theory of the normal distribution tells us that the marginal distribution of y is also a

normal distribution, so we only need to find its expected values and its variance.

E(y) = Eβ

(
Ey|β (y)

)
0

Var(y) = Varβ
(
Ey|β (y)

)
+ Eβ

(
Vary|β (y)

)
= τ 2XX> + σ2I

thus the Bayesian linear model is equivalent to assuming that

y ∼ N
(
0, τ 2XX> + σ2I

)
. (5.3)

What we have achieved by eliminating β1 is to move the structural assumption of the

Bayesian linear model regression from the mean into the covariance of the Gaussian distri-

bution. The key idea which allows us to generalise the Bayesian linear model to Gaussian

processes is that we can replace XX> by a more general matrix.

5.1.2 Definition of a Gaussian process

We start by defining what a Gaussian process actually is. We define a Gaussian process to

be a collection of random variables yi = y(xi) (i = 1, 2, 3, . . .) depending on covariates xi

such that any finite subset of random variables y = (y1, . . . , yn) = (y(x1), . . . , y(xn)) has a

multivariate normal distribution. In geostatistics, this model is known as a kriging model2.

We assume that we can only make observations subject to noise and assume (without any

loss of generality) a mean of 0, i.e.

y ∼ N
(
0,K+ σ2I

)
. (5.4)

with

K =


k(x1,x1) . . . k(x1,xn)

... . . . ...

k(xn,x1) . . . k(xn,xn)

 . (5.5)

If we write yi = mi + εi with mi = m(xi) and εi ∼ N(0, σ2) then (5.4) is equivalent to

y|m ∼ N(m, σ2I) m ∼ N (0,K) .

i.e. Cov(mi,mj) = k(xi,xj)

1 To be mathematically more precise, we have integrated out β.
2 named after Daniel Gerhardus Krige, a South African mining engineer and professor at the University of the Witwatersrand,

who first suggested kriging to model mineral deposits.
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The function k(·, ·) is called covariance function or kernel function. We are free to choose

any k(·, ·) as long as it is symmetric in its arguments and the matrix K from (5.5) is positive

semi-definite.

Note that the Bayesian linear model (5.3) is a special case of a Gaussian process with co-

variance function k(xi,xj) = τ 2 · x>
i xj .

We often make the assumption that the Gaussian process is stationary, which is the case if

and only if

k(xi,xj) = k(xi − xj).

Figure 5.2 shows a draw from a non-stationary Gaussian process.
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(a) The variance of f(·) is smaller to the left than to the right.
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(b) The variance of f(·) is smaller at the bottom-left.

Figure 5.2.Draw from a one-dimensional and two-dimensional non-stationary Gaussian process.

An additional simplifying assumption is that the process is isotropic, which is the case if

and only if

k(xi,xj) = k(‖xi − xj‖),

i.e. only distance, but not direction matters. For the remainder we will assume that the Gaussian

process is stationary and isotropic. Figure 5.3 shows a draw from a non-isotropic Gaussian

process.

Furthermore, a process is called separable if

k(xi,xj) = k1(xi1 − xj1) · k2(xi2 − xj2) · · · kp(xp1 − xp2).

If the covariance function is separable and the data is observed on a regular grid then we can

write the covariance matrix K of the process as a Kronecker product

K = K1 ⊗K2 ⊗ . . .⊗Km,



Nonparametric Smoothing 5.1 Gaussian Processes 85

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−2

−1

0

1

2

3

Figure 5.3. Draw from a non-isotropic two-dimensional Gaussian process. The variability in the horizontal direction is less
than the one in the vertical direction.

where Km is the covariance matrix constructed using the unique values of the m-th block of

covariate only. In this case one can evaluate the posterior distribution without ever having to

compute K, which is a rather large matrix. The matrices Kj are of much smaller dimensions

allowing for very efficient computations.

The idea of separability can also be used to define a covariance function by multiplying

different covariance functions acting on separate sub-vectors of xi. Separability is often as-

sumed in spatio-temporal models, where data is observed over time in space. In this case

xi = (si1, si2, ti) = (si, ti), the covariates consist of the spatial coordinates si = (si1, si2)

and time ti. In such models often makes the separability assumption that

k((si, ti), (sj, tj)) = k1(si, sj)k2(ti, tj)

with k1(·, ·) being a covariance function for space and k2(·, ·) being a covariance function for

time.

We will discuss different choices of k(·, ·) later on in section 5.1.4. In geostatistics it is quite

common to use a different parametrisation and work with the so-called (semi-)variogram

γ(xi,xj) =
1

2
Var (mi −mj) =

1

2
(k(xi,xi) + k(xj,xj))− k(xi,xj)

instead of the covariance function. There is a one-to-one mapping between the two, so you can

either work with the (semi-)variogram or the covariance function.
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5.1.3 Predictions for Gaussian processes

Conditionals of Gaussian distributions

Assume that (
y1

y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
Then the conditional distribution of y2 given y1 is

y2|y1 ∼ N
(
µ2 +Σ21Σ

−1
11 (y1 − µ1),Σ22 −Σ21Σ

−1
11 Σ12

)

We can compute predictions for a new observation with covariates x0 by looking at the joint

distribution (
y

y0

)
∼ N

((
0

0

)
,

(
K+ σ2I k0

k>
0 k00 + σ2

))
,

where K is as defined in the preceding section, k0 = (k(x0,x1), . . . , k(x0,xn)) is the covari-

ance between the training data and the test case and k00 = k(x0,x0). Then using the formula

for the conditional distribution of a Gaussian we obtain

y0|y ∼ N
(
k>
0

(
K+ σ2I

)−1
y,
(
k00 − k>

0

(
K+ σ2I

)−1
k0

)
+ σ2

)
The mean of the posterior distribution of y0 can be shown to the best linear unbiased predictor

(BLUP). The formula above gives the variance to be used for a prediction interval for a new

observation. If we want to get the variance for a confidence interval for its mean we have to omit

the “+σ2” term accounting for the error on the unseen data, i.e. the variance of the predicted

mean is
(
k00 − k>

0 (K+ σ2I)
−1

k0

)
.

Figure 5.4 shows five draws each from the prior distribution (panel (a)) and the posterior

distribution (panel (b)) from a simple Gaussian process fitted to data.

5.1.4 Covariance functions (kernel functions)

Squared exponential (SE) The squared exponential (or, Gaussian) covariance function is de-

fined as

k(xi,xj) = τ 2 · exp(−ρ‖xi − xj‖2)

The squared exponential covariance function generates very smooth processes: their paths

are infinitely differentiable, which is often unrealistically smooth.

Exponential covariance function –Ornstein-Uhlenbeck (OU) process The exponential covari-

ance function is defined as
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(a) Samples from the prior distribution.
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(b) Samples from the posterior distribution.

Figure 5.4.Draws from the prior distribution and the posterior distribution of a simple Gaussian process (Matérn covariance
with κ = 2.5). The bold line corresponds to the mean, the shaded area corresponds to pointwise 95% credible intervals.

k(xi,xj) = τ 2 · exp(−ρ‖xi − xj‖)

It leads to a continuous, but not a differentiable process, which is often unrealistically

rough. The OU process is the continuous equivalent of an AR(1) process.

γ-exponential One can generalise the above two covariance functions by considering

k(xi,xj) = τ 2 · exp(−ρ‖xi − xj‖γ)

with 0 < γ ≤ 2, which allows choosing any model between the rough OU process and the

squared exponential. However it is less flexible than the Mateérn class.

Matérn class The Matérn covariance function3 is more flexible than the γ-exponential covari-

ance function, however also much more complex.

k(xi,xj) = τ 2 · 1

Γ (κ)2κ−1
(2
√
κρ‖xi − xj‖)κKκ

(
2
√
κρ‖xi − xj‖

)
,

whereKκ(·) is the modified Bessel function of the second kind. Special cases of the Matérn

covariance function are the OU process (κ = 1
2
) and the squared exponential (κ → +∞).

Figure 5.5 shows functions drawn the from Matérn class for different values of κ.

For all of the above covariance functions, the parameter ρ controls how fast the correlation

decays. The larger ρ the quicker the decay of the correlation. The parameter τ 2 controls the

prior variance of the signal. All of the above covariance functions are stationary and isotropic,

as all are based only on ‖xi − xj‖.

5.1.5 Estimation of hyperparameters

We have so far assumed that the hyperparameters (σ2 and parameters of the kernel function)

are known. In practice however, these need to be estimated from the data. This is best done
3 named after Bertil Matén, a Swedish statistician.
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(a) κ = 0.5 (OU process)
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(b) κ = 0.5 (OU process)
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(c) κ = 1.5
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(e) κ = +∞ (SE)
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(f) κ = +∞ (SE)

Figure 5.5. Samples drawn from the prior distribution of a Gaussian process with a Matérn covariance function for of κ ∈
{0.5, 1.5,+∞}. The parameter ρ was chosen so that the covariance at lag 1

2
is the same for all plots.
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using the marginal log-density of y,

log f(y) = −n

2
log(2π)− 1

2
log det(K+ σI)− 1

2
y>(K+ σ2I)−1y

We could use an empirical Bayes strategy (sometime also referred to as maximum-likelihood)

and maximise the density with respect to the hyperparameters.

However, a Gaussian process can use many hyperparameters and there is often little infor-

mation in the data about the hyperparameters. This is especially true for the parameter κ of the

Matérn covariance function. Full Bayesian models thus typically fare better as they take into

account the uncertainty about the values of the hyperparameters. However, with the possible

exception of σ2, none of the hyperparameters can be integrated out in closed form, thus one has

to resort to either using a discrete grid or sampling techniques such as Markov Chain Monte

Carlo (MCMC).

5.1.6 Gaussian Processes in R

Gaussian processes (with maximum-likelihood estimation of the hyperparameters) can fit us-

ing the packages GPfit or mlegp. The example below uses the latter.

We fit a GP to the Great Barrier Reef data, initially using one covariate only.

fit <- mlegp(trawl$Longitude , trawl$Score1)

## reps detected - nugget will be estimated

##

## ========== FITTING GP # 1 ==============================

## intial_scaled nugget is 0.259148

## running simplex # 1...

## ...done

## ...simplex #1 complete, loglike = -121.200082 (convergence)

## running simplex # 2...

## ...done

## ...simplex #2 complete, loglike = -121.200082 (convergence)

## running simplex # 3...

## ...done

## ...simplex #3 complete, loglike = -121.200082 (convergence)

## running simplex # 4...

## ...done

## ...simplex #4 complete, loglike = -121.200082 (convergence)

## running simplex # 5...

## ...done

## ...simplex #5 complete, loglike = -121.200082 (convergence)

##

## using L-BFGS method from simplex #4...

## iteration: 1,loglike = -121.200082

## ...L-BFGS method complete

##

## Maximum likelihood estimates found, log like = -121.200082

## addNuggets...

## creating gp object......done
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newdata <- data.frame(Longitude = seq(min(trawl$Longitude), max(trawl$Longitude), len=50))

predictions <- predict(fit, newdata)

plot(Score1˜Longitude, data=trawl)

lines(newdata$Longitude, predictions)
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5.2 Excursion: Kernel methods in more general

5.2.1 An alternative derivation of Gaussian processes

In this section we will look again at the derivation of Gaussian processes, more specifically at

the transition from equation (5.3) to equation (5.4). We start with the Bayesian linear model,

which we showed to be equivalent to

y ∼ N
(
0, τ 2XX> + σ2I

)
.

The matrix XX> is nothing other than the matrix of inner products

XX> =


∑p

j=1 x
2
1j . . .

∑p
j=1 x1jxnj

... . . . ...∑p
j=1 xnjx1j . . .

∑p
j=1 x

2
nj



=


x>
1 x1 . . . x>

1 xn

... . . . ...

x>
nx1 . . . x>

nxn

 =


〈x1,x1〉 . . . 〈x1,xn〉

... . . . ...

〈xn,x1〉 . . . 〈xn,xn〉


What we have achieved so far is that we have shown that the model (5.3) from above only

depends on the covariates through inner products. Note that this is only true for the Bayesian

linear model or ridge regression, but not for classical frequentist linear models. We will now

exploit this to turn the Bayesian linear model into a generic non-parametric methods, namely
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Gaussian processes. The advantage of this derivation is that it is in no way tied to the Bayesian

linear model and can be applied to a variety of other methods.

Inner products

An inner product space is a vector space with a function 〈·, ·〉, called inner product, which

satisfies the following three properties.

(Conjugate) symmetry 〈x,y〉 = 〈y,x〉 (in case of a real-valued inner products 〈x,y〉 =

〈y,x〉)
Linearity 〈αx1 + βx2,y〉 = α 〈x1,y〉+ β 〈x2,y〉.

Together with the (conjugate) symmetry, linearity in the first argument implies (conju-

gate) symmetry in the second argument.

Positive-definiteness 〈x,x〉 ≥ 0 with equality if and only if x = 0.

One can show that then ‖x‖ =
√
〈x,x〉 is a norm and thus d(x,y) = ‖x − y‖ =√

〈x− y,x− y〉 is a distance. Examples of inner products are:

– In the vector space of Rp the classical inner product 〈x,y〉 =
∑p

i=1 xiyi satisfies the above

definition.

– In the vector space of Cp the classical inner product 〈x,y〉 =
∑p

i=1 xiȳi satisfies the above

definition.

– In the vector space of random variables with zero mean and finite variance, the covariance

Cov(X,Y ) satisfies the properties of an inner product.

Rather than working with the data xi itself, we now consider a basis expansion b(xi), i.e.

an extended design matrix

B =


b(x1)

>

...

b(xn)
>

 =


b1(x1) . . . bq(x1)

... . . . ...

b1(xn) . . . bq(xn)

 .

Now

BB> =


∑q

j=1 bj(x1)
2 . . .

∑q
j=1 bj(x1)bj(xn)

... . . . ...∑q
j=1 bj(x1)bj(xn) . . .

∑q
j=1 bj(xn)

2



=


b(x1)

>b(x1) . . . b(x1)
>b(xn)

... . . . ...

b(x1)
>b(xn) . . . b(xn)

>b(xn)

 =


〈b(x1),b(x1)〉 . . . 〈b(x1),b(xn)〉

... . . . ...

〈b(x1),b(xn)〉 . . . 〈b(xn),b(xn)〉


If we now define k(xi,xj) = τ 2 〈b(xi),b(xj)〉, then



92 5. Bayesian nonparametrics and Kernel methods Nonparametric Smoothing

τ 2BB> =


k(x1,x1) . . . k(x1,xn)

... . . . ...

k(x1,xn) . . . k(xn,xn)


Plugging this into (5.3) yields equation (5.4), which is the definition of Gaussian processes.

Note that we do not need to know much about the basis expansion b(·), all we need to be

able to do is to compute inner products k(xi,xj) = 〈b(xi),b(xj)〉 . Actually, we don’t even

need to specify b(·), we can simply write down the function k(·, ·). An important result from

functional analysis, called Mercer’s theorem4, guarantees that if

i. k(·, ·) is symmetric in its arguments, i.e. k(xi,xj) = k(xj,xi), and

ii. k(·, ·) is positive semi-definite, i.e. for any choice of x1, . . . ,xn the matrix

K =


k(x1,x1) . . . k(x1,xn)

... . . . ...

k(xn,x1) . . . k(xn,xn)


is positive semi-definite,

then there exists a unique basis expansion (“feature map”)b(·) such that k(xi,xj) = 〈b(xi),b(xj)〉.
Note that the conditions of Mercer’s theorem just say that k(·, ·) needs to be a valid covariance

function, so we can use the same functions as discussed in section 5.1.4.

This way of turning a linear method (such as the Bayesian linear model) into a nonlinear

method is known as the kernel trick in the Machine Learning community. This trick can be

applied to any linear technique, as long as it only depends on the data through inner products.

5.2.2 Support Vector Machines

In this section we will introduce Support Vector Machines, a popular Machine Learning meth-

ods, which also make use of the kernel trick.

Introduction The history of support vector machines reaches back to the 1960s. The “Gen-

eralised Portrait” algorithm, which constructs a separating hyperplane with maximal margin,

was originally proposed by the Soviet mathematicians Vapnik and Chernovenkis. Over last

decade, support vector machines have become an increasingly popular learning algorithm.

Though this course is mostly concerned with regression we start with support vector ma-

chines for classification and then cover the regression case.

Support vector machine are implemented in the function svm in the package e1071. There

are also other package implementing SSVMs, such as kernlab.

Support Vector Machines for Classification The basic idea of support vector classification is

to maximise the margin between the two classes. The margin is the qidth of a band around
4 named after James Mercer FRS (1883 –1932), a British mathematician.
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LDA solution SVC solution

Figure 5.6. Decision boundary for linear discriminant analysis (left) and support vector classification (right) for a two-
dimensional toy example: LDA maximises (after rescaling the data) the distance between the projected class means (filled
symbols), whereas SVC maximises the margin between the two classes.

the decision boundary which does not contain any observations. Figure 5.6 compares this to

the idea of linear discriminant analysis (LDA). As one can see from the figure, the solution

depends only on the observations that lie on the margin. This makes the solution vector of the

support vector machine extremely sparse.

Hard-margin support vector machines Thus we look for separating hyperplane {x : 〈x,w◦〉 =
−b◦} (‖w◦‖ = 1) which maximises the margin ρ.5 The margin is the largest number ρ satisfy-

ing

〈xi,w
◦〉+ b◦ ≥ ρ for yi = 1, 〈xi,w

◦〉+ b◦ ≤ −ρ for yi = −1

To obtain a unique solution we have to restrict the norm ofw◦ to 1. Mathematically it is however

easier to fix the margin to 1 and look for the hyperplane with minimal ‖w‖2/2. Graphically this

corresponds to zooming the data by a factor of 1/ρ, and more mathematically this corresponds

to dividing w◦ and b◦ by ρ. We thus want to minimise

1

2
‖w‖2

with respect to

〈xi,w〉+ b ≥ 1 for yi = 1, 〈xi,w〉+ b ≤ −1 for yi = −1 (5.6)

The corresponding Lagrangian is

L(w, b) =
1

2
‖w‖2 −

n∑
i=1

αi (yi (〈xi,w〉+ b)− 1)

with Lagrangian multipliers αi ≥ 0. The dual problem is to maximise
5 w is the normal vector of the separating hyperplane and governs its orientation, whereas b controls the offset of the hyper-

plane
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D(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyj 〈xi,xj〉 (5.7)

over all αi ≥ 0 with
∑n

i=1 αiyi = 0. w can be obtained from the αi via w =
∑n

i=1 αiyixi. b

can be computed using any observation xisv with αisv > 0 via yisv (〈xisv ,w〉+ b) = 1.

The prediction formula for a new observation with covariate x0 is

ŷ0 = sign (〈x0,w〉+ b) = sign

(
r∑

i=1

αiyi 〈xi,x0〉+ b

)
(5.8)

The optimisation problem (5.7) has the inequality constraint αi ≥ 0, thus it is highly likely

that many αi will be 0, i.e. the vector α = (α1, . . . , αn) is likely to be very sparse. Thus the

solution only depends on the observations for which αi > 0. These observations are called

support vectors.

Soft-margin support vector machines Obviously maximising the margin in the above sense is

only possible if the dataset is separable. In practice however, most datasets are not separable.6

In this case, slack variables ξi must be introduced so that the constraints can be met. The value

of these slack variables indicates how far the data point lies outside the margin (“error”). Figure

5.7 visualises this idea. These “errors” are considered with a cost factor C > 0 in the objective

function, which then becomes
1

2
‖w‖2 + C

n∑
i=1

ξi.

The solution is thus a trade off between maximising the margin and not having too many points

dropping outside the “margin”. This optimisation problem can be solved using the standard

tools of semi-definite quadratic programming (e.g. interior point algorithms).

For these “soft margin” support vector machines we must change (5.6) to

〈xi,w〉+ b ≥ 1− ξi for yi = 1, 〈xi,w〉+ b ≤ 1 + ξi for yi = −1 (5.9)

with ξi ≥ 0. The objective function is now

1

2
‖w‖2 + C

n∑
i=1

ξi.

The corresponding dual problem is once again (5.7), now to be maximised over all 0 ≤ αi ≤ C

with
∑n

i=1 αiyi = 0.

We can compute w and b from α: w =
∑n

i=1 αiyixi and b can be computed using any

observation xisv with 0 < αisv < C using equations (5.9) with a “=” sign instead of the ≤ and

≥. Note that ξi > 0, iff αi = C.

6 Another way of dealing with non-separable data is mapping it into a high-dimensional feature space (see below).
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Figure 5.7.Slack variables ξi used in support vector classification for non-separable data

Kernelising the support vector machine So far, we have only studied generate separating hy-

perplanes. Many problems in real life are however not linearly separable. Thus we need to turn

the support vector machine into a nonlinear classification method.

As we have seen in equation 5.8 the predictions of ŷ0 and the dual (5.7) only depend on the

covariates through the inner products, so we can use the kernel trick once again. Suppose that

we now consider a transform b(xi) instead of xi. The decision boundary will now be linear in

this feature space, and thus the decision boundary will be nonlinear in the original space.

Using k(xi,xk) = 〈b(xi),b(xj)〉 the dual (5.7) becomes

D(α) =
n∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjk(xi,xj)

and new predictions can be computed using

ŷ0 = sign

(
r∑

i=1

αiyik(x0,xi) + b

)
Note again that the fitted function is a linear combination of the kernel functions evaluated at

the observations xi, as the Representer Theorem requires.

Practical considerations The performance of a support vector machines depends crucially on

the hyperparameters chosen: Big values of C generally yield an overfit to the data. The big-

ger the degree q of the polynomial or the smaller the “width” γ of the Gaussian kernel is

selected, the more wigglier the decision boundary will be and the more likely the fit will result

in an overfit. Figure 5.8 visualises the effect of the hyperparameters. Historically the Vapnik-

Chervonenkis-(VC)-bound has been used to determine optimal values for the hyperparameters.
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Figure 5.8.SVM fits (decision boundary) and error rates for different values of the cost C and the parameter γ of the Gaussian
kernel
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The VC bound is a (loose) upper bound for the actual risk. One just picks the value of the hy-

perparameter that leads to the lowest VC bound. The idea of minimising the VC bound is the

central idea of the structural risk minimisation (SRM) principle. However, there seems to be

some empirical evidence that the VC bound is not suitable for choosing optimal hyperparam-

eters. Simulation studies suggest that it is best to determine the hyperparameters using either

a validation set or cross-validation). Nonetheless the VC bound is an interesting theoretical

concept and we will come back to the VC bound later on.

Support vector machines are not scale-invariant, so it is necessary to scale the data before-

hand. However most implementations of SVM (like the one used in R) perform the standardi-

sation automatically.

Support vector machines have been successfully trained classifiers with huge amounts of

data (like speech or image (digit) recognition). This applies to the number of observations as

well as to the number of covariates. Support vector machines are one of the most competitive

methods is the area of two-class classification.

Support vector machines do not make any model assumption. This makes them a very versa-

tile tool, but it makes assessing the uncertainty difficult to impossible: we cannot define proper

confidence intervals or compute criteria like the AIC or the BIC. There are some probabilistic

upper bounds like the VC bound, but these bounds are typically very loose and thus only of

limited use.

The R function tune.svm from e1071 can tune the hyperparameters automatically using

cross-validation.

Support Vector Regression Though support vector machines are mostly used for classification,

we will only cover support vector machines for regression.

Robust Statistics You probably remember from your introductory undergraduate Statistics

course that the median is more robust than the mean. In other words, the median is less af-

fected by outliers than the mean. In this section we will relate this to loss functions and use

these to propose robust methods for regression.

One can show that the mean ȳ = 1
n

∑n
i=1 yi of a sample minimises the sum of squares, i.e.

n∑
i=1

(yi − a)2

is minimal for a = ȳ. Similarly one can show than the median ỹ minimises the sum of absolute

differences, i.e.
n∑

i=1

|yi − a|

is minimal for a = ỹ.

Remember that in standard linear regression we choose the regression coefficients β such

that
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n∑
i=1

(yi − x>
i β)

2,

is minimal, i.e. (standard) linear regression is using a quadratic loss function (just like the

mean). One can obtain a robust version of linear regression by choosing β such that
n∑

i=1

|yi − x>
i β|,

is minimal. This robust approach to regression yields an algorithm that can cope much better

with outliers. However computing the regression coefficients is computationally more demand-

ing and there is no “nice” theory for tests and confidence / prediction intervals.

A compromise between two loss functions is Huber’s loss function which is defined as

n∑
i=1

LH
δ (yi − x>

i β) where LH
δ (z) =

{
z2

2
for −δ ≤ z ≤ δ

δ(|z| − δ/2) otherwise,

where δ > 0 is a suitably chosen constant. Huber’s loss function is implemented in the function

rlm in MASS. Figure 5.9 (a) to (c) compares the three loss functions.

notes.1

−1 1

1

(a) Quadratic loss

notes.2

−1 1

1

(b) Linear loss

notes.3

−1 1−δ δ

1

(c) Huber’s loss

notes.4

−1 1−ε ε

1

(d) ε-insensitive loss

Figure 5.9.Different loss functions for regression.

Support Vector Regression Support vector regression is yet another way of performing robust

regression. All methods described in the previous section yield estimates of the regression co-

efficients which depend on all observations. In order to obtain a sparse solution which depends

only on a small subset of the observations a modification of the above loss functions is used.

This “ε-insensitive” loss function is defined as

Lε(z) = (|z| − ε)+ =

{
0 for −ε ≤ z ≤ ε

|z − ε| otherwise,

where ε is a suitably chosen constant. Small errors (i.e. errors less than ε) will not incur any

loss with this loss function, thus ε is typically chosen rather small (often as small as 10−3).
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As common in the support vector literature we will denote the regression coefficients by

w, rather than β. In linear support vector regression we fit a linear function b + 〈xi,w〉 to a

response yi by minimising the criterion

1

2
‖w‖2︸ ︷︷ ︸

regularisation

+C

n∑
i=1

Lε (yi − b− 〈xi,w〉)︸ ︷︷ ︸
training loss

Note that the objective function is almost the same as in ridge regression. The only difference

is that we use the ε-insensitive loss function for the training loss rather than the quadratic loss

used in ridge regression.

Before we go into the details of solving the optimisation problem we will first generalise the

problem to the nonlinear case. Suppose we want to use a feature map b(·), i.e. fit the function

b+ 〈b(xi),w〉. In this case the objective function becomes

1

2
‖w‖2 + C

n∑
i=1

Lε (yi − b− 〈b(xi),w〉)

x

x
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Figure 5.10.Slack variables ξ̃i and ξi used in support vector regression

The above optimisation can be written as an optimisation problem using slack variables ξ̃i
and ξi. We want to minimise

1

2
‖w‖2 + C

n∑
i=1

(ξ̃i + ξi)

subject to yi−(〈b(xi),w〉+ b) ≤ ε+ξ̃i and (〈b(xi),w〉+ b)−yi ≤ ε+ξi with slack variables

ξ̃i, ξi ≥ 0. This is illustrated in figure 5.10. The corresponding dual is

D(α̃,α) = −1

2

∑
i,j

(α̃i − αi)(α̃j − αj) 〈b(xi),b(xj)〉 − ε
n∑

i=1

(α̃i + αi) +
n∑

i=1

yi(α̃i − αi),

which is to be maximised over α̃i, αi ∈ [0, C] with
∑n

i=1(α̃i − αi) = 0 and α̃iαi = 0. The

estimated regression curve can be expressed as a function of (α̃i − αi) and b:

m̂(x0) =
r∑

i=1

(α̃i − αi) 〈b(x0),b(xi)〉+ b

Once again the optimisation problem and its solution only depend on a subset of the learning

dataset (those vectors having α̃i > 0 or αi > 0) and only through inner products, i.e. we can

use a kernel k(xi,xj) = 〈b(xi),b(xj))〉. In this case the estimated regression curve becomes
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m̂(x0) =
r∑

i=1

(α̃i − αi)k(x0,xi) + b.
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(a) C = 0.1, ρ = 0.1
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(b) C = 1, ρ = 1
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(c) C = 10, γ = 1

143.0 143.2 143.4 143.6 143.8

−
11

.8
−

11
.7

−
11

.6
−

11
.5

−
11

.4
−

11
.3

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

0.
0

0.
5

1.
0

1.
5

2.
0

La
tit

ud
e

(d) C = 10, γ = 10

Figure 5.11. Suppport vector machine fits to the Great Barrier Reef data for different values of the hyperparameters using a
squared exponential kernel.

5.2.3 Reproducing kernel Hilbert spaces (RKHS)

We have seen that the posterior mean prediction for a Gaussian process is given by

ŷ0 = m̂(x0) = k>
0

(
K+ σ2I

)−1
y︸ ︷︷ ︸

=α

=
n∑

i=1

αik(x0,xi)

The predicted class for a support vector classification machine is of the form
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ŷ0 = sign

(
r∑

i=1

αiyik(x0,xi) + b

)
where as the predicted value for a support vector regression machine is

m̂(x0) =
r∑

i=1

(α̃i − αi)k(x0,xi) + b

What all three solutions have in common is that they are a linear combination of covari-

ance/kernel functions. In this section we will explore in what way such solitions are optimal.

For this we start by generalising our objective. We will actually generalise it thus far that it

well even cover the optimality of smoothing splines we have derived in chapter 3.

Suppose we have a loss function

L : Rn × Rn → R ∪ {+∞},

(y1, . . . , yn,m(x1), . . . ,m(xn)) 7→ L(y1, . . . , yn,m(x1), . . . ,m(xn))

which is defined pointwise and which associates a lossL to a set of predictionsm(x1), . . . ,m(xn)

with respect to the observed responses y1, . . . , yn. One example of such a loss function is the

least-squares loss

L(y1, . . . , yn,m(x1), . . . ,m(xn)) =
n∑

i=1

(yi −m(xi))
2,

but the theory we will derive is general enough to apply to any pointwise loss function.

Similarly we will consider a more general penalty Ω(‖ · ‖2), where Ω : [0,+∞] → R be a

strictly monotonic increasing function and ‖ · ‖ is a valid norm. In chapter 3 we have used

〈m1,m2〉 =
∫ b

a

m′′
1(x)m

′′
2(x) dx

‖m‖2 = 〈m,m〉 =
∫ b

a

m′′(x)2 dx

and Ω(z) = z.

We now want to find the function m(·) which minimises the regularised loss (λ ∈ R+)

L(y1, . . . , yn,m(x1), . . . ,m(xn)) + λ ·Ω(‖m‖2). (5.10)

In chapter 3 we performed the optimisation over all functions on [a, b], which are twice

continuously differentiable. The space of these functions is a special type of vector space,

called a representing kernel Hilbert space.7 The Riesz representation theroem8 tells us that
7 A Hilbert space is an inner product space which is complete, i.e. every Cauchy sequence converges. A reproducing kernel

Hilbert space is a Hilbert space of functions where the linear map δx which maps each function m(·) to the value m(x) it
takes at some x is continuous for every choice of x. Essentially, a reproducing kernel Hilbert space is a “reasonably well
behaved” Hilbert space.

8 named after Frigyes Riesz (1880 – 1956), a Hungarian mathematician
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in a reproducing kernel Hilbert space H the kernel function k is the so-called representer of

evaluation, i.e. for all x ∈ X and all functions m ∈ H we have that

m(x) = 〈m, k(·, x)〉

The so-called Representer Theorem now says that the minimiser of (5.10) can be written as

a sum of kernel functions. In other words, the minimisation problem is only finite-dimensional

as we just have to find a set of coefficients. This is an extremely powerful result, which was

first dervied in he late 1970s by Kimeldorf and Wahba.

Theorem 5.1 (Representer Theorem). Suppose L : Rn × Rb → R is a point-wise defined loss

function and Ω : R → R is a non-decreasing function. The minimiser of

L(y1, . . . , yn,m(x1), . . . ,m(xn)) + λ ·Ω(‖m‖2),

among all functions in the reproducing kernel Hilbert space H admits the representation

m(x0) =
n∑

i=1

αik(xi,x0) (5.11)

for suitable α1, . . . , αn ∈ R.

Proof. Suppose we have a function g ∈ H which we think is optimal. We will now show that

we can construct a “competitor” m of the form (5.11) which will outperform it.

i. We will first start by considering the sub-space ofHwhich is spanned by (k(x1, ·), . . . , k(xn, ·))
and define our competitor m as the projection of g into this subspace. We will also define

a residual h = g −m, which will be orthogonal to m.

More formally, as k(xi, ·) ∈ H, we can decompose the function g into a part m ∈
span (k(x1, ·), . . . , k(xn, ·)) and a residual part h(·) = g(·)−m(·).
We can find projection coefficients α1, . . . , αn such that

m(x) =
n∑

i=1

αik(xi, ·)

and the residual h(·) is orthogonal to the span (i.e. 〈h, k(xi, ·)〉 = 0), as it is the residual

after projection.

In other words, we have decomposed

g(·) =
n∑

i=1

αik(xi, ·)︸ ︷︷ ︸
=m(·)

+h(·),

with m(·) ⊥ h(·).
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ii. We will now show that m(·) and g(·) take the same value at any of the training points xj ,

by showing that

g(xj) =
n∑

i=1

k(xi,xj) = m(xj).

We can show this by using the representer property

g(xj) = 〈g, k(·,xj)〉 =

〈
n∑

i=1

αik(xi, ·) + h(·), k(·,xj)

〉
=

=
n∑

i=1

αi 〈k(xi, ·), k(·,xj)〉︸ ︷︷ ︸
=k(xi,xj)

+ 〈h(·), k(·,xj)〉︸ ︷︷ ︸
=0

=
n∑

i=1

αik(xi,xj) = m(xj)

Thus both our competitor m(·) and g(·) incur the same training loss, i.e.

L(y1, . . . , yn, g(x1), . . . , g(xn)) = L(y1, . . . , yn,m(x1), . . . ,m(xn))

iii. We will finally show that m(·) cannot incur a larger penalty than g(·).

Ω(‖g‖2) = Ω(‖m+ h‖2) m⊥h
= Ω(‖m‖2 + ‖g‖︸ ︷︷ ︸

≥‖m‖2

) ≥ Ω(‖m‖2)

iv. Putting together ii. and iii. we obtain

L(y1, . . . , yn, g(x1), . . . , g(xn))+λ·Ω(‖g‖2) = L(y1, . . . , yn,m(x1), . . . ,m(xn))+λ·Ω(‖m‖2),

i.e. our competitor cannot perform worse. One can show that equality only holds if g also

admits the form (5.11).

�

5.3 Dirichlet processes

5.3.1 Bayesian mixture models

We have studied mixture models in section 2.3. One challenge was estimating the number of

components. This problem can be overcome by considering a Bayesian approach. For this we

need to place priors on the model parameters:

– We place a Dirichlet distribution on π = (π1, . . . , πK). The Dirichlet distribution is a gen-

eralisation of the Beta distribution and generates realisations such that
∑K

k=1 πk = 1 with

πk > 0. Its probability density function is, for πk > 0 with
∑K

k=1 πk = 1, given by

f(π1, . . . , πK) =
Γ (δ1 + . . .+ δK)

Γ (δ1) · · ·Γ (δK)
πδ1−1
1 · · · πδK−1

K
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In this context we typically choose all δk to be equal, i.e. δ1 = . . . = δK = δ. Figure 5.12

shows the distribution for a trivariate Dirichlet distribution for δ ∈ {0.75, 1, 1.5}. The figure

shows the density only as a function of π1 and π2 as π3 = 1− π1 − π2.
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Figure 5.12.Probability density function of the trivariate Dirichlet distribution for δ ∈ {0.75, 1, 1.5}.

– We place a conjugate Normal-Wishart distribution on µk,Σ
−1
k .

In order to perform posterior inference using a Gibbs sampler we introduce the same latent

variables Si (giving the cluster allocation) as we have for the EM algorithm. The Gibbs sampler

iterates, just like the EM algorithm, between updating the cluster allocations and then updating

the means and variances in each cluster.

Note that our model currently assumes a fixed K. If we want to infer K from the data, we

have to perform model selection in an MCMC context.

There are essentially two ways of how one can perform model selection in this case. One is

to run separate MCMC chains for each model (in our case each plausible number of clusters

K) and then compute quantities like the deviance information criterion (DIC) for each chain.

However, DIC is not suitable for mixture models. The alternative approach consists to run an

MCMC algorithm that can jump between different models, i.e. we include K as a parameter in

our model. This however introduces the challenge that the dimension of the parameter space

changes as K is changed (we need to introduce a probability πK and a new pair (µK , ΣK), or

remove them). This requires the use of transdimensional MCMC techniques, such as reversible

jump Markov Chain Monte Carlo (RJMCMC), which is rather complex and often leads to

poorly mixing chains. In the next section we will consider a model which gets around this.

5.3.2 Dirichlet processes

An alternative model for estimating densities (and clustering) in a Bayesian context is given by

the Dirichlet process. The key advantage of the the Dirichlet process does not require the spec-

ification of a number of clusters or transimensional MCMC if one wants to learn the number

of clusters from data.
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Dirichlet process prior The Dirichlet process prior is a Bayesian model for a random measure,

i.e. it is a probability distribution on probability distributions.

Thse Dirichlet process (DP) can be characterised using a number of equivalent definitions.

The first definition was given by Ferguson (1973). The Dirichlet process has two parameters,

a so-called base measure (a probability distribution) G0 around which the Dirichlet process is

centred and a concentration parameter α > 0. Note that G0 is itself a probability distribution,

i.e. it assigns probabilities to sets A, which are subsets of the domain of interest Ω. for example

our base measure G0 could be the N(0, 1) distribution in which case Ω = R and G0((a, b)) =∫ b

a
φ(z) dz = Φ(b)− Φ(a).

Ferguson’s definition The original definition given by Ferguson is based on considering finite

partitions (A1, . . . , Aq) of Ω.9 G is a Dirichlet processes with parameters G0 (base measure)

and α > 0 (concentration) if and only if

(G(A1), . . . , G(Aq)) ∼ Dirichlet(αG0(A1), . . . , αG0(Aq))

for every partition (A1, . . . , Aq) of Ω.

Using the formulae for the mean and the variance of the Dirichlet distribution we can show

that

E(G(Aj)) =
αG0(Aj)

αG0(A1) + . . .+ αG0(Aq)
= G0(Aj)

Var (G(Aj)) =
G0(Aj)(1−G0(Aj))

α + 1
,

i.e. on average the random measure G assigns probbability G0(A) to a set A, so G is indeed

centered around G0. α controls the spread of G: the smaller α the higher the variance of the

random probabilities of a set A.

Though this is the original definition of the Dirichlet process, many of the key properties

of Dirichlet processes are not obvious from this definition.

One, at first sight very surprising, feature of the Dirichlet process is that one can show that

draws from the Dirichlet process exhibit ties, i.e. if we were to draw a sample from G, then

we would draw some values more than once with non-zero probability. This not the case the

continuous distributions.10 So the distribution G is discrete with probability 1, even if G0 is

continuous.

Stick-breaking construction (Sethuraman,1994) An equivalent definition of the Dirichlet pro-

cess is based on a “stick-breaking” construction. Instead of characterising G, we write down

the stick-breaking construction in terms of drawing samples from G.

We can draw a sample φ1, φ2, . . . ∼ G as follows.
9 A finite partition of Ω is a finite set of subsets Aj ⊂ Ω, which are disjoint (Aj ∩ Ak = ∅ for j 6= k) and whose union

spans Ω, i.e. A1 ∪ . . . ∪Aq = Ω. This way every y ∈ Ω is in exaclty one of the Aj’s.
10 If we draw two realisations from say the N(0, 1) distribution, these would be different with probability 1.



106 5. Bayesian nonparametrics and Kernel methods Nonparametric Smoothing

1. Draw a sequence of realisations θi from the base measure, i.e. θ1, θ2, . . . ∼ G0.

2. Draw a sequence of weights V1, V2, . . . ∼ Beta(1, α).

3. Construct a discrete probability distribution G using a stick breaking construction

pG(φ) =



V1 for φ = θ1

(1− V1)V2 for φ = θ2

(1− V1)(1− V2)V3 for φ = θ3

. . . . . .

0 otherwise

4. We can draw samples φ1, φ2, . . . from pG by drawing from the discrete distribution G from

step 3.

One key advantage of the stick-breaking definition is that it makes it clear that the dis-

tribution G is discrete (albeit with random range and random probabilities), thus a sample

φ1, . . . , φn from G is likely to exhibit ties. How many ties we would expect depends on the

concentration parameter α.

– If α → 0 all the φi are (almost surely) identical with φ1 ∼ G0.

– If α → +∞ the φi are i.i.d. draws from G0, i.e. we would observe no ties with probability 1.

In this representation we have used the Greek letters φi and θj to represent draws from the

Dirichlet process. The φi stand from the individual draws from G, whereas the θj’s stand for

the unique values the φi’s take (and which are draws from G0).

Chinese Restaurant process (CRP) Yet another way of characterising the Dirichlet process is

given by the Chinese restaurant process. One can show that samples from the Dirichlet process

can be drawn recursively from G as follows:

1. Draw φ1 ∼ G0.

2. For i = 2, 3, . . .

a) Construct a frequency table of the values φ1, . . . , φi−1 drawn so far.
Value θ1 θ2 θ3 . . .

Absolute frequency n1 n2 n3 . . .

Remember we use the θj’s to denote the unique values of the φi’s.

b) Draw θ0 ∼ G0.

c) Draw φi from the discrete distribution given by
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p(φ) =



α
i−1+α

for φ = θ0

n1

i−1+α
for φ = θ1

n2

i−1+α
for φ = θ2

. . . . . .

0 otherwise.

We can imagine this as a sequence of customers entering a Chinese restaurant. Assume that

in the restaurant all customers (representing random draws from G) sitting at a table will be

served the same dish (a draw from G). We will denote by θj the dish on the j-th table and by

φi the dish ordered by the i-th customer. If customer i sits at table j then φi = θj . Figure 5.13

illustrates this. Due to the exchangeability of the Dirichlet process11, this view forms the basis

of an efficient Gibbs sampler, referred to later on in this section.

Table 1
(Parameter θ1)

Table 2
(Parameter θ2)

Table 3
(Parameter θ3)

new table
(new param.)

Cust. 1
φ1 = θ1

Cust. 2
φ2 = θ1 Cust. 11

φ11 = θ1

Cust. 8
φ8 = θ1

Cust. 3
φ3 = θ2 Cust. 5

φ5 = θ2

Cust. 4
φ4 = θ3

Cust. 6
φ6 = θ3 Cust. 7

φ5 = θ7

Cust. 9
φ9 = θ3

Cust. 10
φ10 = θ3

Cust. 12
(new)

∝ 4

∝ 2

∝ 5 ∝ α

Figure 5.13. Illustration of the Chinese restaurant view of the Dirichlet process, assuming 11 customers have already chosen
their table.

One equivalent view is to assume that the i-th customer entering the restaurant chooses an

existing customer next to whom he wants to sit (each with probability 1
i−1+α

). With probability
α

i−1+α
the customer chooses to sit at a new table.

One key conclusion from this way of viewing the Dirichlet process is that it leads to a

varying number of clusters (tables), depending on how the customers are seated.

The Dirichlet process has a “rich gets richer”property. Tables with many customers are

more likely to attact future customers.

The CRP view of the Dirichlet process makes it very easy come up with generalisations

(just think of other ways of seating customers). It is also (due to the exchangeability of the

Dirichlet process) the basis for constructing Gibbs samplers.

11 A sequence of random variable is called exchangeable if the joint distribution of any permutation of them has teh same
distribution. Any i.i.d. sample is exchangeable, but the converse is not necessarily the case.
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Limit of finite mixture models The finite mixture model from section 5.3.1 converges to a

Dirichlet process if we let the number of componentsK → +∞ and δ → 0 such thatKδ → α.

Posterior distribution So far we have just stated different (equivalent) ways of defining the

Dirichlet process. We will now use it to perform Bayesian inference. Suppose we have now

observed φ1, . . . , φn, what would the posterior distribution of probability distributions be?

We start by placing a Dirichlet process prior with base measure G0 and concentration α

on the distribution of distributions. One can now show that the posterior distribution is again

given by a Dirichlet process, this time with concentration α + n and base measure

α

α + n
G0 +

1

α + n

n∑
i=1

δφi
=

α

α + n
G0 +

∑
j

|{i : φi = θj}|
α + n

δθj =

where δφi
denotes a distribution which takes the value φi with probability 1. In other words, the

base measure of the posterior distribution is a mixture of the base distribution of the prior (with

weight α
α+n

) and the empirical distribution of the sample φ1, . . . , φn (with weight n
α+n

). Figure

5.14 gives an example of this. This property seems rather unsatisfying: even if we assume

that our data comes from a continuous distribution, the distribution resulting from posterior

inference has discrete components.

This is why Dirichlet processes are usually not used to model the distribution of the

Y1, . . . , Yn directly, which would correspond to using φi = Yi. Instead one typically assumes

that Yi comes from a distribution with parameter φi, where φi is modelled using a Dirichlet

process. This setup effectively adds “jitter” such that the distributions resulting from posterior

inference are continuous.
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Figure 5.14.Base measure of the prior and posterior distribution in a Dirichlet process model with the N(0, 1) distribution as
prior base measure and a prior concentration parameter of 1. The observed sample was φ1 = −1, φ2 = 1 and φ3 = 0.5.
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Dirichlet process mixture models In this section we will explain how a Dirichlet process can

be used to model a mixture of normals.

We have seen in the preceding section that we do not want to use a Dirichlet process to

directly model the yi. Instead we assume that the mean vector and covariance matrix for each

observation come from a Dirichlet process, i.e.

yi|φi ∼ N(µi,Σi) using φi = (µi,Σi)

We now place a Dirichlet process prior on the distribution of the φi. This is likely to result

in ties, i.e. more than one observation will have the same µi and Σi, which corresponds to

nothing other than clusters.

Inference in this model can be performed efficiently using a Gibbs sampler (see e.g. Neal

(2000)).

Figures 5.15 and 5.16 show the results when applying the method to the aircraft data from

chapter 2.1.
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Figure 5.15. Estimated density using a Dirichlet process mixtures of normals models for the first two principal components
of aircraft data (using the R package DPpackage).
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Figure 5.16.Clustering at four different iterations of the MCMC algorithm obtained for the principal components of aircraft
data.
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6
Extending the concepts

6.1 Non-Gaussian data

So far we have assumed that (conditional on the covariates) the response has a normal distri-

bution. This however does not need to be the case. How we can accomodate a non-Gaussian

observation model depends on the type of method we have used.

6.1.1 Basis expansion methods

Basis expansion methods such as splines are not based on an assumption of Gaussianity.

Basis expansion methods are based on replacing the usual design matrix X in linear regres-

sion by the matrix of basis expansions B. When the response is from an exponential familiy

we can simply fit a generalised linear model (GLM) and use B as the design matrix.

To use a B spline basis with a fixed degree of freedom (i.e. a fixed number of basis functions)

we can simply use bspline inside the formula of a call to glm.

Example 6.1 (Ascaris lumbricoides). A survey of the occurence of the human parasitic worm in-

fection Ascaris lumbricoides was carried out in residents of a rural community in China. The

variables are:
Age age of the resident

Infection presence (1) or absence (0) of infection

Sex male (1) or female (2)
The background to the data, and an analysis, are described by Weidong et al. (1996), Ascaris,

people and pigs in a rural community of Jiangxi province, China, Parasitology 113, 545-57.

The data (worm) is available in the package sm.

model <- glm(Infection˜bs(Age, df=5) + as.factor(Sex), family='binomial', data=worm)

plot.model <- function(model) {
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plot(Infection˜Age, data=worm, col=Sex)

for (sex in 1:2) {
newdata <- data.frame(Age=seq(1,85, len=100), Sex=sex)

lines(newdata$Age, predict(model, newdata, type="response"), col=sex)

}
}
plot.model(model)
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In the least-squares case we have included a penalty by considering the objective function

n∑
i=1

(yi − b(xi)
>β) + λ‖Dβ‖2 (6.1)

When including a penalty in a likelihood-based method we simply subtract it from the

loglikelihood to create the penalised likelihood

n∑
i=1

log fb(xi)>β(yi)− λ‖Dβ‖2

The penalised negative loglikelihood becomes the scaled negative of (6.1) when assuming a

normal distribution for the response.

Example 6.2 (Ascaris lumbricoides). A penalised spline mode is fitted most conveniently using

the gam function from the package mgcv. We can make two different assumptions about how

age and sex influence the probability of an infection.
We can assume an additive term for sex in the model, so that the fitted curves for men and

women are just shifted by that estimated coefficient.
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model <- gam(Infection˜s(Age) + as.factor(Sex), family='binomial', data=worm)

plot.model(model)
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AIC(model)

## [1] 392.6313

Alternatively, we can assume that the relationship between age and infections is completely
different in shape for mean and women.

model <- gam(Infection˜s(Age, by=as.factor(Sex)), family='binomial', data=worm)

plot.model(model)
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## [1] 406.8489

We will simply use AIC for model comparison. The former model has the lower AIC and

is thus preferred. /
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6.1.2 Local estimators

In the local regression models from chapter 4 we have found the prediction at x0 by considering

the locally-weighted least squares criterion

min
µ

n∑
i=1

(yi − µ)2w(xi − x0 ;h) (6.2)

for the running-mean estimator, or

min
α,β

n∑
i=1

(yi − α− β(xi − x0))
2w(xi − x0 ;h) (6.3)

for the locally linear estimator.

We generalise this to the case of non-Gaussian data by replacing the least squares loss by

the loglikelhood, i.e. consider

max
µ

n∑
i=1

log fµ(yi)w(xi − x0 ;h)

or

max
α,β

n∑
i=1

log fα+β(xi−x0)(yi)w(xi − x0 ;h)

When using a Gaussian model for the data these simplify to (6.1.2) and (6.3).

Example 6.3 (Ascaris lumbricoides (continued)). We can fit a local binomial regression model us-
ing the function sm.binomial from the package sm.

with(subset(worm, Sex==1), {
sm.binomial(Age, Infection, h=10, group=Sex)

})
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6.1.3 From Gaussian models to latent Gaussian models

Gaussian processes are more difficult to generalise to other distributions. We cannot simply

replace the assumption of a joint normal distribution by an assumption of another distribution.

One thus typically proceeds by introducing a latent Gaussian process. So, for example if we

want to perform binary classification using a Gaussian process we would assume the following

two-level model

Yi|Zi = zi ∼ Bi(1, πi) with πi =
exp(zi)

1 + exp(zi)

Z ∼ N(0,K+ σ2I)

The latent Gaussian process cannot be integrated out in closed form (unless the response is

itself Gaussian). So inference has to either be based on an approximation or posterior simula-

tion (MCMC). There are essentially two different, but equally succesful strategies that one can

use for find an approximate solution. One is to use a Laplace approximation (used in a more

sophisticated way by INLA) whereas the other is to resort to a technique called variational

inference.

6.2 Generalised Additive Models for Location, Scale and Shape

(GAMLSS)

In some circumstances standard regression methods based on a standard distributional assump-

tion will not capture all aspects of the distribution of the response variable of interest.

Usually regression models are based on a covariate-based model assumption for the mean

only. However in some situations not just the mean, but also the spread and the shape of the

distribution of the response depend on covariates.

GAMLSS models (Rigby and Stasinopoulos, 2005) have up to four parameters which can

be influenced by covariates. The µ parameter controls the location, the σ parameter controls

the spread, the τ parameter controls the skewness and the ν parameter controls the kurtosis.

The gamlss package implements a very large number of distributions, one such distribution

is the so-called Box-Cox Cole and Green distribution (BCCG) given by

f(y|µ, σ, ν) = 1√
2πσ

yν−1

µν
exp

(
−z2

2

)
where

z =


(y/µ)ν−1

νσ
if ν 6= 0

log(y/µ)
σ

if ν = 0



118 6. Extending the concepts Nonparametric Smoothing

Example 6.4 (Effect of age on obesity in the US). The National Health and Nutrition Examina-

tion Survey (NHANES) is a program of studies designed to assess the health and nutritional

status of adults and children in the United States. As part of the NHANES data (available in

the R package NHANES) both the age and the body mass index (BMI) are collected.

Suppose we want to study the effect of age on obesity. If the objective of our investigation

is obesity, we are not really interested in how the mean BMI changes with age. Rather, we are

interested in how large quantiles change with the mean. This requires modelling the effect of

age on all aspects of the distribution of the BMI and not just its mean.
The function gamlss from the package gamlss lets us fit such a model.

model <- gamlss(BMI˜ps(Age), sigma.formula=˜ps(Age), tau.formula=˜ps(Age), data=NHANES, family="BCCG")

## GAMLSS-RS iteration 1: Global Deviance = 59754.46

## GAMLSS-RS iteration 2: Global Deviance = 59288.42

## GAMLSS-RS iteration 3: Global Deviance = 59272.57

## GAMLSS-RS iteration 4: Global Deviance = 59272.07

## GAMLSS-RS iteration 5: Global Deviance = 59272.08

## GAMLSS-RS iteration 6: Global Deviance = 59272.09

## GAMLSS-RS iteration 7: Global Deviance = 59272.11

## GAMLSS-RS iteration 8: Global Deviance = 59272.11

## GAMLSS-RS iteration 9: Global Deviance = 59272.11

## GAMLSS-RS iteration 10: Global Deviance = 59272.11

centiles(model, xvar=NHANES$Age)
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## % of cases below 0.4 centile is 0.2594976

## % of cases below 2 centile is 1.806103

## % of cases below 10 centile is 9.694831

## % of cases below 25 centile is 25.17127

## % of cases below 50 centile is 50.49824

## % of cases below 75 centile is 74.071

## % of cases below 90 centile is 89.72389

## % of cases below 98 centile is 98.0901

## % of cases below 99.6 centile is 99.62632
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6.3 Quantile and density regression

When the quantity of interest is just one quantile it is easiest to fit a quantile regression model.

The idea of quantile regression was introduced by Koenker and Bassett (1978). Suppose we

have data {(y1, x1), . . . , (yn, xn)} and a predictor function m(x) which depends on parameters

β.

For Gaussian data we have used a least-squares loss function, i.e. we have chosen β to

minimise
n∑

i=1

(yi −m(xi))
2.

Because the mean minimises the squared loss, standard regression is sometimes referred as to

mean regression.

If we were to use the absolute loss
n∑

i=1

|yi −m(xi)|

we would obtain median regression.

Quantile regression is based on minimising

n∑
i=1

ρτ (yi −m(xi))

and results in an estimate of the τ -th quantile of the response distribution. ρτ (·) is the so-called

check function

ρτ (z) =

τz if z ≥ 0

(τ − 1)z if z < 0

Figure 6.1 shows the check function for different τ ∈ {0.25, 0.5m, 0.75, 0.95}.
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Figure 6.1.Check function for different values of τ .
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Example 6.5 (Effect of age on obesity in the US (continued)). To find the 90% and 98% quantile

of the conditional distribution of tge BMI given Age we need to fit two quantile regression

models using the function rq from quantreg.

plot(BMI˜Age, data=NHANES, col="grey", pch=16, cex=0.5)

newdata <- data.frame(Age=seq(2,80,len=500))

model <- rq(BMI˜bs(Age, df=10), data=NHANES, tau=0.9)

lines(newdata$Age, predict(model, newdata), col=1, lwd=2)

model <- rq(BMI˜bs(Age, df=10), data=NHANES, tau=0.98)

lines(newdata$Age, predict(model, newdata), col=2, lwd=2)

legend("topleft",col=1:2, lwd=2, c("90% quantile", "98% quantile"))
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In their vanilla form, quantile regression models are run separeately for each quantile. This

can however sometimes lead to problem with estimated quantiles crrossing.

This can be avoided by estimating the entire conditional distribution in one go, just like

GAMLSS has performed the estimation. GAMLSS however still is a (admittedly rather rich)

parametric model. We can avoid such parametric assumption by using a density regression

technique. Bayesian techniques for density regression are typically based on the Dirichlet pro-

cess. There are a number of different classes of such models. One approach (implemented in

the function DPcdensity in DPpackage) is based on estimating the point density of (yi,xi)

using a Dirichlet process and then computing the conditional distribution of yi|xi. Other ap-

proaches are based on modifying the stick breaking view or the Chinese restaurant view so

that weights depend on covariates. Due to their nature these models are rather complex and go

beyond the scope of this course.
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6.4 Functional data analysis

The type of data which are now routinely collected can have quite complex structures, rather

than simply having a single measurements of a response variable. For example, a response

might be in the form of a function collected by a monitoring device which effectively col-

lects data continuously over time. Although in practice the data may be discretised on a grid

of time points, it can be helpful to think of this as representing a function. This leads to the

concept of functional data analysis which has attracted considerable interest over the last cou-

ple of decades. There are strong links here with the techniques we have been discussing, as

methods of flexible regression provide curve descriptions which reduce noise or have compact

representations through basis functions.

Example 6.6 (Mediterranean fruit flies). A dataset containing the number of eggs laid from fifty

Mediterranean fruit flies (“medflies”, Ceratitis capitata) during the first 25 days of their lives.

In addition to the number of eggs laid each data, the dataset also contains the lifespan of each

fly. Our objective is to investigate whether fecundity can predict the future lifespan of a fly.

In this example the covariate is functional. Rather than having a single egg count we have

a time series of 25 counts, i.e. our covariate is a function of time xi(t).

This suggests using a regression model of the form

E(yi) =

∫ 25

0

xi(t)β(t) dt

to predict the future lifetime of the fly. Because the covariate is functional we also have to use

a functional regression coefficient.

Such a model can be fitting using the package fda.
We start by creating an fd object to hold the functional data. Before we can create an fd

object we need to create a set of basis functions which are then used to represent the data.

basisfd <- create.bspline.basis(rangeval=c(0, 25), 10)

xfd <- Data2fd(medfly$eggcount, argval=0:25, basisobj=basisfd)

lifetime <- as.numeric(medfly$lifetime)

plot(xfd)
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To further explore the data, we can compute the functional principal components.

par(mfrow=1:2)

plot(pca.fd(xfd),pointplot=FALSE)
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Finally we fit the functional regression model. Note that the regression coefficient is now
itself a function (represented as a B-spline).

betabasis <- create.bspline.basis(c(0,25), 10)

lifetime <- as.numeric(medfly$lifetime)

model <- fRegress(lifetime ˜ xfd)

plot(model$betaestlist[[2]])
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The the number of eggs laid towards the begin of the 25 day period is positively related to

the further survival of the fly. /

6.5 Models for discrete space

We will finally consider the case of areal unit data. So far we have assumed that spatial data is

recorded at a precise spatial location. However some data is only available at a coarser spatial

resolution.

The left-hand plot in figure 6.2 shows the observed number of deaths from larynx cancer

for males in each of 544 districts of Germany from 1986 to 1990. The right-hand plot shows

the standardised incidence ratio (SIR) which is obtained by dividing the observed number of

the cases by the number of cases expected based on the population size and age structure in

each district.

It seems reasonable to assume that mortality rates in neighbouring districts are related to

each other. If we assume that the mortality rate in each district is directly influenced only by

its first-order neighbours we are assuming a graphical model like the one shown in figure 6.3.

We will use the following model, called the Convolution Conditional Autoregressive (CAR)

model, which was first proposed by Besag et al. (1991).

Yi|Zi = zi ∼ Poi(λiEi) with λi = exp(z
(1)
i + z

(2)
i )

z
(1)
i |z(1)−i ∼ N

(∑
j∼i z

(1)
j

ni

,
τ 21
ni

)
z
(2)
i ∼ N(0, τ 22 ) i.i.d.
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Raw counts SIR

Figure 6.2.Raw counts and standardised incidence ratio (SIR) for larynx cancer in 544 German districts.
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Figure 6.3. Graphical model assumed for the relationship between the latent Gaussian Markov random field for the larynx
cancer counts.
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where j ∼ i denotes all neighbours of i and ni is the number of neighbours of district i. Yi

denotes the observed number of cases, whereas Ei denotes the expected number of cases.

Inference in this model has to be carried out using MCMC (for example using the package

CARBayes or by performing approximate inference. Figure 6.4 shows the estimates of the SIR

obtained by fitting the above CAR model using the package INLA.

Figure 6.4.Model-based estimate of the SIR obtained using a CAR model
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